With Fiber Splicing Or Coupling Means (e.g., Fusion Splicing, End To End, Side To Side, Etc.) Patents (Class 65/501)
  • Patent number: 9513438
    Abstract: A portable splicer for an optical fiber can include a first case half and second case half with respective exterior and interior surfaces, which can be hingedly attached to define a case having an interior case surface. At least two clamps for receiving the cable to be spliced and a fuser can be attached to the interior case surface. A deployed configuration for the splice can be established, wherein the first exterior and second exterior surfaces are co-planar. In the deployed configuration, the fuser is located between the two clamps and the fuser and clamps are substantially co-planar. A first channel can be formed in the first exterior surface and a second channel can be formed in the second exterior surface. A bar can be slidably disposed within one of the channels, and can be extended into the other channel to thereby fix the case halves in the deployed configuration.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 6, 2016
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Jeffrey M. Lloyd, Brandon J. Wiedemeier
  • Publication number: 20150040615
    Abstract: An electrical discharge, suitable for heating optical fibers for processing, is made in a controlled partial vacuum, such that saturation of available ionizable gas molecules is reached. The workpiece temperature is thereby made to be a stably controlled function of the absolute air pressure and is insensitive to other conditions. A system and method accomplishing the foregoing are provided.
    Type: Application
    Filed: April 8, 2013
    Publication date: February 12, 2015
    Inventors: Robert G. Wiley, Brett Clark, John Lower, Jason Troyer, Clyde J. Troutman
  • Publication number: 20150043879
    Abstract: An apparatus and method for compensating for mode-profile distortions caused by bending optical fibers having large mode areas. In various embodiments, the invention micro-structures the index of refraction in the core and surrounding areas of the inner cladding from the inner bend radius to the outer bend radius in a manner that compensates for the index changes that are otherwise induced in the index profile by the geometry and/or stresses to the fiber caused by the bending. Some embodiments of an apparatus and method include a fiber having a plurality of substantially parallel cores, the fiber including a straight section and a curved section; guiding signal light primarily in a second core in the straight section; guiding the signal light from the second core into a first core between the straight section and the curved section; and guiding the signal light primarily in the first core in the curved section.
    Type: Application
    Filed: June 17, 2014
    Publication date: February 12, 2015
    Inventor: John D. Minelly
  • Publication number: 20140331719
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 13, 2014
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Publication number: 20140165657
    Abstract: A fusion splicer includes a pair of holder installation parts for mutually butting optical fibers in a first direction, and a fusion splicing part for mutually fusing and splicing the optical fibers by a pair of electrodes opposed along a second direction, and the holder installation part includes a base fixed to a body, and a positioning member in which a base fitting part fitted into the base is formed in a lower side, and the positioning member can be attached to and detached from both of the bases after an attitude is reversed, and a center position in a width direction along the second direction in the base fitting part is arranged in a straight line of the first direction passing through a center position between the electrodes even in a state in which the positioning member is fitted into any of the bases.
    Type: Application
    Filed: July 23, 2012
    Publication date: June 19, 2014
    Applicant: SEI OPTIFRONTIER CO., LTD.
    Inventor: Ryuichiro Sato
  • Publication number: 20140157830
    Abstract: An optical fiber fusion splice system includes a working table and a storage box which stores the working table. The working table includes a fusion splicing machine installation portion accommodating a fusion splicing machine to be stored in the storage box and a working surface on which preparation work for an optical fiber is configured to be performed. The fusion splicing machine installation portion includes a fusion splicing machine restriction portion being configured to restrict the fusion splicing machine without the fusion splicing machine moving in a horizontal direction with respect to the working table. The working surface includes a protrusion provided on an outer circumference of the working surface, the protrusion being configured to prevent a tool used in the preparation work from falling from the working surface. The storage box includes a box main body and a cover which covers an upper portion of the box main body.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: FUJIKURA LTD.
