Oxide Coating Patents (Class 65/60.5)
  • Patent number: 11673828
    Abstract: A material includes a transparent substrate coated with a stack of thin layers including at least one silver-based functional metallic layer, at least one blocking layer located directly in contact with a silver-based functional metallic layer, and at least one zinc-based metallic layer located above or below this silver-based functional metallic layer, directly in contact or separated by one or more layers having a total thickness of less than or equal to 20 nm.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 13, 2023
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Denis Guimard, Johann Skolski, Romain Hivet, Joël Bellemin
  • Patent number: 11565968
    Abstract: A material includes a transparent substrate coated with a stack of thin layers including at least one silver-based functional metallic layer, at least one zinc-based metallic layer, located above and/or below a silver-based functional metallic layer, and at least one nickel oxide-based layer located above and/or below this silver-based functional metallic layer and separated from this layer by at least one crystallized dielectric layer.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 31, 2023
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Denis Guimard, Johann Skolski, Joël Bellemin
  • Patent number: 11560331
    Abstract: A coated glass substrate and a method of making the glass substrate is disclosed. The method comprises the following: providing a coating formulation on a glass substrate wherein the coating formulation comprises at least one polymerizable compound, a glass frit, and a non-crosslinked polymer and heating the coating formulation on the glass substrate. The coated glass substrate includes a coating provided on a surface of a glass substrate wherein the coating comprises a semi-interpenetrating polymer network including a non-crosslinked polymer and a glass frit. The coating exhibits a stud pull of about 275 psi or more.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: January 24, 2023
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Liang Liang, Suresh Devisetti
  • Patent number: 11485671
    Abstract: A method for homogenizing glass includes the method: providing a cylindrical blank composed of the glass having a cylindrical outer surface that extends along a longitudinal axis of the blank between a first end face and a second end face, forming a shear zone in the blank by softening a longitudinal section of the blank and subjecting it to a thermal-mechanical intermixing treatment, and displacing the shear zone along the longitudinal axis of the blank. To enable a radial mixing within the shear zone in addition to the tangential mixing with the lowest possible time and energy input, starting from this method, cylindrical sections of the blank are adjacent to the shear zone on both sides, the first cylindrical section having a first central axis and the second cylindrical section having a second central axis, the first central axis and the second central axis being temporarily non-coaxial with each other.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: November 1, 2022
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Stephan Thomas, Jan Vydra, Martin Trommer, Michael Huenermann, Andreas Langner, Walter Lehmann, Stefan Hengster, Klaus Becker
  • Patent number: 11459146
    Abstract: The present invention relates to a coating apparatus also called coating tunnel or coating hood for applying a protective coating to hollow glass containers. In particular it relates to a coating apparatus also called coating tunnel or coating hood with the re-use of the coating material containing exhaust from the end of the coating tunnel for applying the protective coatings to glass containers. More particularly the present invention relates to a coating apparatus also called coating tunnel or coating hood with an additional half-loop that re-uses the coating material containing exhaust from the end of the coating tunnel at the entrance of the tunnel while replacing fresh air.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 4, 2022
    Assignee: Arkema France
    Inventors: Oliver Meurer, Joannes Theodorus Maria Wagemakers
  • Patent number: 11186514
    Abstract: A process for the manufacture of a heat strengthened glass substrate, includes the application of a temporary layer including a polymer on a glass substrate including a glass sheet, then the application to the glass substrate coated with the temporary layer of a treatment for the heat strengthening of the glass including heating, leading to the removal of the temporary layer, and then cooling by blowing of air through nozzles. The glass substrate thus obtained exhibits a reduced level of iridescences.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: November 30, 2021
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Guillaume Kaminski, François Guiraud, Romain Decourcelle
  • Publication number: 20150104618
    Abstract: The present invention relates to a ceramic color paste containing a glass frit, a vehicle, a heat-resistant pigment and a large-diameter heat-resistant particle, in which the large-diameter heat-resistant particle has a particle size larger than the average thickness of a dried coating film for forming a ceramic color.
    Type: Application
    Filed: March 13, 2013
    Publication date: April 16, 2015
    Applicant: MITSUBOSHI BELTING LTD.
