Outside Of Tube Or Rod By Soot Buildup Patents (Class 65/421)
-
Patent number: 11952302Abstract: A process for the production of a fluorinated quartz glass including the steps of generating SiO2 particles in a synthesis burner; depositing the resulting SiO2 particles into a body; and vitrifying the resulting body, wherein a fluorinating agent having a boiling point greater than or equal to ?10° C. is supplied to the synthesis burner.Type: GrantFiled: August 6, 2021Date of Patent: April 9, 2024Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Stefan Ochs, Thomas Kayser, Martin Trommer, Andreas Langner, Sascha Pihan, Kay Schuster, Michael Hünermann
-
Patent number: 11780762Abstract: The present invention relates to a method for manufacturing a preform for optical fibers, which method comprises the sequential steps of: i) deposition of non-vitrified silica layers on the inner surface of a hollow substrate tube; ii) deposition of vitrified silica layers inside the hollow substrate tube on the inner surface of the non-vitrified silica layers deposited in step i); iii) removal of the hollow substrate tube from the vitrified silica layers deposited in step ii) and the non-vitrified silica layers deposited in step i) to obtain a deposited tube; iv) optional collapsing said deposited tube obtained in step iii) to obtain a deposited rod comprising from the periphery to the center at least one inner optical cladding and an optical core; v) preparation of an intermediate layer by the steps of: * deposition of non-vitrified silica layers on the outside surface of the deposited tube obtained in step iii) or deposited rod obtained in step iv) with a flame hydrolysis process in an outer reaction zoneType: GrantFiled: March 3, 2016Date of Patent: October 10, 2023Assignee: Prysmian S.p.A.Inventors: Cedric Gonnet, Antonio Adigrat, Franco Cocchini, Antonio Schiaffo, Igor Milicevic, Mattheus Jacobus Nicolaas Van Stralen, Gertjan Krabshuis
-
Patent number: 11780761Abstract: A method for producing a porous glass fine particle body includes: a first layer formation step of continuously forming in a longitudinal direction of a rotating starting base material without a break, a first soot layer on a surface of the rotating starting base material; and an second layer formation step of forming second soot layers on an outside of the first soot layer while supplying a raw material gas to each of a burner among burners of a burner group and moving the burner group in a reciprocating manner in the longitudinal direction relative to the rotating starting base material. The burner group and the starting base material move relatively to each other along the longitudinal direction.Type: GrantFiled: April 12, 2019Date of Patent: October 10, 2023Assignee: Fujikura Ltd.Inventor: Nobutoshi Sato
-
Patent number: 11565964Abstract: A method of manufacturing a porous glass preform includes depositing glass particles on an outer periphery of a target rod while a burner for synthesizing glass particles and the target rod that is rotating are relatively reciprocated, wherein V and r are gradually reduced while a variation in sweeping pitch P [mm] expressed as V/r is caused to be within a range of a central value±10% when a glass particle deposition layer of a portion satisfying a relation 0.5 L?R?0.8 L is synthesized; where a final outer diameter of the manufactured porous glass preform for an optical fiber is L [mm], an outer diameter of a glass particle deposition body in the middle of the manufacture is R [mm], a rotating speed of the target rod is r [rpm], and a relative moving speed between the target rod and the burner is V [mm/min.].Type: GrantFiled: September 22, 2017Date of Patent: January 31, 2023Assignee: FURUKAWA ELECTRIC CO., LTD.Inventors: Masaki Nakajima, Seiichi Shinada
-
Multiple tube burner for synthesizing porous material and apparatus for synthesizing porous material
Patent number: 11524917Abstract: A multiple tube burner for synthesizing a porous material includes three or more glass tubes are arranged coaxially with one another, the glass tubes having a substantially circular shape on a cross section perpendicular to a longitudinal direction. Out of the three or more glass tubes, a first glass tube and a second glass tube that is arranged on an outer side of the first glass tube are connected with each other on a gas introducing side, and a thickness near a joint portion of the second glass tube connected with the first glass tube is thicker than a thickness of the second glass tube on the gas spouting side.Type: GrantFiled: August 14, 2019Date of Patent: December 13, 2022Assignee: FURUKAWA ELECTRIC CO., LTD.Inventor: Mitsuhiro Kawasaki -
Patent number: 11370690Abstract: An apparatus for manufacturing glass preforms for optical fibers includes a reaction chamber surrounding a deposition region, a holding device for holding a target rod within said deposition region, one or a plurality of deposition burners positioned below said deposition region and configured to direct a high temperature flow of forming glass particles toward said target rod, a hood positioned opposite to the deposition burners with respect to said holding device and configured for discharging soot of un-deposited glass particles, said hood including at least one exhaust port provided at a first end portion thereof and side panels extending from a second end portion thereof toward said first end portion. At least a portion of the side panels of the hood is gas permeable.Type: GrantFiled: November 17, 2017Date of Patent: June 28, 2022Assignee: Prysmian S.p.A.Inventor: Stefano Grieco
-