    Inventor: Noriyuki KAWANISHI
  • Patent number: 8721196
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: May 13, 2014
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Publication number: 20140083141
    Abstract: An optical fiber fusion splicer that heats and fusion-splices optical fibers to each other, the optical fiber fusion splicer includes: a coating clamp installation base; a coating clamp that is attached to the coating clamp installation base and has a coating clamp lid that is openable and closable; and a first power source for advancing the coating clamp installation base and opening the coating clamp lid. An operation of opening the coating clamp lid is performed using the first power source after the fusion splicing is completed.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 27, 2014
    Applicant: FUJIKURA LTD.
    Inventor: Yoshinori IWASHITA
  • Patent number: 8490435
    Abstract: There is provide an optical fiber end processing method, for processing an end portion of an optical fiber having a core and a clad surrounding the core, comprising: fixing two places of the optical fiber; firstly heating a part at a tip end side of the optical fiber between fixed parts fixed at two places, thereby melting the optical fiber at the heated part at the tip end side; secondly heating a part at a base end side of the optical fiber between the fixed parts away from the heated part at the tip end side in a state that the optical fiber is fixed at two places, thereby forming an expanded core region which is formed by expanding a diameter of the core by diffusing the dopant included in the optical fiber; and removing at least the heated part at the tip end side.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 23, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Masao Tachikura, Hiroyuki Ohkubo
  • Patent number: 8480314
    Abstract: A method of butting and connecting a first optical fiber and a second optical fiber in an optical connector comprises placing said optical connector that holds said first optical fiber in wherein an optical fiber connection tool; mounting said optical fiber holder on a holder mounting base of a front end bevel processing tool; processing a front end face of said second optical fiber such that said front end face of said second optical fiber is beveled relative to the surface perpendicular to the optical fiber axis direction; transferring said optical fiber holder to said holder support base; and moving said optical fiber holder toward said optical connector along said guide part, and butting and connecting the beveled front end face of said second optical fiber to the front end face of said first optical fiber such that their bevel directions are aligned.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 9, 2013
    Assignee: Fujikura Ltd.
    Inventors: Daigo Saito, Kazuhiro Takizawa, Hiroshi Furukawa, Serin Khee Yen Tan, Quang Minh Ngo
  • Patent number: 8419296
    Abstract: An optical fiber structure (10) includes an optical fiber (11a), and a block-like chip (12) joined to the optical fiber (11a). The block-like chip (12) is tapered toward its fiber-joined end.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 16, 2013
    Assignee: Mitsubishi Cable Industries, Ltd.
    Inventors: Manabu Murayama, Motohiko Yamasaki, Takeshi Satake, Masahiro Miura
  • Publication number: 20120073331
    Abstract: There is provide an optical fiber end processing method, for processing an end portion of an optical fiber having a core and a clad surrounding the core, comprising: fixing two places of the optical fiber; firstly heating a part at a tip end side of the optical fiber between fixed parts fixed at two places, thereby melting the optical fiber at the heated part at the tip end side; secondly heating a part at a base end side of the optical fiber between the fixed parts away from the heated part at the tip end side in a state that the optical fiber is fixed at two places, thereby forming an expanded core region which is formed by expanding a diameter of the core by diffusing the dopant included in the optical fiber; and removing at least the heated part at the tip end side.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 29, 2012
    Applicant: HITACHI CABLE, LTD.
    Inventors: Masao TACHIKURA, Hiroyuki OHKUBO
  • Publication number: 20110277511
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 17, 2011
    Applicant: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Publication number: 20110222827
    Abstract: In an FOP 1, a glass body 8 is configured by including antimicrobial glass portions 10 made of antimicrobial glass containing Ag2O. Here, the glass containing silver does not have chemical durability, so that it has properties to easily emit Ag ions due to moisture. Ag ions have an excellent antimicrobial effect. Therefore, by configuring the glass body 8 to include the antimicrobial glass portions 10 containing Ag2O, the glass body 8 can obtain a sterilization effect due to the action of Ag ions. Therefore, the FOP 1 can be provided with antimicrobial activities.