    Inventors: Yoko Hayashi, Kotaro Kuroda, Masafumi Suzuki
  • Patent number: 8978416
    Abstract: A process for producing a glass substrate provided with an inorganic fine particle-containing silicon oxide film, which comprises applying a coating liquid containing an organopolysiloxane having an exothermic peak temperature of at most 500° C. and inorganic fine particles to a glass substrate within a temperature range of from 400 to 650° C., or a process for producing a glass substrate, comprising forming molten glass into a glass ribbon, annealing the glass ribbon and cutting it to produce a glass substrate, wherein a coating liquid containing an organopolysiloxane having an exothermic peak temperature of at most 500° C. and inorganic fine particles is applied to the glass ribbon at a position where the glass ribbon is within a temperature range of from 400 to 650° C.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuichi Kuwahara, Keisuke Abe
  • Patent number: 8973403
    Abstract: A process for producing a glass substrate provided with an aluminum oxide-containing silicon oxide film, which comprises applying a coating liquid containing an organopolysiloxane and an organic aluminum complex to a glass substrate within a temperature range of from 400 to 650° C. to form an aluminum oxide-containing silicon oxide film on the glass substrate, and a process for producing a glass substrate comprising forming molten glass into a glass ribbon, annealing the glass ribbon and cutting it to produce a glass substrate, wherein a coating liquid containing an organopolysiloxane and an organic aluminum complex is applied to the glass ribbon at a position where the glass ribbon is within a temperature range of from 400 to 650° C. to form an aluminum oxide-containing silicon oxide film on the glass ribbon.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 10, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuichi Kuwahara, Keisuke Abe
  • Publication number: 20150030778
    Abstract: To provide a process for producing a glass substrate provided with an inorganic fine particle-containing silicon oxide film, wherein inorganic fine particles having a desired particle size may be used depending on intended optical properties, and the range of selection of the inorganic fine particles is wide.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Yuichi Kuwahara, Yusuke Mori, Keisuke Abe, Takashige Yoneda
  • Publication number: 20150013390
    Abstract: This invention relates to glass and enamel compositions. The glass compositions include SiO2, Nb2O5, Na2O, B2O3, ZnO, Bi2O3, TiO2, MoO3, ZrO2, Y2O3, Al2O3, Li2O, and K2O. The glass compositions can be used to form an enamel on a substrate, for example, to decorate and/or protect the substrate.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 15, 2015
    Inventors: Sandeep K. Singh, George E. Sakoske, David A. Klimas
  • Publication number: 20140352355
    Abstract: A method of coating a surface of a glass ribbon during a drawing process using atmospheric vapor deposition is provided. The method includes forming a glass ribbon in a viscoelastic state, desirably with a fusion draw. The glass ribbon is drawn in the viscoelastic state. The glass ribbon is cooled in the viscoelastic state into an elastic state. The glass ribbon is directed into an open end of a reactor. The reactor includes multiple channels. A first channel directs a first reactant gas, a second channel directs a second reactant gas and one or more third channels draw excess reactant, or purge it with inert gas flow, or both.
    Type: Application
    Filed: November 11, 2012
    Publication date: December 4, 2014
    Inventors: Robert Addison Boudreau, Darwin Gene Enicks, Charles Andrew Paulson, Gary Richard Trott
  • Publication number: 20140340730
    Abstract: Methods for cutting strengthened glass are disclosed. The methods can include using a laser. The strengthened glass can include chemically strengthened, heat strengthened, and heat tempered glass. Strengthened glass with edges showing indicia of a laser cutting process are also disclosed. The strengthened glass can include an electrochromic film.
