Treating Or Removing Impurities In Molten Metal Or Glass Patents (Class 65/99.4)
  • Publication number: 20140377529
    Abstract: The present invention relates to a float glass plate that is formed by continuously supplying a molten glass onto a molten metal in a bath and allowing the molten glass to flow on the molten metal, wherein the float glass plate satisfies the following expression (1) when, on a coordinate axis that is parallel to a through-thickness direction and has, as an origin, an arbitrary point on a principal surface which is positioned on the molten metal side in the bath among both principal surfaces of the float glass plate, a water concentration in glass at a coordinate x (?m) indicating a distance from the origin is represented by C(x) (mass ppm), the thickness of the float glass plate is represented by D (?m), a maximum value of the C(x) is represented by Ca (mass ppm), and a coordinate at which the C(x) is maximum is represented by Da (?m). [ Math . ? 1 ] 0.5 < ? 0 Da ? ( Ca - C ? ( x ) ) ? ? x Ca × D × 100 ? 2.
    Type: Application
    Filed: September 11, 2014
    Publication date: December 25, 2014
    Inventors: Yasuo HAYASHI, Satoshi MIYASAKA
  • Patent number: 8656739
    Abstract: The present invention provides a method for manufacturing a float glass by floating the glass on a molten tin that is contained in a molten tin bath, which includes the steps of a) discharging a portion of the molten tin in the molten tin bath to the outside of the molten tin bath; b) removing oxygen dissolved in the molten tin that is discharged from the molten tin bath by injecting an oxygen stripping gas that contains hydrogen into the molten tin; and c) returning the molten tin from which oxygen is removed to the molten tin bath, and an apparatus for manufacturing the same.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: February 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Sang-Oeb Na, Kil-Ho Kim, Yang-Han Kim, Hyung-Young Oh, Young-Sik Kim, Won-Jae Moon
  • Patent number: 8616022
    Abstract: An apparatus for manufacturing a float glass includes a bottom block in which molten metal is stored and floats, a loop block which covers the bottom block and has at least one hole formed therethrough, a heater installed through the hole, and a fragment intercepting member for preventing fragments generated at the loop block from falling onto the bottom block through the hole.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 31, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Woo-Hyun Kim, Sang-Oeb Na, Won-Jae Moon, Jeong-Deok Kim, Kil-Ho Kim, Heui-Joon Park, Jin Han, Dong-Shin Shin
  • Patent number: 8448469
    Abstract: The present invention provides a method for manufacturing a float glass by floating the glass on a molten tin that is contained in a molten tin bath, which includes the steps of a) discharging a portion of the molten tin in the molten tin bath to the outside of the molten tin bath; b) removing oxygen dissolved in the molten tin that is discharged from the molten tin bath by injecting an oxygen stripping gas that contains hydrogen into the molten tin; and c) returning the molten tin from which oxygen is removed to the molten tin bath, and an apparatus for manufacturing the same.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 28, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Sang-Oeb Na, Kil-Ho Kim, Yang-Han Kim, Hyung-Young Oh, Young-Sik Kim, Won-Jae Moon
  • Patent number: 8276403
    Abstract: A method for removing oxygen from molten tin in the float bath chamber of a float glass manufacturing process is provided. The method includes providing a chamber having within it molten metal and a gaseous atmosphere above the molten metal, providing at least one reducing gas container proximate the interface between the molten metal and the gaseous atmosphere, providing a source of a reducing gas, and directing the reducing gas to the at least one container. In the at least one container, the reducing gas reacts with the oxygen in the molten metal. The method may include removing a vapor/particulate stream from the float bath chamber. The method may also include removing the vapor and/or the particulate from the stream. An apparatus for removing oxygen from the molten tin is also provided.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: October 2, 2012
    Assignee: Pilkington Group Limited
    Inventor: Douglas M. Nelson
  • Patent number: 8266925
    Abstract: An apparatus for manufacturing a float glass, including a float bath for storing a molten metal on which a molten glass flows, wherein the molten metal flows in the float bath, comprises an discharge opening formed through a wall of a downstream end of the float bath at the center of the wall to discharge a molten metal crashing against the wall and dross floating on the molten metal; and a pair of side channels formed inside of the wall and communicated with the discharge opening and both sides of the float bath.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 18, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Sang-Oeb Na, Yang-Han Kim, Hyung-Young Oh, Young-Sik Kim, Won-Jae Moon, Kil-Ho Kim, Heui-Joon Park, Chang-Hee Lee