    Type: Application
    Filed: September 25, 2009
    Publication date: September 15, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventor: Takeo Sugawara
  • Patent number: 7985029
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 26, 2011
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Publication number: 20110100066
    Abstract: A device for joining and tapering optical components such as fibers includes a retaining device for holding optical components in a processing site, a laser radiation source for emitting a laser beam and beam forming elements for guiding the laser beam to the processing site. At least a first beam forming element is inserted into the beam path of the laser radiation source for producing a radiation having the form of an annulus and a second beam forming element is provided for specifying the angle of incidence of the radiation having the form of an annulus onto the optical components at the processing site.
    Type: Application
    Filed: May 19, 2009
    Publication date: May 5, 2011
    Inventors: Steffen Böhme, Thomas Peschel, Ramona Eberhardt, Andreas Tünnermann, Jens Limpert
  • Publication number: 20110088434
    Abstract: Apparatus for mechanically splicing two optic fibers, including an inner section including scoring apparatus, cleaving channels and a splicing channel; and two optic fiber restraining members, each being in operative communication with, and movable with respect to, the inner section; wherein restraining members locate end sections of optic fiber cores of said optic fibers in respective cleaving channels for scoring by said scoring apparatus; and wherein relative movement of the restraining members away from the inner section cleaves said end sections of optic fiber cores; and further relative movement between the restraining members and the inner section located cleaved end sections of said optic fiber cores into respective openings of the splicing channel to effect mechanical splicing therebetween.
    Type: Application
    Filed: September 21, 2010
    Publication date: April 21, 2011
    Applicant: ADC GmbH
    Inventors: Brett Hoe Slater, Brent David Allwood, Bryce Nicholls
  • Publication number: 20110056246
    Abstract: An optical connector assembling jig and an optical connector assembling method includes an optical connection. The optical connector assembling jig includes a base and a guide. The base is provided in a longitudinal direction with an accommodation groove for accommodating an optical fiber, and a rear pressing member for restraining a rear part of the optical fiber accommodated in the accommodation groove. The rear part is set apart from an embedded fiber. The guide has a front holding portion for holding a front part of the optical fiber accommodated in the accommodation groove. The front part is near the embedded fiber, and the guide is capable of moving in the longitudinal direction. Moving the base toward the optical connector causes the intermediate section of the optical fiber to separate from the accommodation groove and bend. By moving the base further toward the optical connector, a buffered fiber in the optical fiber can be connected to the embedded fiber.
    Type: Application
    Filed: April 30, 2009
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Daizo Nishioka, Takayasu Yamauchi, Yukihiro Yokomachi, Yoshinobu Toda, Yoshio Ukita
  • Patent number: 7845194
    Abstract: In splicing two optical fibers to each other using an electric arc formed between electrodes images of the regions being heated and thereby fusioned to each other are taken. The images cover a rectangular field (43) having the fibers located centrally, along a center line of the field and parallel to the long sides of the field. The images are evaluated to determine a value of the position of the center of the electric arc in relation to the position of the end surfaces of the fibers. This value can then be used for placing the end surfaces just at the arc center. In the image the image of the optical fibers can be excluded so that only light intensity from the air discharge of the electric arc is recorded in the captured images. The field (41) excluded can be a narrow strip of uniform width located symmetrically around the image of the fibers.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: December 7, 2010
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventors: Wei-Ping Huang, Tomas Adebäck, David Wallin
  • Patent number: 7753597
    Abstract: An apparatus for splicing of optical waveguide sections is in the form of a handheld splicer. The splicer comprises a preprocessing unit, which may comprise a plurality of processing devices for carrying out removal, cleaning and cutting steps. The optical waveguide sections are clamped in a holding apparatus and are prepared in the preprocessing unit. The holding apparatuses are inserted with the prepared optical waveguide sections into a splicing unit, where they are spliced. The spliced optical waveguide sections can be fed by means of a transfer station to a shrinking oven for shrinking a shrink sleeve on. The preprocessing unit, the splicing unit and the shrinking oven can be controlled by means of one hand of an operator, while the splicer is held with the other hand.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: July 13, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Rainer Matthias Kossat, Bert Zamzow
  • Patent number: 7628040
    Abstract: In the jointing method of jointing an optical fiber F a softening point of which is higher than an optical lens L to the optical lens L, only the optical lens is softened by heating, and an end face as a joint portion of the optical fiber is pushed into a joint portion of the softened optical lens to thereby joint them.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: December 8, 2009
    Assignees: Juki Corporation, Citizen Holdings Co., Ltd., Kabushiki Kaisha Ohara, Kabushiki Kaisha Topcon
    Inventor: Toshiaki Takahara
  • Patent number: 7488125
    Abstract: A covering device for a high voltage part in an optical fiber fusion splicer includes a cover body, removably connectable to a support table, including an electrode holder adapted to removably hold an electrode rod. The covering device includes an electrode retainer removably connectable to the cover body, adapted to press the electrode rod against the support table.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: February 10, 2009
    Assignee: Fujikura Ltd.