    Type: Application
    Filed: March 14, 2014
    Publication date: November 20, 2014
    Inventors: Howard S. BERGH, Nicolas TIMMERMAN
  • Publication number: 20140305165
    Abstract: A method includes: forming at least one layer of a film formed of an inorganic material, that contains H atoms in a concentration of 1.0×1015 to 1.0×1019 atom/mm3, on at least a top surface of a glass substrate having a bottom surface to contact a molten metal during forming and the top surface facing the bottom surface, thereby reducing a warpage of the glass substrate caused by a chemical strengthening process performed after forming the at least one layer on the top surface of the glass substrate. The glass substrate is formed by a float process.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Naoki OKAHATA, Koji NAKAGAWA
  • Patent number: 8850850
    Abstract: To produce a meniscus lens from synthetic quartz glass for use in a microlithography apparatus, which lens has a first optical surface (7) and a second optical surface (8) with the same direction of curvature as the first optical surface (7), SiO2 particles are formed by oxidation or flame hydrolysis of a silicon-containing starting compound and deposited layer by layer on a substrate to form a cylindrical SiO2 blank which contains layers with a surface normal extending in the direction of growth. To allow such layers, which have however the least possible adverse effect on optical or mechanical properties, it is proposed according to the invention that the blank is plastically worked in a hot forming process under the effect of a deforming force to form a preform (6), which has at least the first curved surface (7) and in which the layers are curved in the direction of curvature, and that the meniscus lens is obtained from the preform.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 7, 2014
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventor: Stefan Hengster
  • Publication number: 20140220309
    Abstract: A glass film has a first and a second surface which are both defined by like edges, wherein the surface of at least two edges which are located opposite one another have an average surface roughness of an maximum of 2 nanometers.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Schott AG
    Inventors: Jürgen Vogt, Thomas Wiegel, Holger Wegener, Ulrich Neuhäusler, Angelika Ullmann
  • Patent number: 8784932
    Abstract: A glass panel is partially printed with a plurality of layers in the form of a print pattern which subdivides the panel into a plurality of discrete printed areas and/or a plurality of discrete unprinted areas, the layers being in substantially exact registration. Exact registration is achieved by the application of a plurality of superimposed layers to a sheet of glass. One layer contains-ceramic ink comprising glass frit. The glass sheet and layers are subjected to a heat treatment process which causes the glass frit to fuse to the glass and bind at least one other layer of ink within the print pattern. Ink outside the print pattern is burnt off and/or vaporised during the heat treatment process and/or removed by a subsequent finishing process, to leave the desired layers in substantially exact registration within the print pattern.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: July 22, 2014
    Assignee: Contra Vision Limited
    Inventors: George Roland Hill, Howard Quinn
  • Patent number: 8733130
    Abstract: A process for coating a ribbon of float glass is disclosed. It comprises the steps of forming a glass ribbon, depositing a first transparent conductive coating upon a major surface of the ribbon which does not extend to the edges of the ribbon while the ribbon is at an elevated temperature, cooling said coated ribbon under controlled conditions in an annealing lehr and cutting off the edges of the ribbon so as to produce a ribbon having a uniform coating extending across the full width of the cut ribbon which is characterized in that a second conductive coating is deposited upon the uncoated edges of the ribbon while that edge is at a temperature which is above the ambient temperature. The invention finds particular application in the production of coated glass products where the thickness of the glass ribbon is at least 8 mm and most particularly where the thickness of the glass is at least 10 mm.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: May 27, 2014
    Assignee: Pilkington Group Limited
    Inventors: Kevin Sanderson, Gerhard Lingl, Hans-Eckhard Leitl, Franz Michael Josef Scharnagl, Douglas M Nelson
  • Publication number: 20140127464
    Abstract: A method for producing a conversion element (10) for an optical and/or optoelectronic component (20), wherein the method comprises the following steps: a) applying phosphor (4; 4a) or a material (3a) which contains phosphor (4; 4a) to a surface (1A) of a transparent, phosphor-free, and homogeneous glass material (2a) and performance of a temperature treatment (TB1) at elevated temperature (T1) above the softening temperature (Tw) of the glass material (2a), wherein the glass material (2a) is softened enough that the phosphor (4; 4a) sinks into the glass material; (2a), and b) cooling the glass material (2a) including the sunken-in phosphor.