Patent number: 11155488Abstract: A manufacturing method of a porous glass preform for optical fiber by depositing glass microparticles on a starting member, including supplying a vaporizer with organic silicon compound raw material in a liquid state and a carrier gas; in the vaporizer, mixing and vaporizing the organic silicon compound raw material in a liquid state and the carrier gas to convert the organic silicon compound raw material and the carrier gas into a raw material mixed gas; supplying a burner with the raw material mixed gas and a combustible gas, combusting the raw material mixed gas and the combustible gas in the burner, and ejecting SiO2 microparticles generated by the combustion from the burner; and depositing the SiO2 microparticles ejected from the burner on the starting member by repeatedly moving the vaporizer and the burner together, in a synchronized manner, parallel to the starting member in a longitudinal direction thereof.Type: GrantFiled: April 1, 2019Date of Patent: October 26, 2021Assignee: Shin-Etsu Chemical Co., Ltd.Inventors: Naoto Noda, Hitoshi Iinuma, Dai Inoue
-
Patent number: 11114812Abstract: Laser waveguides, methods and systems for forming a laser waveguide are provided. The waveguide includes an inner cladding layer surrounding a central axis and a glass core surrounding and located outside of the inner cladding layer. The glass core includes a laser-active material. The waveguide includes an outer cladding layer surrounding and located outside of the glass core. The inner cladding, outer cladding and/or core may surround a hollow central channel or bore and may be annular in shape.Type: GrantFiled: December 18, 2019Date of Patent: September 7, 2021Assignee: Corning IncorporatedInventors: Douglas Llewellyn Butler, Daniel Warren Hawtof
-
Patent number: 10995030Abstract: A manufacturing method of an optical fiber preform used to produce an optical fiber includes: etching a surface of a core preform that forms a core of the optical fiber with a plasma flame in a chamber; obtaining a porous preform by depositing glass particles on an etched surface of the core preform to form an outside vapor-deposited layer that forms a cladding of the optical fiber in a state where the core preform is put into the chamber; and heating and sintering the porous preform. When obtaining the porous preform, the outside vapor-deposited layer is formed by repeatedly performing the deposition of the glass particles multiple times through supply of source material gas. In a first deposition among the multiple times of deposition of the glass particles, a flow rate of the source material gas is less than or equal to 50% of a stable value.Type: GrantFiled: April 22, 2019Date of Patent: May 4, 2021Assignee: Fujikura Ltd.Inventor: Katsubumi Nagasu
-
Patent number: 10893577Abstract: An improved process for preheating and doping a preform having a consolidated glass core and a silica soot cladding surrounding core involves waveguiding millimeter wavelength electromagnetic radiation into the preform to cause heating of the preform within the interior via absorption of the electromagnetic radiation by silica in the preform while the preform is exposed to a gas phase dopant.Type: GrantFiled: September 11, 2017Date of Patent: January 12, 2021Assignee: Corning IncorporatedInventor: Martin Hempstead
-
Patent number: 10829405Abstract: A method is provided for producing a glass fine particle deposit by a VAD method using a core deposition burner and a cladding deposition burner disposed adjacent to the core deposition burner. The cladding deposition burner including five cylindrical tubes having different outer diameters and concentrically superimposed on one another and a group of small-diameter nozzles arranged in a ring shape in a third region from the inner side. The method includes flowing, in the cladding deposition burner, a glass raw material gas and a combustion supporting gas in a first region from the inner side, air in a second region from the inner side, a combustible gas in the third region from the inner side, a combustion supporting gas in the group of small-diameter nozzles, an inert gas in a fourth region from the inner side, and a combustion supporting gas in a fifth region from the inner side, respectively.Type: GrantFiled: October 2, 2018Date of Patent: November 10, 2020Assignee: SHIN-ETSU CHEMICAL CO., LTD.Inventors: Yuhei Urata, Hiroki Kojima
-
Patent number: 10710924Abstract: An optical fiber production method includes: drawing an optical fiber from an optical fiber preform in a drawing furnace; cooling the optical fiber in an annealing furnace; and delivering the optical fiber into the annealing furnace, and controlling a temperature difference between a temperature of the optical fiber and a fictive temperature of glass forming a core included in the optical fiber to be higher than 20° C. and lower than 100° C.Type: GrantFiled: September 20, 2016Date of Patent: July 14, 2020Assignee: Fujikura Ltd.Inventors: Takayuki Kitamura, Akihito Imase
-
Patent number: 10464838Abstract: A deposition system for depositing a chemical vapor onto a workpiece is disclosed, including a deposition chamber having a plurality of components for performing chemical vapor deposition on the workpiece. The workpiece is held by a lathe that rotates the workpiece relative to chemical burners that deposit silica soot on the workpiece. The deposition system has a gas panel for regulating the flow of gases and vapors into the deposition chamber, and a computer for controlling operation of the gas panel and the components in the deposition chamber. Multiple sets of chemical burners are disposed longitudinally along the length of the workpiece. Each set of burners is separated from other sets, such that each set of burners deposit silica particles onto generally different portions of a workpiece. The respective portions include an overlap segment in which one or more burners from one burner set will deposit silica particles on the same portion of the workpiece as one or more burners from another set.Type: GrantFiled: January 13, 2015Date of Patent: November 5, 2019Assignee: ASI/SILICA MACHINERY, LLCInventor: David McDonald Stirling