    Inventors: Kenji Takahashi, Taku Otani, Manabu Tabata
  • Patent number: 7316513
    Abstract: A portable optical-fiber cutter is used to slice a first optical-fiber at an advantageous angle to control reflections and at a suitable length to mate with a similar second optical-fiber that was pre-sliced at a complementary angle in the factory and configured as a receptacle for the first optical-fiber. This technique avoids the need for installation of two-ended, factory pre-connectorized optical-fiber cable and permits usage of a narrow-diameter protective “microduct” to enclose the optical fiber cable rather than requiring large-diameter protective duct to allow passage of a pre-connectorized connector there-through. Space is saved, particularly in large multi-unit apartment buildings where available space may be at a premium for large bundles of multiple optical cables. This technique also results in saving large amounts of technician-installer time when compared with the current time-consuming technique of fusion splicing.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: January 8, 2008
    Assignee: Verizon Corporate Services Group Inc.
    Inventor: James P. Dacey
  • Patent number: 7153044
    Abstract: The invention concerns an optical fiber splicing device (LWL-SPG) for substance-determined connection of optical fibers (F1, F2) by means of an electric corona discharge (GEG). A corona discharge guide (LBF11/12, LBF2, LBF3) is arranged over the electrodes (E1, E2) for the stabilization of the conditions during the splicing process.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: December 26, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Rainer Kossat, Frank Zimmer
  • Patent number: 6993938
    Abstract: Systems, devices and methods for compiling and fracturing optical fibers are disclosed.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: February 7, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: William L. Stewart, II
  • Patent number: 6921216
    Abstract: Thermally dissimilar glass fibers are fusion spliced by pretreating the cleaved end surface of the high-temperature fiber to provide a smooth surface for making good contact with the low-temperature fiber. The fibers are heated to a temperature that is high enough to soften the low-temperature fiber but not the high-temperature fiber and brought in contact to form the fusion joint.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: July 26, 2005
    Assignee: NP Photonics, Inc.
    Inventors: Weijiong Li, Arturo Chavez-Pirson, Eugene Merzlyak, Gary Paysnoe, Bryan Steward, Wenyan Tian, Shibin Jiang
  • Patent number: 6866429
    Abstract: A low-cost approach is provided for forming a low splice loss, low back reflection loss and mechanically robust angle-fusion splice between a standard silica fiber and a low-temperature non-silica glass fiber. This is accomplished by angle cleaving the silica fiber, square cleaving the non-silica fiber and then asymmetrically heating the fibers to form an angle fusion splice. A matched angle at the end of the non-silica fiber is generated in situ during the splicing process. The tip of the angle-cleaved silica fiber may be polished flat back to the edge of the core to reduce the range of motion of the non-silica fiber during splicing thereby further reducing splice loss and enhancing the mechanical strength of the joint.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: March 15, 2005
    Assignee: NP Photonics, Inc.