    Type: Application
    Filed: July 4, 2012
    Publication date: May 8, 2014
    Inventors: Angela Eberhardt, Reinhold Schmidt, Harald Strixner
  • Publication number: 20140013804
    Abstract: To provide a process for producing a glass member provided with a sealing material layer, capable of forming a sealing material layer well even in a case where the entire glass substrate cannot be heated. A sealing material layer is formed by scanning and irradiating with a laser light 9 along a frame-form coating layer 8 of a sealing material paste on a glass substrate. The scanning speed with the laser light 9 in a finishing region from a position close to an irradiation finishing position which at least partially overlaps with an already fired portion of the frame-form coating layer 8 to the irradiation finishing position, is adjusted to be slower than the scanning speed with the laser light in a scanning region along the frame-form coating layer 8.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 16, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Motoshi ONO, Sohei Kawanami
  • Patent number: 8555674
    Abstract: A quartz glass crucible for silicon single crystal pulling operation that by a simple arrangement, attains prevention of any collapse onto the inside at a superior edge of straight trunk part; and a process for manufacturing the same. The quartz glass crucible for silicon single crystal pulling operation having a straight trunk part and a bottom part, is characterized in that at least the straight trunk part is provided with a gradient of fictive temperature so that the fictive temperature on the outermost side thereof is 25° C. or more lower than the fictive temperature on the innermost side thereof.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 15, 2013
    Assignees: Heraeus Quarzglas GmbH & Co. KG, Shin-Etsu Quartz Products Co., Ltd.
    Inventor: Yasuo Ohama
  • Publication number: 20130098112
    Abstract: To provide a process for producing a glass substrate provided with an inorganic fine particle-containing silicon oxide film. (1) A process for producing a glass substrate provided with an inorganic fine particle-containing silicon oxide film, which comprises applying a coating liquid containing an organopolysiloxane having an exothermic peak temperature of at most 500° C. and inorganic fine particles to a glass substrate within a temperature range of from 400 to 650° C., or (2) a process for producing a glass substrate, comprising forming molten glass into a glass ribbon, annealing the glass ribbon and cutting it to produce a glass substrate, wherein a coating liquid containing an organopolysiloxane having an exothermic peak temperature of at most 500° C. and inorganic fine particles is applied to the glass ribbon at a position where the glass ribbon is within a temperature range of from 400 to 650° C.
    Type: Application
    Filed: December 11, 2012
    Publication date: April 25, 2013
    Applicant: Asahi Glass Company, Limited
    Inventor: Asahi Glass Company, Limited
  • Patent number: 8359884
    Abstract: A glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves forming a first glass soot layer on a deposition surface of a soot-receiving device, removing the first glass soot layer from the deposition surface, and forming a second glass soot layer on the unsupported first glass soot layer. The resulting composite glass soot sheet is heated to form a sintered glass sheet. The glass sheet can be a substantially homogeneous glass sheet or a composite glass sheet having layer-specific attributes.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 29, 2013
    Assignee: Corning Incorporated
    Inventor: Daniel Warren Hawtof
  • Patent number: 8327664
    Abstract: A method for producing transparent conductive glass by a) depositing two barrier layers on the surface of hot glass by chemical vapor deposition; and b) depositing two conductive film layers on the surface of the glass ribbon having the two barrier layers. The method is easy to control and suitable for mass production. The resultant transparent conductive glass has low surface resistance and moderate haze.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: December 11, 2012
    Assignee: Hangzhou Bluestar New Materials Technology Co., Ltd.
    Inventors: Qiying Liu, Jianxun Wang, Ming Zhao, Nianwei Zhao, Yayan Cao, Junbo Liu, Fanhua Kong, Defa Wei, Yankai Ge, Chunjia Peng, Yongxiu Cai, Zhihui Ye, Molong Xiao
  • Publication number: 20120240631
    Abstract: At the time of temporary firing for fixing a glass layer 3 to a glass member 4, the glass layer 3 is irradiated with laser light L2 through the glass member 4 from the glass member 4 side. This fully heats a part of the glass layer 3 on the glass member 4 side and thus can improve the adhesion of the glass layer 3 to the glass member 4. Further, even when irradiated with the laser light L2 at such a laser power as to melt both edge parts of the glass layer 3, the part of the glass layer 3 on the side opposite from the glass member 4 (i.e., the part of the glass layer 3 fused to the other glass member) is prevented from being crystallized by excess heat input, whereby the fusing state of the glass layer 3 with respect to the other glass member can be made uniform.