  • Patent number: 8201419
    Abstract: An apparatus for manufacturing a float glass, including a float bath for strong a molten metal on which a molten glass flows, wherein the molten metal flows in the float bath, comprises a plurality of discharge slits formed through a wall of a downstream end of the float bath to discharge a molten metal crashing against the wall and dross floating on the molten metal; a flow-back channel formed in a widthwise direction of the float bath and communicated with the discharge slits; and a dross collecting member for collecting the dross flowing through the flow-back channel.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 19, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Won-Jae Moon, Sang-Oeb Na, Yang-Han Kim, Hyung-Young Oh, Young-Sik Kim, Kil-Ho Kim, Heui-Joon Park, Chang-Hee Lee
  • Patent number: 8201420
    Abstract: An apparatus for manufacturing a float glass, including a float bath for storing a molten metal on which a molten glass flows, wherein the molten metal flows in the float bath, comprises a discharge slot having substantially the same size as width of the molten glass to discharge a molten metal crashing against a wall of a downstream end of the float bath and dross floating on the molten metal, and formed through the wall substantially parallel to a traveling direction of the molten glass; connecting channels for communicating the discharge slot with both sides of the float bath; and dross collecting members for collecting the dross.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 19, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Won-Jae Moon, Sang-Oeb Na, Yang-Han Kim, Hyung-Young Oh, Young-Sik Kim, Kil-Ho Kim, Heui-Joon Park, Chang-Hee Lee
  • Publication number: 20120000248
    Abstract: A method for removing oxygen from molten tin in the float bath chamber of a float glass manufacturing process is provided. The method includes providing a chamber having within it molten metal and a gaseous atmosphere above the molten metal, providing at least one reducing gas container proximate the interface between the molten metal and the gaseous atmosphere, providing a source of a reducing gas, and directing the reducing gas to the at least one container. In the at least one container, the reducing gas reacts with the oxygen in the molten metal. The method may include removing a vapor/particulate stream from the float bath chamber. The method may also include removing the vapor and/or the particulate from the stream. An apparatus for removing oxygen from the molten tin is also provided.
    Type: Application
    Filed: March 25, 2010
    Publication date: January 5, 2012
    Applicant: PILKINGTON GROUP LIMITED
    Inventor: Douglas M. Nelson
  • Patent number: 8071494
    Abstract: The present invention provides a glass substrate for flat panel display in which yellowing occurring in a case of forming silver electrodes on glass substrate surface is inhibited. A glass substrate for flat panel display, which is formed by a float method, which has a composition consisting essentially of, in terms of oxide amount in mass %: SiO2 50 to 72%, Al2O3 0.15 to 15%, MgO + CaO + SrO + BaO 4 to 30%, Na2O more than 0% and at most 10%, K2O 1 to 21%, Li2O 0 to 1%, Na2O + K2O + Li2O 6 to 25%, ZrO2 0 to 10%, and Fe2O3 0.0725 to 0.15%; and wherein the average Fe2+ content in a surface layer of the glass substrate within a depth of 10 ?m from the a top surface is at most 0.0725% in terms of Fe2O3 amount.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 6, 2011
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Tetsuya Nakashima, Kei Maeda, Ryoji Akiyama, Akira Kondo, Daiki Akie
  • Publication number: 20110294647
    Abstract: An apparatus for manufacturing a float glass includes a bottom block in which molten metal is stored and floats, a loop block which covers the bottom block and has at least one hole formed therethrough, a heater installed through the hole, and a fragment intercepting member for preventing fragments generated at the loop block from falling onto the bottom block through the hole.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 1, 2011
    Inventors: Woo-Hyun Kim, Sang-Oeb Na, Won-Jae Moon, Jeong-Deok Kim, Kil-Ho Kim, Heui-Joon Park, Jin Han, Dong-Shin Shin
  • Publication number: 20110203322
    Abstract: The present invention provides a method for manufacturing a float glass by floating the glass on a molten tin that is contained in a molten tin bath, which includes the steps of a) discharging a portion of the molten tin in the molten tin bath to the outside of the molten tin bath; b) removing oxygen dissolved in the molten tin that is discharged from the molten tin bath by injecting an oxygen stripping gas that contains hydrogen into the molten tin; and c) returning the molten tin from which oxygen is removed to the molten tin bath, and an apparatus for manufacturing the same.