    Inventors: Jiafu Wang, Weijiong Li
  • Patent number: 6827508
    Abstract: An automated fusion system includes a draw assembly for holding optical fibers and for applying a tension to the fibers. The fibers are held substantially parallel to each other in the draw assembly. The system also includes a removal station that etches or strips buffer material from the fibers after the fibers have been placed in the draw assembly, and a heater or torch assembly for heating the fibers as the draw assembly applies a tension to the fibers in a manner that causes the fibers to fuse together to form a coupler region. In addition, a packaging station is used to secure a substrate to the coupler region of the fibers to form the optical coupler.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: December 7, 2004
    Assignee: Fiber Optic Network Solutions Corporation
    Inventor: David W. Stowe
  • Patent number: 6814124
    Abstract: Apparatus for splicing optical ribbon fibers or ribbonized fibers has a splicing part for splicing the optical fibers to each other and a heating part or oven for heating a protective shrinkable sleeve for applying it around spliced portions of the fibers. A transport device is provided for transferring the spliced fibers from the splicing part to the heating part. The transport device includes clamps at the sides of the frame of the apparatus, which are elastically biased to give the spliced fibers a straight condition between the clamps. The transport device is manually operated by moving a handle lifting the clamps and the fibers along a slightly curved path to allow them to move unobstructed by the components of the splicing part. Thereafter a second handle is actuated to make the clamps slide along side rails having elongated holes in a straight path to a position in which the spliced portions of the fibers are located at the heating part.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: November 9, 2004
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Sasan Esmaeili
  • Patent number: 6766662
    Abstract: There are provided a method of manufacturing a glass part for connecting optical fibers, which allows insertion of optical fibers into the internal hole of the glass part smoothly, and glass parts for connecting optical fibers manufactured using the method. Predetermined parts of a glass tube having an internal hole are heated while pressure is applied into the internal hole, to expand the predetermined parts, thus forming tapered portions. As a result, a continuous curved surface can be achieved at the boundary between each tapered portion of each obtained glass part and the internal hole thereof, and the surface can be made smooth where the tapers are formed.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: July 27, 2004
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Masahiro Morishita, Katsuya Kamisaku, Toshiaki Mizuno
  • Publication number: 20040114886
    Abstract: Systems and methods are described for reducing optical fiber splice loss. A torch is described for performing a thermally-diffused expanded core (TEC) technique. The torch includes a hollow body. A conduit delivers a flammable gas to the hollow body. The flammable gas streams out of an array of orifices formed in the hollow body. The orifices are shaped and arranged in the array such that when the streaming gas is ignited, a substantially continuous elongated flame is created having a desired heating profile. Further described are a thermal treatment station incorporating a line torch and techniques for using an elongated flame to reduce optical fiber splice loss.
    Type: Application
    Filed: December 12, 2002
    Publication date: June 17, 2004
    Applicant: Fitel USA Corp.
    Inventors: Erling D. Christensen, Thomas Rafn, Lars Riis, Torben E. Veng
  • Patent number: 6735986
    Abstract: A method for fusing an optical fiber preform comprises fusing the preform while blowing an oxidative gas against the preform to be fused from upper and lower directions of a fusing burner unit. An apparatus for carrying out the method includes a plurality of nozzles for preventing deposition of silica cloud, which are each set at an angle, &thgr;, of blowing the oxidative gas relative to the preform being drawn such 20°≦&thgr;≦60°.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: May 18, 2004
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shinji Suzuki, Hideo Hirasawa, Tadakatsu Shimada
  • Patent number: 6729163
    Abstract: Disclosed is a high efficiency burner and an apparatus for over-cladding an optical fiber pre-form using the same. The high efficiency burner heating an optical fiber pre-form includes burner covers, burner bodies arranged between the burner covers, and fuel dischargers arranged in at least two rows between the burner bodies, and divided by a partition, respectively.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: May 4, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Seong Yang, Mun-Hyun Do
  • Publication number: 20040065119
    Abstract: Apparatus and methods are provided for reducing end effect on a preform assembly during manufacture of optical fiber. The present invention provides apparatus and methods that apply a first vacuum pressure to a preform assembly during a first portion of the draw of optical fiber from the preform assembly and a second lesser vacuum pressure during a second portion of the draw. The second vacuum pressure may be a step down pressure or a gradual or an incremental decrease in pressure over time. The present invention further provides apparatus and methods that use an intermediate rod such as a dummy preform core rod and/or a support rod placed at the back of the preform core rod, wherein the preform end effect occurs on the dummy preform core rod, as opposed to the core rod of the preform assembly or is eliminated altogether by the support rod.