    Type: Application
    Filed: September 17, 2010
    Publication date: September 27, 2012
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventor: Satoshi Matsumoto
  • Publication number: 20120240634
    Abstract: A chemical vapor deposition process for depositing zinc oxide coatings is provided. The process includes providing a glass substrate and a coating apparatus. The coating apparatus includes two or more separate flow pathways. Each flow pathway provides communication between an inlet opening and an outlet opening, and one or more flow conditioners disposed in each of the flow pathways. Gaseous precursor compounds are provided. The gaseous precursor compounds and the one or more inert gases are introduced as two or more streams into the inlet openings. The streams are directed through the two or more separate flow pathways and discharged from the outlet openings of the coating apparatus. The gaseous precursor compounds and one or more inert gases mix to form a zinc oxide coating on a surface of the glass substrate.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Applicant: Pilkington Group Limited
    Inventors: Kevin D. Sanderson, Michel J. Soubeyrand, Douglas M. Nelson, Yasunori Seto, Keiko Tsuri
  • Publication number: 20120213954
    Abstract: Certain example embodiments relate to seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a composition may be combined with a binder solution that substantially or completely burns out by the time the composition is melted. In certain example embodiments, a CTE filler is included with a frit material. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.
    Type: Application
    Filed: January 20, 2012
    Publication date: August 23, 2012
    Inventor: Timothy A. DENNIS
  • Patent number: 8234882
    Abstract: The invention relates to a method for producing iridescent crystal glass. The glass products produced with the method of present invention have the advantages of good streamline shape, natural color transition, and excellent visual effect, etc.; the method is helpful for accelerating product upgrade, improving product appearance and visual effects, and enhancing competence of products. Therefore, we paint iridescent crystal ink on glass products, and add patterns suitable for household electric appliances and buildings, thereby greatly improving the appearance of the product. In addition, due to the high safety performance of toughened glass and suitability of patterns and colors, iridescent crystal glass products have been accepted by the consumers gradually. The method comprises the following steps: a. cutting; b. edge processing; c. toughening; d. ink preparation; e. iridescent crystal printing; f.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: August 7, 2012
    Assignee: Jiangsu Xiuqiang Glasswork Co., Ltd.
    Inventor: Xiuqiang Lu
  • Publication number: 20120196071
    Abstract: Strengthened glass substrate sheets and methods of fabricating glass panels from glass substrate sheets are disclosed. In one embodiment, a method includes forming at least one series of holes through a thickness of the glass substrate sheet, wherein the at least one series of holes defines a perimeter of the glass panel to be separated from the glass substrate sheet. The method further includes strengthening the glass substrate sheet by a strengthening process, and separating the glass panel from the glass substrate sheet along the at least one series of holes. At least a portion of one or more edges of the glass panel has an associated edge compressive layer. In another embodiment, a strengthened glass substrate sheet includes at least one series of holes that defines a perimeter of one or more glass panels to be separated from the strengthened glass substrate sheet.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Inventors: Ivan A. Cornejo, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Publication number: 20120170131
    Abstract: To produce a meniscus lens from synthetic quartz glass for use in a microlithography apparatus, which lens has a first optical surface (7) and a second optical surface (8) with the same direction of curvature as the first optical surface (7), SiO2 particles are formed by oxidation or flame hydrolysis of a silicon-containing starting compound and deposited layer by layer on a substrate to form a cylindrical SiO2 blank which contains layers with a surface normal extending in the direction of growth. To allow such layers, which have however the least possible adverse effect on optical or mechanical properties, it is proposed according to the invention that the blank is plastically worked in a hot forming process under the effect of a deforming force to form a preform (6), which has at least the first curved surface (7) and in which the layers are curved in the direction of curvature, and that the meniscus lens is obtained from the preform.
    Type: Application
    Filed: July 1, 2010
    Publication date: July 5, 2012
    Applicant: HERAEUS QUARZGLAS GMBH & CO. KG
    Inventor: Stefan Hengster
  • Publication number: 20120132269
    Abstract: A glass substrate may be processed at high temperatures without substantially losing its thermal-strengthening characteristics or deforming. In some examples, the glass substrate exhibits an increased annealing point and/or softening point as compared to standard glass substrates. In some examples, the glass substrate includes a relatively high amount of CaO and/or MgO, and/or a relatively low amount of Na2O, as compared to traditional soda-lime-silica-based glass. Depending on the composition, the glass substrate may be useful, for example, to fabricate a glass-based solar cell that mates two substantially flat glass substrates together.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 31, 2012
    Applicant: CARDINAL FG COMPANY
    Inventors: Brad Hickman, Patrick D. Watson, Kelly J. Busch
  • Publication number: 20110281091
    Abstract: A method of depositing an electrically conductive titanium oxide coating on a glass substrate, preferably by atmospheric chemical vapor deposition in a float glass manufacturing process, utilizes a precursor gas mixture including a halogenated, inorganic titanium compound, an organic oxygen containing compound, a reducing gas and one or more inert carrier gases.