    Type: Application
    Filed: October 1, 2009
    Publication date: August 25, 2011
    Inventors: Sang-Oeb Na, Kil-Ho Kim, Yang-Han Kim, Hyung-Young Oh, Young-Sik Kim, Won-Jae Moon
  • Publication number: 20090181230
    Abstract: A method for reducing surface defects during production of float glass having a transformation temperature Tg of at least 600° C. is provided. A method for removing impurities from the surface of the glass band in the floating chamber by molten metal flowing over the glass band is also provided. The undesired spreading of the molten metal on the glass band is limited in a contactless manner. A device is also provided for carrying out the method, in addition to a floating glass having a transformation temperature of at least 600° C., which has a maximum of 3 surface defects (top specks) having a size greater than 35 ?m per m2 when it leaves the floating chamber.
    Type: Application
    Filed: September 9, 2005
    Publication date: July 16, 2009
    Applicant: Schott AG
    Inventors: Carsten Schumacher, Armin Vogl, Frank Klette, Christian Kunert, Bernhard Langner, Andreas Morstein, Andreas Roters
  • Patent number: 7487649
    Abstract: The present invention provides a manufacturing method of a glass substrate for an image display device having high picture quality. The reducing force in a float furnace is controlled to be decreased so that Sn++ content on a surface of the glass substrate forming an Ag electrode is a predetermined value or less. When the resultant Sn++ content on the surface of the glass substrate forming the Ag electrode exceeds the predetermined value, the surface is partially removed to decrease the Sn++ content to the predetermined value or less to suppress the occurrence of yellowing of the glass substrate.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: February 10, 2009
    Assignee: Panasonic Corporation
    Inventors: Daisuke Adachi, Hiroyasu Tsuji, Keisuke Sumida
  • Patent number: 7162892
    Abstract: A method for reducing the defect density of glass comprising melting a glass composition comprising from 65–75 wt. % of SiO2; from 10–20 wt. % of Na2O; from 5–15 wt. % of CaO; from 0–5 wt. % of MgO; from 0–5 wt. % of Al2O3; from 0–5 wt. % of K2O; from 0–2 wt. % Fe2O3; and from 0–2 % FeO, wherein the glass composition has a total field strength index of greater than or equal to 1.23 is disclosed.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: January 16, 2007
    Assignee: PGG Industries Ohio, Inc.
    Inventors: Charlene S. Smith, George A. Pecoraro
  • Patent number: 6997018
    Abstract: The present invention provides a method of forming a glass article having a transparent hydrophobic surface during a glass-forming operation. In accordance with the method, a plurality of solid particles of inorganic material having an average diameter of less than about 400 nm are applied to a surface of the glass article when the glass article is at a temperature within the range of from about 700° C. to about 1200° C. The inorganic particles fuse to the surface of the glass article to form the transparent hydrophobic surface. Optionally, a fluorosilane agent can be applied to the transparent hydrophobic surface to further increase its hydrophobicity. The transparent hydrophobic surface has a nano-structured texture, which makes the surface of the glass article very hydrophobic and easy to clean.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: February 14, 2006
    Assignee: Ferro Corporation
    Inventors: George E. Sakoske, Martin Baumann
  • Patent number: 6840061
    Abstract: A process for the production of a photocatalytically active self-cleaning coated substrate, especially a glass substrate, which comprises depositing a titanium oxide coating on the surface of the substrate by contacting it with a fluid mixture containing a source of titanium and a source of oxygen, the substrate being at a temperature of at least 600° C. The coated surface has good durability, a high photocatalytic activity and a low visible light reflection. Most preferably the deposition temperature is in the range 645° C. to 7200° C. which provides especially good durability. The fluid mixture preferably contains titanium chloride and an ester, especially ethyl acetate. Also disclosed is a self cleaning coated substrate, especially a glass substrate, having high photocatalytic activity and low visible light reflection and a durable self-cleaning coated glass.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: January 11, 2005