-
Patent number: 10393887Abstract: The present invention discloses one or more compounds that oscillate between a first state and a second state due to absorption of high energy, with the oscillations facilitating prevention of solarization of a glass system for reuse while generating scintillations for determining existence of high radiation energy. The generation of scintillations have a duration that is commensurate with a duration of the irradiation of the glass system, and cease when irradiation is ceased without affecting the glass system.Type: GrantFiled: July 17, 2016Date of Patent: August 27, 2019Inventors: Ashot A. Margaryan, Alfred A. Margaryan
-
Patent number: 10329196Abstract: There is provided a method to fabricate optical taps and waveguide devices in photonic crystal fibers and other fibers with hollow structures. The method involves a preparation step, where the hollow holes inside the fiber are collapsed or partially modified locally; and a waveguide fabrication step, where a femtosecond laser is focused inside the fiber and used to produce optical waveguides that interact in the region that was previously modified in the preparation step.Type: GrantFiled: July 14, 2016Date of Patent: June 25, 2019Assignee: OZ OPTICS LTD.Inventors: Omur Sezerman, Luis Andre Fernandes, Garland Best, Mi Li Ng, Saidou Kane
-
Patent number: 9873629Abstract: Methods for forming optical fiber preforms with low-index trenches are disclosed. According to one embodiment, the method includes depositing silica-based glass soot on a bait rod to form a low-index trench region of the optical fiber preform. The silica-based glass soot is deposited such that the low-index trench region has a first density. Thereafter a barrier layer having a second density greater than the first density is formed around the low-index trench region. Therafter, an overclad region is deposited around the barrier layer. The bait rod is then removed from a central channel of the trench-overclad assembly. A separate core assembly is inserted into the central channel. A down-dopant gas is then directed through the central channel of the trench-overclad assembly as the trench-overclad assembly is heated to dope the low-index trench region. The barrier layer prevents diffusion of the down-dopant from the low-index trench region into the overclad region.Type: GrantFiled: June 30, 2011Date of Patent: January 23, 2018Assignee: Corning IncorporatedInventors: Steven Bruce Dawes, Robert A Knowlton, Pushkar Tandon, Ji Wang
-
Patent number: 9067815Abstract: It is an objective of the present invention to provide a method for sintering a porous glass base material that can experience an earthquake or large vibration without the base material falling or decreasing in quality when performing sintering, dehydration, and transparent vitrification on the porous glass base material. Provided is a method of sintering a porous glass base material including sintering by lowering the porous glass base material vertically through a furnace from above while rotating the porous glass base material, the method comprising changing rotational speed of the porous glass base material during the sintering.Type: GrantFiled: February 6, 2013Date of Patent: June 30, 2015Assignee: Shin-Etsu Chemical Co., Ltd.Inventor: Makoto Yoshida
-
Publication number: 20150143852Abstract: A method for forming an optical glass preform from a soot preform is provided. The method includes forming a soot preform, placing the soot preform in a furnace, and applying a vacuum through a centerline hole of the soot preform.Type: ApplicationFiled: November 18, 2014Publication date: May 28, 2015Inventors: Dana Craig Bookbinder, Richard Michael Fiacco, Ming-Jun Li, Jeffery Scott Stone, Pushkar Tandon
-
Patent number: 9032761Abstract: Provided is a porous glass matrix producing burner 10, wherein a third gas jetting opening 17, which is the most outward one of a plurality of gas jetting openings, is clogged by a clogging member 19, and one line or plural lines of gas jetting holes 20 are provided in the clogging member 19 concentrically with respect to the center line of a glass material gas jetting port 11. Hence, there are provided a porous glass matrix producing burner that can have the cross-sectional area of its most outward gas jetting opening changed and can have the flow rate and linear velocity of a combustion improving gas adjusted to thereby suppress diffusion of the combustion improving gas and a combustible gas and improve deposition efficiency, and a porous glass matrix producing method using the porous glass matrix producing burner.Type: GrantFiled: October 17, 2012Date of Patent: May 19, 2015Assignee: Shin-Etsu Chemical Co., Ltd.Inventor: Makoto Yoshida
-
Patent number: 8997528Abstract: A known method for producing synthetic quartz glass comprises the method steps of: forming a stream of a SiO2 feedstock material which contains octamethylcyclotetrasiloxane (D4) as the main component which has a reference molecular mass assigned to it, feeding the stream to a reaction zone in which the feedstock material is converted under formation of amorphous SiO2 particles by pyrolysis or hydrolysis into SiO2, depositing the amorphous SiO2 particles on a deposition surface while forming a porous SiO2 soot body, and vitrifying the SiO2 soot body while forming the synthetic quartz glass.Type: GrantFiled: November 23, 2012Date of Patent: April 7, 2015Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Heinz Fabian, Juergen Roeper
