Feed-forward (e.g., Predictive) Patents (Class 700/44)
  • Publication number: 20030176931
    Abstract: The present invention generally relates to computer databases and, more particularly, to data mining and knowledge discovery. The invention specifically relates to a method for constructing segmentation-based predictive models, such as decision-tree classifiers, wherein data records are partitioned into a plurality of segments and separate predictive models are constructed for each segment. The present invention contemplates a computerized method for automatically building segmentation-based predictive models that substantially improves upon the modeling capabilities of decision trees and related technologies, and that automatically produces models that are competitive with, if not better than, those produced by data analysts and applied statisticians using traditional, labor-intensive statistical techniques. The invention achieves these properties by performing segmentation and multivariate statistical modeling within each segment simultaneously.
    Type: Application
    Filed: March 11, 2002
    Publication date: September 18, 2003
    Applicant: International Business Machines Corporation
    Inventors: Edwin Peter Dawson Pednault, Ramesh Natarajan
  • Patent number: 6611735
    Abstract: A process for the prediction and the optimization of the output of a plant producing products form incoming materials. The incoming materials are classified according to various physical characteristics and costs. The desired or ordered products are also classified according to price and physical requirements. The incoming materials information and the product information is entered into a database which is accessible by a computing device. The computing device then calculates the optimal production process by calculating a plurality of production cycles and selecting the cycle with the optimum profitability. The computing device is programmed with non-linear equations derived from a regressive analysis of data collected from samples of incoming materials and products.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: August 26, 2003
    Assignee: Ethyl Corporation
    Inventors: Timothy J. Henly, Thomas Patrick Stocky
  • Patent number: 6611823
    Abstract: Methods and systems for backlash compensation. Restrictive assumptions on the backlash nonlinearity (e.g. the same slopes of the lines, etc.) are not required. The compensator scheme has dynamic inversion structure, with a neural network in the feedforward path that approximates the backlash inversion error plus filter dynamics needed for backstepping design. The neural network controller does not require preliminary off-line training. Neural network tuning is based on a modified Hebbian tuning law, which requires less computation than backpropagation. The backstepping controller uses a practical filtered derivative, unlike the usual differentiation required by earlier backstepping routines. Rigorous stability proofs are given using Lyapunov theory. Simulation results show that the proposed compensation scheme is an efficient way of improving the tracking performance of a vast array of nonlinear systems with backlash.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: August 26, 2003
    Assignee: Board of Regents, The University of Texas System
    Inventors: Rastko R. Selmic, Frank L. Lewis, Anthony J. Calise, Michael B. McFarland
  • Patent number: 6609037
    Abstract: A hybrid stabilization system for isolating a pointing vector of a gimbal from the motion of a vehicle base is provided. The hybrid stabilization control system includes a rate feedback loop generating a rate feedback compensation value in response to a measured rate difference between a pointing vector rate of motion and a vehicle base rate of motion, a rate feedforward loop generating a rate feedforward compensation value in response to a measured inertial vehicle base rate of motion, a position feedback loop generating a position feedback compensation value in response to a measured position difference between a pointing vector angular position and a vehicle base angular position, a position feedforward loop generating a position feedforward compensation value in response to a measured inertial vehicle base angular position.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: August 19, 2003
    Assignee: Raytheon Company
    Inventors: Robert R. Bless, James C. Debruin, Yale P. Vinson, Martin A. Wand
  • Publication number: 20030153990
    Abstract: In tuning a controller for a process in a feedback control system, a method is provided for bringing the system into asymmetric self-excited oscillations for measuring the frequency of the oscillations, average over the period value of the process output signal and average over the period control signal and tuning the controller in dependence of the measurements obtained. An element having a non-linear characteristic is introduced into the system in series with the process and set point signal is applied to excite asymmetric self-excited oscillations in the system. An algorithm and formulas are given for identification of the process model having the form of first order plus dead time transfer function. PI controller settings are given as a function of the dead time/time constant ratio. An apparatus for performing the method is disclosed.
    Type: Application
    Filed: January 6, 2003
    Publication date: August 14, 2003
    Inventor: Igor Boiko
  • Patent number: 6597958
    Abstract: A method for determining the measure of control provided to a process by a control system. The determines process model parameters for a simple and complex model of the process and uses those parameters along with the value of the process variable and the final control element position to predict the off control data. The method also uses the process model parameters to determine the optimal tuning and then forecasts the optimal process performance from the predicted off control data and the determined optimal tuning.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: July 22, 2003
    Assignee: ABB Automation Inc.
    Inventor: Kevin D. Starr
  • Patent number: 6597959
    Abstract: A method and a device for controlling a process (10), having at least two sub-processes (20, 30), by tracking, processing and correcting variables for the product, the production means and/or any process media throughout the process line. The process flow for the first sub-process (20) is divided into slices, each slice representing a specific volume of process flow. At least some of the measured and sampled variable values are related to its specific slice volume.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: July 22, 2003
    Assignee: ABB AB
    Inventors: Stefan Backa, Erik Dahlquist, Thomas Liljenberg
  • Publication number: 20030125819
    Abstract: A system provides primary and alternate control circuits to a controlled system through an output port. A monitoring circuit that monitors a parameter of the controlled system selects the control methodology. The primary control circuit, consisting of a primary active part and a regulator, and an alternate control circuit receive feedback from the controlled system. A switching mechanism, controlled by an output of the monitoring circuit, connects the appropriate control circuit to the controlled system and switches internal connections as needed. During alternate mode, a simulator of the controlled system as driven by the primary active control circuit provides an output representative of the output of the regulator that would cause the current output of the controlled system if the system were in primary mode. This simulator output is used when transitioning back to primary mode to minimize transients in the output of the controlled system.