    Type: Application
    Filed: October 2, 2002
    Publication date: April 8, 2004
    Applicant: Fitel U.S.A. Corporation
    Inventors: Shunhe Xiong, Zhi Zhou, Ralph Corley, Bella Boex, Christopher Gallagher, Michael Overbeck
  • Patent number: 6705771
    Abstract: A low-cost approach provides a low loss and mechanically robust fusion splice between a standard silica fiber and a low-temperature multi-component glass fiber. An asymmetric heating configuration creates a temperature gradient between the silica and multi-component glass fibers that enhances diffusion, hence bond strength. The multi-component glass fiber may also be drawn with an outer cladding of a different multi-component glass. The outer cladding is selected so that it is thermally compatible with the multi-component glass used for the core and inner cladding and compatible with forming even stronger thermal diffusion bonds with the silica fiber.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: March 16, 2004
    Assignee: NP Photonics, Inc.
    Inventors: Shibin Jiang, Jiafu Wang
  • Patent number: 6644870
    Abstract: The present invention relates to an optical fiber transmission line having a structure offering superior connection loss characteristics at the fusion-spliced position between optical fibers. This optical fiber transmission line has at least first and second optical fibers that are fusion-spliced. Each of these first and second optical fibers has a core region doped with 10 mol % or more of Ge and has a mode field diameter with a minimum value of 7 &mgr;m or less at the wavelength of 1550 nm. The difference between the minimum mode diameter of the first optical fiber and that of the second optical fiber is 1 &mgr;m or less.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: November 11, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Noriko Iwata, Takatoshi Kato, Keiichiro Fukuda
  • Publication number: 20030182973
    Abstract: Disclosed in the present invention is a flame-guide unit for a burner used in an over-jacketing device for processing an optical-fiber preform with a large diameter, wherein the over-jacketing device is mounted with a burner and includes at least two closely-located suctions on the upper portion and lower portion of the burner, the flame-guide unit including a hollow flame guide that surrounds the prepared optical-fiber preform, being extended from the burner as one body, to preheat the optical-fiber preform by extending the heat-convection interval generated by the flame of the burner along a longitudinal direction of the optical-fiber preform, thereby improving heat radiation for more effective heating.
    Type: Application
    Filed: October 4, 2002
    Publication date: October 2, 2003
    Inventor: Gu-Young Kang
  • Patent number: 6622376
    Abstract: A cylindrically shaped rotator is provided that can hold either a fiber or a fiber holder along its central axis. A drive roller running parallel to the central axis of the rotator drives the rotator. The diameter of the portion of the drive roller that operates on the rotator is smaller than the diameter of the rotator, so that even large rotational movement of the drive roller produces only small rotational movement of the rotator. The rotator may have a friction band wrapped about its circumference. The drive roller then contacts the friction band directly to rotate the rotator. Alternately, the drive roller may be connected to the rotator by a belt, chain, gear or the like. The rotator may also have markings on its surface, so that the rotational orientation of the rotator and rotational movement of the rotator can be identified. The markings may be binary markings that can be automatically recognized by, for example, a conventional bar code reader.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: September 23, 2003
    Assignee: Capewell Components Company, LLC
    Inventor: Brett G. Clark
  • Patent number: 6612754
    Abstract: A fiber splicing apparatus of the present invention includes a support (120a, 120b) for supporting the two optical fibers (112a,112b) such that the ends (114a, 114b) thereof are aligned and in physical contact, and a laser (130) emitting a laser beam (142) onto the ends of the optical fibers to heat and thereby fuse together the ends (114a, 114b ) of the fibers (112a, 112b). According to another embodiment, an apparatus is provided for heating a region (115) of one or more optical fibers(112a, 112b). This apparatus includes a laser (130) emitting a laser beam (132) and an optical modulator (134) positioned to receive and selectively modulate the intensity of the laser beam (132) to project a modulated laser beam (138) along a first optical path that terminates at the end (114a, 114b ) of the optical fiber(s) (112a, 112b)to be heated.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: September 2, 2003
    Assignee: Corning Incorporated
    Inventors: Brahim Dahmani, Bertrand Paris, Romain Ramel
  • Publication number: 20030136155
    Abstract: A fixing carrier for manufacturing a coupler for optical fibers. The fixing carrier has a plate. Two reels for rolling optical fibers are detachably mounted at two ends of the plate respectively. Two clamps for fastening optical fibers are mounted on the plate and adjacent the reels respectively. A plurality of seats is mounted on the plate and adjacent the reels respectively. A plurality of optical fiber adapters is mounted in the seats respectively.