-
Patent number: 8997527Abstract: Provided is a method for manufacturing an optical fiber preform using a combustion burner. The method includes at least one of: a step ? of, when a mode is changed from a deposition mode to a non-deposition mode, changing a gas discharged from a combustion gas port of the burner from a combustion gas to a purge gas, while maintaining a pilot light and a flow rate of a supporting gas from supporting gas discharge nozzles of the burner so that the nozzle tip does not glow; and a step ? of, when the mode is changed from the non-deposition mode to the deposition mode, changing a gas discharged from the combustion gas port from a purge gas to a combustion gas, while maintaining a pilot light and the flow rate of the supporting gas so that the nozzle tip does not glow.Type: GrantFiled: November 21, 2012Date of Patent: April 7, 2015Assignee: Fujikura Ltd.Inventors: Naritoshi Yamada, Yuichi Kato
-
Patent number: 8984911Abstract: The present invention relates to a method for producing synthetic quartz glass, comprising the steps of: providing a liquid SiO2 feedstock material (105), which comprises more than 70% by wt. of the octamethylcyclotetrasiloxane D4, vaporizing the SiO2 feedstock material (105) into a gaseous SiO2 feedstock vapor (107), converting the SiO2 feedstock vapor (107) into SiO2 particles, depositing the SiO2 particles on a deposition surface (160) while forming a SiO2 soot body (200), vitrifying the SiO2 soot body (200) while forming the synthetic quartz glass. According to the invention it is provided that vaporizing the heated SiO2 feedstock material (105) comprises an injection phase in an expansion chamber (125) in which the heated SiO2 feedstock material (105) is atomized into droplets, the droplets having a mean diameter of less than 5 pm, preferably less than 2 ?m.Type: GrantFiled: November 23, 2012Date of Patent: March 24, 2015Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Heinz Fabian, Juergen Roeper
-
Patent number: 8973407Abstract: A method for producing synthetic quartz glass comprises providing a liquid SiO2 feedstock material containing mainly octamethylcyclotetrasiloxane D4, vaporizing the SiO2 feedstock material into a feedstock vapor, converting the feedstock vapor into SiO2 particles, depositing the SiO2 particles on a deposition surface while forming a porous SiO2 soot body, and vitrifying the SiO2 soot body while forming the synthetic quartz glass. To produce large-volume cylindrical soot bodies with outer diameters of more than 300 mm of improved material homogeneity, the liquid feedstock material contains additional components comprising hexamethylcyclotrisiloxane D3 and its linear homolog with a weight fraction mD3, dodecamethylcyclohexasiloxane D6 and its linear homolog with a weight fraction mD6, and tetradecamethylcycloheptasiloxane D7 and/or hexadecamethylcyclooctasiloxane D8 and its linear homologs with a weight fraction mD7+. The weight ratio mD3/mD6 is in a range between 0.Type: GrantFiled: November 23, 2012Date of Patent: March 10, 2015Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Heinz Fabian, Juergen Roeper
-
Publication number: 20150043880Abstract: Methods for producing a semifinished part for the manufacture of an optical fiber are disclosed. The methods are optimized in terms of bending. The methods include the steps of providing a shell tube with a shell refractive index which is lower in relation to the light-conducting core. Then, at least one protective, intermediate and/or barrier layer is applied to a radially outermost and/or innermost tube surface of the respective shell tube, wherein a build-up of light-conducting layers is realized on the inner side and/or the outer side of the shell tube. Finally, the shell tubes are joined by collapsing so as to form the semifinished part.Type: ApplicationFiled: May 10, 2012Publication date: February 12, 2015Applicant: j-plasma GmbHInventors: Lothar Brehm, Matthias Auth, Jörg Kötzing
-
Publication number: 20150033799Abstract: A glass particle deposit producing method capable of preventing the variation in the outside diameter of a glass particle deposit and enhancing the yield of a glass raw material is provided. A glass particle deposit is produced by mounting a starting rod 11 and a glass particle generating burner 22 inside a reaction vessel 2, introducing a glass raw material into the burner 22, subjecting the glass raw material to a flame decomposition reaction inside a flame formed by the burner 22 to generate glass particles, and depositing the generated glass particles on the starting rod 11. At this time, the dispersion angle of the glass raw material jetted from the burner 22 with respect to the center axis of the burner 22 is set to the range of 5 to 70 degrees.Type: ApplicationFiled: December 27, 2013Publication date: February 5, 2015Inventors: Tomohiro Ishihara, Takashi Yamazaki
-
Patent number: 8919153Abstract: Provided is a method for manufacturing glass preforms with high yield. In the glass-preform manufacturing method according to the present invention, a glass preform is produced through a fixing step, a deposition step, an extraction step, a vitrification step, and a collapsing step in the enumerated order. At the deposition step, the mean density of the glass soot body deposited on the circumference of the tubular handle 12 is made higher than the mean density of the glass soot body deposited on the circumference of the starting mandrel 11. It is preferable that the longitudinal variation in the mean density of a glass soot body deposited from the start of deposition to the tenth layer of glass particles within the range of ±50 mm from the boundary position between the starting mandrel and the tubular handle be 0.01 g/cc/mm or less.Type: GrantFiled: April 28, 2011Date of Patent: December 30, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventor: Tomohiro Ishihara