    Type: Application
    Filed: January 29, 2010
    Publication date: November 17, 2011
    Applicant: Pilkington Group Limited
    Inventor: David A. Strickler
  • Publication number: 20110183138
    Abstract: In a known method for producing quartz glass that is doped with nitrogen, an SiO2 base product is prepared in the form of SiO2 grains or in the form of a porous semi-finished product produced from the SiO2 grains and the SiO2 base product is processed into the quartz glass with the nitrogen chemically bound therein in a hot process in an atmosphere containing a reaction gas containing nitrogen. From this starting point, a method is provided for achieving nitrogen doping in quartz glass with as high a fraction of chemically bound nitrogen as possible. This object is achieved according to the invention in that a nitrogen oxide is used as the nitrogen-containing reaction gas, and that a SiO2 base product is used that in the hot process has a concentration of oxygen deficient defects of at least 2×1015 cm?3, wherein the SiO2 base product comprises SiO2 particles having an average particle size in the range of 200 nm to 300 ?m (D50 value).
    Type: Application
    Filed: July 16, 2009
    Publication date: July 28, 2011
    Applicant: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Martin Trommer, Stefan Ochs, Juergen Weber, Waltraud Werdecker, Norbert Traeger, Helmut Leber
  • Patent number: 7968201
    Abstract: A multi-layer thin film stack, particularly suitable as a component of a solar cell, is deposited on a transparent dielectric substrate. The multi-layer film stack comprises a transparent electrically conductive metal oxide layer deposited over the dielectric substrate, the conductive metal oxide layer having a refractive index less than 2.0, a light transmittance optimizing interlayer having a refractive index between 2.3 and 3.5, deposited over the electrically conductive metal oxide layer, and a silicon layer having a refractive index of at least 4.5 deposited over the light transmittance optimizing interlayer. The film stack can be deposited by any suitable method, but deposition of each of these layers by atmospheric chemical vapor deposition is preferred.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: June 28, 2011
    Assignees: Pilkington Group Limited, Pilkington North America, Inc.
    Inventors: Douglas M. Nelson, Gary Nichol, Srikanth Varanasi
  • Publication number: 20110104427
    Abstract: A method for forming a glass substrate comprises the steps of forming a glass blank with opposing substantially planar surfaces and at least one edge, coating the glass blank in silica-alumina nanoparticles, the silica-alumina nanoparticles comprising an inner core of silica with an outer shell of alumina, annealing the coated glass blank to form a conformal coating of silica-alumina around the glass blank, and polishing the coated glass blank to remove the conformal coating of silica-alumina from the opposing substantially planar surfaces thereof.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicant: WD MEDIA, INC.
    Inventor: SHOJI SUZUKI
  • Patent number: 7927670
    Abstract: The invention concerns silica microspheres (M) having an outer diameter between 50 and 125 ?m, preferably between 60 and 90 ?m, a wall thickness not less than 1 ?m, preferably between 1 and 3 ?m and a density between 0.3 and 0.7/cm3, a manufacturing method by injecting silica microsphere precursors (MS, PR1, PR1?, PR2?) into an inductive plasma (P), assembly methods and possible uses of silica microspheres.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: April 19, 2011
    Inventor: Sylvain Rakotoarison
  • Patent number: 7919018
    Abstract: This invention provides, in one aspect, a procedure to use optically transparent nanocrystalline quantum dots to absorb UV light. This absorption process leads to an energy transfer to a chemically bound and chelated lanthanide ion that may emit light in either the visible spectrum (400-700 nm) or in the near infrared (700-1600 nm). This invention also provides methods for the use of these taggant materials in inks and aerosols used to disperse the taggant.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: April 5, 2011
    Assignee: Voxtel, Inc.