    Type: Application
    Filed: April 10, 2002
    Publication date: July 24, 2003
    Inventor: Ting-An Wang
  • Patent number: 6543256
    Abstract: In an optical fiber coupler making apparatus which makes an optical fiber coupler by thermally fusing a plurality of optical fibers together by use of a heater and then elongating thus thermally fused part, the heater comprises a heating element which is made of zirconia and which has a slit for containing the optical fibers. The inner face of the heating element is preferentially heated due to a characteristic of its material. Consequently, if optical fibers are contained in the fiber receiving slit, then they can be thermally fused at a sufficiently high temperature in a short period of time, whereby reducing mingling of impurities into the optical fiber coupler. Therefore, the heating element made of zirconia is effective as means for preventing impurities from mingling from the outside thereof. Also, performances of the heating element can be maintained over a long period of time even if the optical fibers are thermally fused at a high temperature.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: April 8, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Ichiro Tsuchiya
  • Publication number: 20030056547
    Abstract: A method for heating optical fibers by electric discharge includes fusion splicing optical fibers and then applying a heating to a neighborhood of a fusion splicing part of the optical fibers by the electric discharge. The discharge electrodes are provided in a direction perpendicular to the plane in which the optical fibers are arranged. The heating is applied to the neighborhood of the fusion splicing part by the electric discharge with discharge electrodes. The discharge electrodes are moved not only in a direction of arrangement of the optical fibers but also in an axial direction of the optical fibers such that more thermal energy is applied to an optical fiber positioned closer to a center of the arrangement of the optical fibers than to an optical fiber positioned away from the center.
    Type: Application
    Filed: September 3, 2002
    Publication date: March 27, 2003
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Eiichiro Yamada, Kazuhito Saito, Mitsuaki Tamura
  • Patent number: 6516635
    Abstract: Method and system for constructing and testing integrity of a combination of first and second spaced apart optical fiber couplers that each receive and hold two fibers. A segment of each fiber in a separation region between the couplers is heated, twisted and elongated by selected amounts to form a fiber complex, located between the first and second couplers. The fibers in the second coupler are subjected to further controlled elongation. A spectrum analyzer receives a common light beam passed through each of the two fibers and fiber couplers and measures successive maximum and minimum values of an interferometric variable IF and pit-to-pit or peak-to-peak spacing of the IF values as fiber segment elongation is varied.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: February 11, 2003
    Assignee: Tera Fiberoptics, Inc.