-
Patent number: 8919152Abstract: There is provided a method for manufacturing a porous glass base material by using a porous glass base material manufacturing burner having an oxidizing gas discharge port. The method includes supplying a gas mixture obtained by blending together an oxidizing gas and an inert gas to the oxidizing gas discharge port at a start of deposition of a glass fine particle, and increasing a flow rate of the oxidizing gas supplied to the oxidizing gas discharge port while decreasing a flow rate of the inert gas supplied to the oxidizing gas discharge port.Type: GrantFiled: May 12, 2009Date of Patent: December 30, 2014Assignee: Shin-Etsu Chemical Co., Ltd.Inventor: Makoto Yoshida
-
Publication number: 20140338400Abstract: A soot glass deposit body is manufactured by placing a starting rod and a burner 22 for producing glass particulates in a reaction container, introducing a source material gas to the burner 22 through a supplying pipe 26, producing glass particulates by a pyrolytic oxidation reaction of the source material gas in a flame formed by the burner 22, and depositing the produced glass particulates on the starting rod. At the time, the source material gas to be supplied to the burner 22 is a siloxane, the burner 22 is heated so that temperature of the burner 22 falls within the range of from ?30° C. to +30° C. relative to the boiling point of the siloxane, and also temperature of the supplying pipe is controlled within the range of from the boiling point of the siloxane to the boiling point plus 30° C.Type: ApplicationFiled: May 13, 2014Publication date: November 20, 2014Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Takashi YAMAZAKI, Tomohiro ISHIHARA
-
Patent number: 8869566Abstract: A method and apparatus for making an optical fiber preform. The apparatus has an outer wall and an inner wall. The outer wall surrounds the inner wall and the inner wall surrounds an inner cavity of the apparatus. A core rod is deposited in the inner cavity after which particulate glass material, such as glass soot, is deposited in the inner cavity around the core rod. The core rod has at least 10 percent of the final cladding soot already applied thereto. A radially inward pressure is applied against the particulate glass material to pressurize the particulate glass material against the core rod.Type: GrantFiled: August 25, 2011Date of Patent: October 28, 2014Assignee: Corning IncorporatedInventors: Martin Wade Allen, Steven Bruce Dawes, Robert Brett Desorcie, Nicolas LeBlond, Roger A Rose, Pushkar Tandon, Kochuparambil Vargheese, Li Yang
-
Patent number: 8840858Abstract: An apparatus for mixing a vaporized precursor with a gas for producing silica particles is provided. The apparatus includes a mixer housing, a precursor delivery chamber having an output in communication with the mixer housing for delivering a vaporized precursor in the mixer housing, and an oxidizing gas delivery chamber having an output in communication with the mixer housing for delivering an oxidizing gas to be mixed with the vaporized precursor. The apparatus further includes a flashback member disposed within the mixer housing and between the output of the precursor delivery chamber and the output of the oxidizing gas delivery chamber. The flashback member is located at a minimum distance from the output of the oxidizing gas delivery chamber defined by Lminimum (cm)=0.453 U (Re)?0.5567, wherein U is the flow rate in cm/sec of precursor and Re is the flow Reynolds number. The flashback member may include a tapered surface on at least one side to reduce recirculation of vaporized gas.Type: GrantFiled: July 6, 2011Date of Patent: September 23, 2014Assignee: Corning IncorporatedInventors: Lewis A Bernstein, Dana Craig Bookbinder, Jason A Dillard, Jennifer L Porter, Balram Suman, Pushkar Tandon
-
Patent number: 8820121Abstract: Provided is a method of manufacturing an optical fiber base material having at least four layer including a core, a first cladding, a second cladding containing fluorine, and a third cladding. The manufacturing method comprises preparing a starting base material that includes the core and the first cladding; forming a porous intermediate glass base material by supplying glass raw material and oxygen to a high-frequency induction thermal plasma torch to synthesize glass fine particles that are then deposited on a surface of the starting base material; forming an intermediate glass base material that includes the core, the first cladding, and the second cladding containing fluorine, by heating and vitrifying the porous intermediate glass base material in an atmosphere containing fluorine; and providing the third cladding on the outer surface of the intermediate glass base material.Type: GrantFiled: March 7, 2011Date of Patent: September 2, 2014Assignee: Shin-Etsu Chemical Co., Ltd.Inventor: Tetsuya Otosaka
-
Patent number: 8783069Abstract: In a known process for producing a quartz glass cylinder, a porous soot tube, which is sintered to form the quartz glass cylinder, is produced by depositing SiO2 particles on an outer cylindrical surface of a support, which rotates about the longitudinal axis thereof and has a layer of silicon carbide (SiC layer). In order on this basis to specify a support having a high resistance to fracture, which firstly can easily be removed and which secondly presents a low risk of contamination for the soot body, the invention proposes that the SiC layer is treated at a high temperature in an oxygen-containing atmosphere before the SiO2 particles are deposited, in such a manner that an SiO2 protective layer having a thickness of at least 0.1 ?m is produced by oxidation.Type: GrantFiled: September 14, 2010Date of Patent: July 22, 2014Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Anke Schuster, Rene Sowa, Martin Trommer, Udo Peper