    Inventors: George M. Williams, David M. Schut
  • Patent number: 7842338
    Abstract: A method of making a photoactive coating includes depositing a first coating material containing zirconium oxide over at least a portion of a substrate and depositing a second coating material containing titanium oxide over at least a portion of the first coating material to provide a coated substrate. At least one of the first and second coating materials is deposited by pyrolytic deposition.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: November 30, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Pat Ruzakowski Athey, James J. Finley
  • Publication number: 20100285275
    Abstract: A glass substrate having at least one surface with engineered properties that include hydrophobicity, oleophobicity, anti-stick or adherence of particulate or liquid matter, resistance to fingerprinting, durability, and transparency (i.e., haze<10%). The surface comprises at least one set of topological features that together have a re-entrant geometry that prevents a decrease in contact angle and pinning of drops comprising at least one of water and sebaceous oils.
    Type: Application
    Filed: April 20, 2010
    Publication date: November 11, 2010
    Inventors: Adra Smith Baca, Karl William Koch, III, Shari Elizabeth Koval, Prantik Mazumder, Mark Alejandro Quesada, Wageesha Senaratne, Todd Parrish St. Clair
  • Patent number: 7743630
    Abstract: A method of making float glass is provided that results in a transparent conductive oxide (TCO) films being integrally formed with the float glass at the tin side thereof. In particular, a donor(s) such as antimony and/or an oxide thereof is added to the glass batch during the process of manufacture. The donor diffuses into the tin oxide inclusive layer adjacent the tin bath during the “float” manufacturing process, thereby increasing the number of electrons in the tin oxide inclusive layer so as to form a TCO film at the tin side of the glass.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: June 29, 2010
    Assignee: Guardian Industries Corp.
    Inventors: Alexey Krasnov, Ksenia A. Landa, Leonid M. Landa
  • Publication number: 20100126227
    Abstract: Methods for coating a glass substrate as it is being drawn, for example, during fusion draw or during fiber draw are described. The coatings are conductive coatings which can also be transparent. The conductive thin film coated glass substrates can be used in, for example, display devices, solar cell applications and in many other rapidly growing industries and applications.
    Type: Application
    Filed: September 30, 2009
    Publication date: May 27, 2010
    Inventors: Curtis Robert Fekety, Andrey V. Filippov, Clinton Damon Osterhout, Carlton Maurice Truesdale
  • Patent number: 7716948
    Abstract: A fused glass crucible includes a collar of doped aluminum silica that defines uppermost and outermost surfaces of the crucible. The melt line that defines the surface of molten silicon in the crucible may be substantially at the lower end of the collar or slightly above it. Crystallization of the collar makes it hard and therefore supports the remaining uncrystallized portion of the crucible above the melt line. The melt line may also be below the lower end of the collar, especially if the melt is drawn down or poured early in the process. Because there is little or no overlap or because the overlap does not last long, the doped aluminum collar is not damaged by the heat of from the melt.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 18, 2010
    Assignees: Heraeus Shin-Etsu America, Inc., Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Katsuhiko Kemmochi, Yasuo Ohama
  • Patent number: 7712333
    Abstract: To provide a method for smoothing a surface of a glass substrate having a concave defect, such as a pit or a scratch. A method for smoothing a surface of a glass substrate having a concave defect thereon, comprising: forming a film on the surface of the glass substrate having the concave defect by a dry deposition method, the film comprising a glass material having a fluid point Tf of 150° C. or above and of not higher than a strain point Ts (° C.) of the glass substrate; and heating the film of the glass material at a temperature of not lower than Tf and not higher than Ts to put the film in such state that the film of the glass material can flow so as to bury the concave defect, followed by cooling the film of the glass material, thereby to smooth the surface of the glass substrate having the concave defect.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: May 11, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Toshiyuki Uno, Yoshiaki Ikuta, Mika Yokoyama, Ken Ebihara
  • Publication number: 20100025235
    Abstract: Disclosed is a sensitive glass film for a pH electrode, which is not deteriorated in its glass strength or pH-measuring function, which is hardly stained, and from which any stain can be removed easily. Also disclosed is a pH electrode having the sensitive glass film. A microparticle comprising rutile-type or brookite-type titanium dioxide or a microparticle comprising amorphous titanium dioxide is adhered directly on the glass film surface of a sensitive glass film for a pH electrode.