    Inventors: Yawen Yang, Tzong-Shinn Jiang
  • Patent number: 6499319
    Abstract: In welding optical fiber ribbons by means of an electric arc formed between electrodes the region heated by the electric arc is mapped on CCD-elements in a camera. In the obtained picture the light intensity of those portions of the picture is determined which correspond to the heated fiber portions. This light intensity is used for setting the electric current flowing between the electrodes, so that a desired welding temperature is obtained and so that also a desired, lower temperature is obtained in the fiber ends in a preparatory softening stage, which has a long durability and which is performed before the very welding stage. This determination of temperatures by means of measured light intensities gives reliable values also in the case where ambient conditions like the air pressure are changed, the state of the electrodes is changed owing to contamination, etc.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: December 31, 2002
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventor: Sasan Esmaeili
  • Patent number: 6425270
    Abstract: A method for producing an optical fiber preform comprising inserting a core glass rod for use in the optical fiber preform into the quartz glass tube for the optical fiber preform and then welding them in a heating furnace to melt weld them together into a monolithic product, wherein the melting is started in such a state that the lower open edge of said quartz glass tube is placed inside the heating furnace and a gas is supplied from the upper edge of the tube, and after the lower edge portion of the quartz glass tube is drawn out from said heating furnace by melt deformation and stretching by the gravitational force, the gas supply is cut off and the pressure is reduced.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: July 30, 2002
    Assignees: Heraeus Quarzglas GmbH & Co. KG, Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Masanori Suzuki, Toshiyuki Kato, Atsuhi Shimada, Yutaka Watabe
  • Patent number: 6405566
    Abstract: A method and device for providing an optical fiber secondary preform by collapsing an over-cladding tube on an optical fiber primary preform is disclosed in the present invention. The device for over cladding the optical fiber primary preform includes a hand bar as a first supporter for supporting the optical fiber primary preform, which hand bar has a sealing-up part of the over-cladding tube on an outer diameter part thereof and also includes a supporting handle tube as a second supporter for supporting the over-cladding tube, which the purity of the supporting handle tube is different from that of the over-cladding tube. Also the supporting handle tube includes a ring to make it equal two centers of the optical fiber primary preform and the over-cladding tube.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: June 18, 2002
    Assignee: SamSung Electronics Co., Ltd.
    Inventor: Seung-Hun Oh
  • Patent number: 6341242
    Abstract: Control of an interconnection process for optical fibers involves evaluating the status of all modules used in the process and moving an optical fiber through the process in accordance with the status of the modules. Such control allows more than one fiber, and more than one fiber type, to be processed simultaneously. The processing may be optimized using fuzzy logic to track when operations performed by a module are near completion. A graphical user interface displaying the movement of the optical fibers through the process may also be provided.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: January 22, 2002
    Assignee: Ciena Corporation
    Inventors: Waqar Mahmood, Jun Bao, Andrei Csipkes
  • Publication number: 20010052247
    Abstract: A method of making an optical device comprises the steps of providing a body of vitreous material that is generally tubular along an axis. A portion of the body is molded with external mold structure for forming a bulbous region when the interior of the tube is pressurized. An axial portion is cut from the bulbous region to form a first coupling device with first and second axially oriented openings. This method can produce optical coupling devices with excellent optical quality in an economical manner.
    Type: Application
    Filed: December 22, 1999
    Publication date: December 20, 2001
    Inventors: JURIS SULCS, JOHN M DAVENPORT, ROGER F BUELOW, II
  • Patent number: 6279353
    Abstract: An electric furnace extending method and apparatus for an optical fiber glass body alignment when connecting the extension use body and pulling member and making it possible to immediately start the extension after the fusing of the connection portion. A centering mechanism for centering the frame and portion of the body and member on the furnace center side is provided between the furnace pipe of the electric furnaces and grips of the extension use glass body and between the furnace pipe and the pulling member. The free end portion is centered by this centering mechanism, then the gripped sides of the body and member are fixed, the front ends of the two free end portions are abutted and fused and bonded at the highest temperature portion inside the electric furnace, then the highest temperature portion is moved to the extension portion of the glass body side and the extending of the glass body is commenced.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: August 28, 2001
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Tetsuro Wada, Masahide Kuwabara, Yukio Komura
  • Patent number: 6237370
    Abstract: A system for automated production of a fiber optic device includes a chamber regulating an environment and/or atmosphere within for the automated production of the fiber optic device. The system also includes a sealable input port, communicating with the chamber and substantially sealing the environment and the atmosphere of the chamber. The sealable input port receives an optical fiber for insertion therethrough into the chamber. A movable holding stage is included within the chamber, including at least one clamp to be secured to the optical fiber. An energy source is disposed within the chamber, and used to apply energy to the optical fiber. The system also includes a gripping device within the chamber. The gripping device includes a cavity adapted for receiving the optical fiber therethrough and for securing thereto.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: May 29, 2001
    Inventor: Cary Bloom