-
Publication number: 20140174133Abstract: Methods for forming optical fiber preforms are disclosed. According to one embodiment, a method for forming an optical fiber preform includes forming a preform core portion from silica-based glass soot. The silica-based glass soot may include at least one dopant species for altering an index of refraction of the preform core portion. A selective diffusion layer of silica-based glass soot may be formed around the preform core portion to form a soot preform. The selective diffusion layer may have an as-formed density greater than the density of the preform core portion. A diffusing species may be diffused through the selective diffusion layer into the preform core portion. The soot preform may be sintered such that the selective diffusion layer has a barrier density which is greater than the as-formed density and the selective diffusion layer prevents diffusion of the at least one dopant species through the selective diffusion layer.Type: ApplicationFiled: December 16, 2013Publication date: June 26, 2014Applicant: Corning IncorporatedInventors: Amanda Lee Billings, Liam Ruan de Paor, Robert Brett Desorcie, Robert Arnold Knowlton, Pushkar Tandon
-
Publication number: 20140165656Abstract: A method of fabricating an optical fiber preform, capable of depositing glass particles with high deposition rate without reducing deposition efficiency and fabricating an optical fiber preform having little bubbles using a burner having a simple structure, is provided. In the invention, a mixed gas of a glass raw material gas with a combustion assisting gas is ejected from an annular nozzle of a burner having a coaxially multiple tube structure, and a burnable gas is ejected from an inner nozzle located inside the annular nozzle. Alternatively, a mixed gas of a glass raw material gas with a burnable gas may be ejected from an annular nozzle, and a combustion assisting gas is ejected from an inner nozzle located inside the annular nozzle. In each case of the above, the burnable gas and the combustion assisting gas, respectively, are ejected from outer nozzles located outside the annular nozzle.Type: ApplicationFiled: February 24, 2014Publication date: June 19, 2014Applicant: Shin-Etsu Chemical Co., Ltd.Inventor: Makoto Yoshida
-
Patent number: 8746013Abstract: The invention relates to a burner module having a body that is either sintered or photo-cured, and to methods of making such a burner module. The body (110) of the burner (100) is formed from one of a sintered metal, a sintered alloy, a laminated glass ceramic, and a photo-cured polymer. 1 Sintering and photo-curing may be accomplished by irradiating the body with localized heating using a focused energy source, such as a laser. The burner module is resistant to thermal shock and provides a distributed, even stream of a precursor or precursors to be reacted in a flame of the burner module to form soot, which is to deposited on a receptor surface, and may be used for vapor and liquid precursor delivery systems. A soot deposition system having an array of such burner modules and methods of making a fused silica article by depositing soot using the burner modules are also described.Type: GrantFiled: March 25, 2008Date of Patent: June 10, 2014Assignee: Corning IncorporatedInventors: Muluwork Geremew, Daniel Warren Hawtof, Richard Curwood Peterson, Amy Lu Rovelstad, Christopher Clark Thompson
-
Publication number: 20140144188Abstract: An apparatus for manufacturing a glass base material, which is a base material of an optical fiber, the glass base material having a core rod as a central axis, comprises a holding unit having a plurality of scroll chucks connected in series along the core rod for holding an end of the core rod; and a burner that hydrolyzes a gas material, which is a base material of the glass base material, into glass particles and accumulates the glass particles around the core rod to form the glass base material.Type: ApplicationFiled: October 15, 2013Publication date: May 29, 2014Applicant: SHIN-ETSU CHEMICAL CO., LTD.Inventors: Junichiro Takei, Yuji Tobisaka, Hiroshi Machida, Hiroyuki Kume, Tadakatsu Shimada, Kiyoshi Yokokawa
-
Patent number: 8733131Abstract: An apparatus and method for chemical deposition on a rod member having a support structure for supporting the rod member substantially coaxial to a deposition axis; a burner for depositing chemical substances on the rod member; and a rotation device for imparting a rotation motion to the rod member. The rotation device has a joint member of a type suitable to transmit torque between two misaligned members, for example, a double universal joint or a flexible joint, positioned between a motor and a rod gripping member.Type: GrantFiled: November 29, 2001Date of Patent: May 27, 2014Assignee: Prysmian Cavi e Sistemi Energia S.R.L.Inventors: Franco Cocchini, Antonio Schiaffo, Alessandro Rossi
-
Patent number: 8707741Abstract: A method of manufacturing an optical fiber preform by depositing glass fine particles onto a surface of a glass rod while the glass rod is reciprocated relative to a plasma torch, including: moving the glass rod in a first direction relative to the plasma torch while the plasma torch is applied to the glass rod and supplied at least with a dopant material and a glass material to deposit the glass fine particles onto the surface of the glass rod, in such a manner that a plasma power is set higher during a first time interval starting from a beginning of the movement of the glass rod in the first direction than during a second time interval starting from an end of the first time interval; and moving the glass rod in a second direction relative to the plasma torch, where the second direction is opposite to the first direction.Type: GrantFiled: July 26, 2010Date of Patent: April 29, 2014Assignee: Shin-Etsu Chemical Co., LtdInventor: Tetsuya Otosaka