    Assignees: Libbey-Owens-Ford Co., Pilkington PLC
    Inventors: Simon James Hurst, Johannes Andreas Maria Ammerlaan, Richard Joseph McCurdy
  • Patent number: 6722159
    Abstract: A method and article are disclosed wherein a substrate is provided with a photocatalytically-activated self-cleaning surface by forming a photocatalytically-activated self-cleaning coating on the substrate by spray pyrolysis chemical vapor deposition or magnetron sputter vacuum deposition. The coating has a thickness of at least about 500 Angstroms to limit sodium-ion poisoning to a portion of the coating facing the substrate. Alternatively, a sodium ion diffusion barrier layer is deposited over the substrate prior to the deposition of the photocatalytically-activated self-cleaning coating to prevent sodium ion poisoning of the photocatalytically-activated self-cleaning coating. The substrate includes glass substrates, including glass sheet and continuous float glass ribbon.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: April 20, 2004
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Charles B. Greenberg, Caroline S. Harris, Vincent Korthuis, Luke A. Kutilek, David E. Singleton, Janos Szanyi, James P. Thiel
  • Publication number: 20030039843
    Abstract: A method of forming a photocatalytic coating includes depositing a precursor composition over at least a portion of a substrate surface by a coating device. The precursor composition includes a titania precursor material and at least one other precursor material having a metal selected from boron, strontium, zirconium, lead, barium, calcium, hafnium, lanthanum, and mixtures thereof. Sufficient other precursor material is added to the composition such that a molar ratio of the selected metal to titanium in the applied photocatalytic coating is in the range of about 0.001 to about 0.05.
    Type: Application
    Filed: July 11, 2002
    Publication date: February 27, 2003
    Inventors: Christopher Johnson, Caroline S. Harris, Charles B. Greenberg
  • Publication number: 20020134112
    Abstract: A method of producing flat glass in which foam which appears on the surface of molten glass melted using oxy-fuel burners is dispersed by directing a diffuse, luminescent flame onto the surface of the glass carrying the foam.
    Type: Application
    Filed: March 23, 2001
    Publication date: September 26, 2002
    Inventors: Thomas Barrow, David Alan Bird
  • Publication number: 20020038559
    Abstract: A heat-resistant pipe is arranged so as to traverse below a glass ribbon in a float bath of molten tin, and bubbles emanate from the heat-resistant pipe, thereby making the bottom surface (which is in contact with the tin) uneven. Alternatively, the bottom surface is made uneven with a roller for lifting the glass ribbon out of the float bath into an annealing furnace. In addition to these operations for making the glass surface uneven, a film can be applied to the top face of the glass ribbon (i.e. the surface that is not in contact with the tin) by CVD, supplying a mixed gas of raw material from coaters. Thus, the invention makes it possible to manufacture a glass sheet having an uneven surface efficiently, using a technique for processing the surface of a glass sheet that is suitable for a production line for float glass.
    Type: Application
    Filed: December 3, 2001
    Publication date: April 4, 2002
    Applicant: Nippon Sheet Glass Co., Ltd.
    Inventors: Akihiro Hishinuma, Toshiaki Hashimoto
  • Publication number: 20020007652
    Abstract: The present invention provides a method for making a stain-resistant float glass and an apparatus for carrying out such a method. In keeping with this method, SO3 is applied to the upper surface of float glass in an amount efficacious to materially reduce staining of the upper surface of the glass. Optimally, SO3 gas can be applied directly onto the upper surface of the glass. An apparatus of the invention generally includes a downwardly open hood positioned above the upper surface of the glass and having walls defining an enclosure. SO3 gas (either as such or as a reactive mixture of SO2 gas and an oxygen-containing gas) is delivered through a delivery tube to the enclosure.
    Type: Application
    Filed: July 24, 2001
    Publication date: January 24, 2002
    Inventors: Mark Piper, Al Slavich, Chris Granley, Roger O'Shaughnessy