    Type: Application
    Filed: December 11, 2007
    Publication date: February 4, 2010
    Applicants: Horiba , ltd., Mie University
    Inventors: Yuji Nishio, Yasukazu Iwamoto, Tadanori Hashimoto
  • Publication number: 20090266110
    Abstract: A known SiO2 slurry for the production of quartz glass contains a dispersion liquid and amorphous SiO2 particles with particle sizes to a maximum of 500 ?m, wherein the largest volume fraction is composed of SiO2 particles with particle sizes in the range 1 ?m-60 ?m, as well as SiO2 nanoparticles with particle sizes less than 100 nm in the range 0.2-15% volume by weight (of the entire solids content). In order to prepare such a slurry for use, and to optimize the flow behavior of such a slurry with regard to later processing by dressing or pouring the slurry mass, and with regard to later drying and sintering without cracks, the invention suggests a slurry with SiO2 particles with a multimodal distribution of particle sizes, with a first maximum of the sizes distribution in the range 1 ?m-3 ?m and a second maximum in the range 5 ?m-50 ?m, and a solids content (percentage by weight of the SiO2 particles and the SiO2 nanoparticles together) in the range 83%-90%.
    Type: Application
    Filed: September 12, 2007
    Publication date: October 29, 2009
    Applicant: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Waltraud Werdecker, Norbert Traeger, Juergen Weber
  • Publication number: 20090095021
    Abstract: The invention relates to a method of forming a hydrophobic surface for glass or glazing. The method comprises producing particles having an average aerodynamic particle size of less than 200 nm and guiding the particles further onto the glass surface. The particles to be produced according to the invention are hydrophobic particles and the particles are guided onto the glass surface so that they at least partly dissolve and/or diffuse into the glass surface.
    Type: Application
    Filed: March 26, 2007
    Publication date: April 16, 2009
    Applicant: BENEQ OY
    Inventor: Markku Rajala
  • Patent number: 7507618
    Abstract: A method of making a thin film transistor comprises (a) solution depositing a dispersion comprising semiconducting metal oxide nanoparticles onto a substrate, (b) sintering the nanoparticles to form a semiconductor layer, and (c) optionally subjecting the resulting semiconductor layer to post-deposition processing.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: March 24, 2009
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Patent number: 7438948
    Abstract: A method for forming a coated substrate is disclosed. The method comprises depositing an undercoating layer and depositing a functional coating comprising a material which can be present in more than one crystal structure over the undercoating layer, wherein there is a critical deposition thickness at which the functional coating transforms from a first polycrystalline film made up predominantly of the material having a first crystal structure to a second polycrystalline film made up predominantly of the same material having a second crystal structure.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: October 21, 2008
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Caroline S. Harris, Cory D. Steffek, Scott D. Walck
  • Patent number: 7334435
    Abstract: Process for the production of an intumescent fire resistant layer by drying a waterglass solution on the surface of a glass substrate are carried out in the presence of a salt of a carbonic acid or an ?-hydroxy carboxylic acid such as potassium citrate. The drying is preferably carried out at a rate which reduces of pH of the solution by no more than 2 units during an initial drying period of 5 hours. The resulting interlayers provide improved fire resistance.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: February 26, 2008
    Assignee: Pilkington plc
    Inventors: Karikath Sukumar Varma, John Richard Holland, David William Holden
  • Patent number: 7294373
    Abstract: A liquid crystal display device includes a liquid crystal display cell including lamination of a lower polarizer, a first glass substrate having a metal oxide glass film formed on the side of the lower polarizer, a liquid crystal layer, a second glass substrate having a metal oxide glass film formed on the side opposite the liquid crystal layer, and an upper polarizer; and a backlight unit including a light guide plate, a diffusion plate, and light sources. The metal oxide glass films are a transparent film made of an organic/inorganic hybrid material. The films are formed by coating a solution of a metal alkoxide composition on individual outer surfaces of the first glass substrate and the second glass substrate, both of which have been roughened by a polishing process, and by hydrolyzing and curing the metal alkoxide composition.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: November 13, 2007
    Assignees: International Business Machines Corporation, CMO Japan Co., Ltd.
    Inventors: Kenji Tsuboi, Hideo Ohkuma, Tomohito Johnai