-
Patent number: 8695380Abstract: The present invention provides a quartz glass burner that can enhance the heating power of flame working without unnecessarily increasing the flow of combustion gas and improve the deposition efficiency on depositing glass particles onto a porous glass preform. The quartz glass burner has a large diameter outer tube, and a plurality of small diameter inner tubes enclosed in the outer tube, and a tip of the outer tube has a port defining member defining the outer shape of a combustion gas ejecting port that ejects combustion gas, and the port defining member protrudes from the inner circumference of the outer tube towards the center axis so as to block the outermost area including areas between the outer circumferences of a plurality of inner tubes forming the inner tube row and the inner circumference of the outer tube of the combustion gas flow path.Type: GrantFiled: September 19, 2011Date of Patent: April 15, 2014Assignee: Shin-Etsu Chemical Co., Ltd.Inventor: Makoto Yoshida
-
Publication number: 20140060118Abstract: Manufacturing an optical fiber by using an outside vapor deposition technique for making a substrate, applying one or more layers to the substrate using a radial pressing technique to form a soot blank, sintering the soot blank in the presence of a gaseous refractive index-modifying dopant, and drawing the sintered soot blank, provides a more efficient and cost effective process for generating complex refractive index profiles.Type: ApplicationFiled: November 27, 2012Publication date: March 6, 2014Inventors: Steven Bruce Dawes, Dominick Fiordimalva, Timothy Leonard Hunt, Douglas Hull Jennings
-
Patent number: 8650912Abstract: A method for manufacturing quartz glass using a main burner having a multi-tube assembly having a center tube, a first enclosure tube surrounding the center tube, a second enclosure tube surrounding the first enclosure tube, a tubular shell surrounding the multi-tube assembly, and a plurality of nozzles disposed within the tubular shell, a double-tube assembly surrounding at least a forward opening of the main burner includes feeding silica-forming compound to the center tube, a combustion-supporting gas to the first enclosure tube and the nozzles, a combustible gas to the second enclosure tube and the tubular shell, and a combustion-supporting gas to the double-tube assembly, forming oxyhydrogen flame for hydrolyzing or decomposing the silica-forming compound to form silica, depositing the silica on the target, and melting and vitrifying the deposited silica into quartz glass.Type: GrantFiled: April 29, 2011Date of Patent: February 18, 2014Assignee: Shin-Etsu Chemical Co., Ltd.Inventors: Hisatoshi Otsuka, Kazuo Shirota
-
Patent number: 8635888Abstract: A deposition system for depositing a chemical vapor onto a workpiece is disclosed, including a deposition chamber having a plurality of components for performing chemical vapor deposition on the workpiece. The deposition chamber includes an inner skin made of Hasteloy for sealing the plurality of components and the workpiece from the air surrounding the deposition system, and an outer skin that encloses the inner skin and is separated from the inner skin by an air gap. The outer skin includes vents that create a convection current in the air gap between the inner skin and outer skin of the deposition chamber. The deposition system also has a gas panel for regulating the flow of gases and vapors into the deposition chamber, and a computer for controlling operation of the gas panel and the components in the deposition chamber.Type: GrantFiled: October 9, 2008Date of Patent: January 28, 2014Inventors: Franklin W Dabby, Bedros Orchanian
-
Patent number: 8635886Abstract: It is an object of the present invention to provide a copper-containing silica glass which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength of 400 nm or less, and which is excellent in long term stability even in the high output use. The copper-containing silica glass is made to have copper of from 5 wtppm to 200 wtppm, which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength ranging from 160 nm to 400 nm, and in which an internal transmittance per 2.5 mm thickness at a wavelength of 530 nm is 95% or more.Type: GrantFiled: July 26, 2012Date of Patent: January 28, 2014Assignees: Shin-Etsu Quartz Products Co., Ltd., Opto-Electronics Laboratory, Inc.Inventors: Tetsuji Ueda, Michinari Ohuchi, Hiroyuki Nishimura, Akira Fujinoki, Masahiro Nakatsuka, Hidetsugu Yoshida
-
Patent number: 8635889Abstract: A known refraction-sensitive optical fiber comprises a core zone with an index of refraction nK, a jacket zone surrounding the core zone, said jacket zone having an index of refraction nM, and an annular zone made of quartz glass doped with fluorine, said annular zone surrounding the jacket zone and having an index of refraction nF, where nF<nM<nK. With this as a starting point, an optical fiber is to be provided that is characterized by high refraction-sensitivity, good spliceability and compatibility, and a method is to be provided for cost-effective manufacture of such a fiber. With regard to the method, this object is accomplished according to the invention in that the quartz glass of the annular zone (21) is produced in a plasma deposition process on the outside in which an annular zonal layer made of the quartz glass doped with fluorine is produced on a substrate body (20), said layer having a layer thickness of at least 1 mm and an index of refraction nF<1.Type: GrantFiled: July 1, 2009Date of Patent: January 28, 2014Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Jan Vydra, Peter Bauer, Karsten Braeuer, Michael Huenermann
-
Patent number: 8590344Abstract: The invention relates to a known method for the production of a cylinder from quartz glass, comprising a step, wherein an SiO2 body which comprises a porous SiO2 soot layer and has a lower end, an upper end, and an outer casing, is sintered to form said quartz glass cylinder in a vitrification furnace, and is being held in a vertical orientation by means of a retaining device, which comprises an upper retaining element connected at the upper end of the SiO2 body, and a lower retaining element disposed on the lower end. In order to provide a method based thereon, by means of which even heavy bodies made of porous SiO2 can be safely retained during vitrification, the invention provides that the retaining device has a dimensionally stable connecting part, which extends inside the vitrification furnace along the outer casing of the SiO2 body and which connects the upper and the lower retaining elements to each other.Type: GrantFiled: May 14, 2009Date of Patent: November 26, 2013Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Thomas Krause, Udo Peper, Steffen Zwarg, René Sowa
-
Patent number: 8578736Abstract: A method and apparatus for making an optical fiber preform. The apparatus has an outer wall and an inner wall. The outer wall surrounds the inner wall and the inner wall surrounds an inner cavity of the apparatus. A consolidated glass rod is deposited in the inner cavity after which particulate glass material, such as glass soot, is deposited in the inner cavity around the glass rod. A radially inward pressure is applied against the particulate glass material to pressurize the particulate glass material against the glass rod.Type: GrantFiled: September 23, 2008Date of Patent: November 12, 2013Assignee: Corning IncorporatedInventors: Steven Bruce Dawes, Douglas H Jennings, Nicolas LeBlond, Christopher Scott Thomas
-
Patent number: 8567217Abstract: A method for manufacturing an optical fiber preform includes a process A of applying flame polishing to a center glass rod, a process B of determining a ratio ra/rb, which is a ratio of a radius ra of the center glass rod expressed in millimeters with respect to a radius rb of a target optical fiber preform expressed in millimeters, based on a refractive index profile of a target optical fiber preform, and a process C of determining an amount of fine glass particles to be deposited on the center glass rod so that a ratio ra/rb/c falls within a range from 0.002 to 0.01, where “c” is a maximum value of hydroxyl group concentration expressed in ppm in the vicinity of a boundary between the center glass rod and an outer layer, which is formed by depositing fine glass particles on the center rod and by being vitrified.Type: GrantFiled: May 5, 2004Date of Patent: October 29, 2013Assignee: FUJIKURA Ltd.Inventors: Takakazu Gotoh, Naritoshi Yamada
-
Patent number: 8544299Abstract: To improve a known method for making a quartz glass tube as a semifinished product for the manufacture of optical fibers, the tube comprising an inner fluorine-doped quartz glass layer and an outer quartz glass layer, so as to achieve inexpensive manufacture and improved dimensional stability of the quartz glass tube, it is suggested according to the invention that the quartz glass of the inner layer should be produced in a first plasma deposition process with formation of an inner layer having a wall thickness of at least 1.5 mm, with a fluorine content of at least 1.5% by wt. being set in the quartz glass, and that the quartz glass of the outer layer should be produced in a second plasma deposition process and deposited directly or indirectly on the inner layer with formation of a composite tube, and that the composite tube should be elongated into the quartz glass tube.Type: GrantFiled: January 15, 2008Date of Patent: October 1, 2013Assignee: Heraeus Quarzglas GmbH & Co. KGInventors: Gerhard Schoetz, Karsten Braeuer, Jan Vydra
-
Patent number: 8516855Abstract: A method for producing an optical fiber preform. Glass soot particles are formed by jetting and combusting a gaseous glass-forming material and a fuel gas from a burner in the presence of oxygen. The glass soot particles are deposited on a deposition rod while rotating the deposition rod about its axis and reciprocating the burner in parallel to the deposition rod so as to form the preform and varying at least one of the translation velocity of the burner and the rotation velocity of the rod so as to obtain a predetermined radial soot density distribution in the preform.Type: GrantFiled: April 16, 2002Date of Patent: August 27, 2013Assignee: Prysmian Cavi E Sistemi Energia S.R.L.Inventors: Sabrina Fogliani, Carlo Tregambe
-
Patent number: 8464557Abstract: A method of producing an optical fiber preform includes preparing a glass preform that has a hole extending in a longitudinal direction formed on one end of the glass preform in such a manner that a length of the hole is equal to or less than half of an entire length of the glass preform, synthesizing a porous glass preform by depositing glass particles on an outer circumference of the glass preform having the hole formed on the end, and sintering the porous glass preform after arranging the porous glass preform in such a manner that the end having the hole formed thereon points downward and the hole is open to the air.Type: GrantFiled: October 24, 2011Date of Patent: June 18, 2013Assignee: Furukawa Electric Co., Ltd.Inventors: Taeko Shibuta, Tadashi Takahashi, Takeshi Yagi