    Type: Application
    Filed: December 27, 2001
    Publication date: July 3, 2003
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Kurt F. Hesse
  • Publication number: 20030100958
    Abstract: Methods and systems are disclosed for automatically generating an execution order for a control system function block diagram. The input data availability is determined for the inputs of the function blocks in the diagram, and an execution order is generated for the function block diagram according to the input data availability for the function block inputs. Also disclosed are methods and systems for generating a control routine from a function block diagram having a plurality of function blocks, wherein the control routine is generated from the function block diagram according to the execution order.
    Type: Application
    Filed: December 7, 2001
    Publication date: May 29, 2003
    Inventors: Anthony J. Cachat, Unni M. Heineking, Michael Silvestro, Jacob S. Baker, Holly E. Johnson, Douglas J. Reichard, Carol A. Knez
  • Publication number: 20030097198
    Abstract: A method and an apparatus for performing feed-forward correction during semiconductor wafer manufacturing. A first process on a semiconductor wafer is performed. Integrated metrology data related to the first process of the semiconductor wafer is acquired. An integrated metrology feed-forward process is performed based upon the integrated metrology data, the integrated metrology feed-forward process comprising identifying at least one error on the semiconductor wafer based upon the integrated metrology data related to the first process of the semiconductor wafer and performing an adjustment process to a second process to be performed on the wafer to compensate for the error. The second process on the semiconductor wafer is performed based upon the adjustment process.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 22, 2003
    Inventors: Thomas J. Sonderman, Alexander J. Pasadyn, Christopher A. Bode
  • Publication number: 20030097193
    Abstract: A position control system includes a PID controller for generating a current target value of a linear motor from a difference between a positional detected value and a positional command value, and a disturbance observer. The disturbance observer includes a signal processing unit comprising a filter for filtering a torque command value for a motor drive and an input torque estimating filter carrying out estimation for obtaining an estimated input load torque from the detected positional value. An inverse model of a motor torque constant calculates an estimated disturbance load torque from the difference between the filtered torque command value and the estimated input load torque and generates a correction value for the current target value so as to cancel a disturbance torque on the basis of the estimated disturbance load torque being calculated.
    Type: Application
    Filed: November 21, 2001
    Publication date: May 22, 2003
    Applicant: Sumitomo Heavy Industries, Ltd.
    Inventors: Kenichi Makino, Masayuki Yamamoto, Yoshiyuki Tomita
  • Publication number: 20030088322
    Abstract: A kiln thermal and combustion control. A predictive model is provided of the dynamics of selected aspects of the operation of the plant for modeling the dynamics thereof The model has at least two discrete models associated therewith that model at least two of the selected aspects, the at least two discrete models having different dynamic responses. An optimizer receives desired values for the selected aspects of the operation of the plant modeled by the model and optimizes the inputs to the model to minimize error between the predicted and desired values.
    Type: Application
    Filed: August 14, 2002
    Publication date: May 8, 2003
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener
  • Patent number: 6556884
    Abstract: The present invention provides for a method and an apparatus for interfacing a statistical process control system with a manufacturing control system. A manufacturing model is defined. A processing run of semiconductor devices is processed in a manufacturing facility as defined by the manufacturing model. An advanced process control analysis is performed on the processed semiconductor devices. A statistical process control analysis is performed on the processed semiconductor devices. The manufacturing facility is modified in response to the advanced process control analysis and the statistical process control analysis.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: April 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael L. Miller, Anatasia L. Oshelski, William J. Campbell
  • Publication number: 20030078683
    Abstract: A system and method for on-line training of a support vector machine (SVM). The SVM is trained with training sets from a stream of process data. The system detects availability of new training data, and constructs a training set from the corresponding input data. Over time, many training sets are presented to the SVM. When multiple presentations are needed to effectively train the SVM, a buffer of training sets is filled and updated as new training data becomes available. Once the buffer is full, a new training set bumps the oldest training set from the buffer. The training sets are presented one or more times each time a new training set is constructed. An historical database of time-stamped data may be used to construct training sets for the SVM. The SVM may be trained retrospectively by searching the historical database and constructing training sets based on the time-stamped data.
    Type: Application
    Filed: September 5, 2001
    Publication date: April 24, 2003
    Inventors: Eric Hartman, Bruce Ferguson, Doug Johnson, Eric Hurley
  • Publication number: 20030078684
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bl variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Application
    Filed: November 22, 2002
    Publication date: April 24, 2003
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener
  • Publication number: 20030074089
    Abstract: A force-feedback input device is comprised by a tiltable first operating member, a pair of first detecting members for detecting a tilt position of the first operating member and operated by the first operating member, and a pair of motors for conveying a force of the first operating member; and further having a detection means operated while slaved to movement of the first operating member, and since the tilt position of the first operating member can be detected by the detection means, even if the first detecting members break down, the tilt position of the first operating member can be detected by an auxiliary detection means installed separately from the first operating means, so that tilt position of the first operating member can be reliably detected.
    Type: Application
    Filed: October 15, 2002
    Publication date: April 17, 2003
    Applicant: Alps Electric Co., Ltd.
    Inventor: Mikio Onodera
  • Patent number: 6546295
    Abstract: An industrial process material flow within an industrial process is controlled by a process control loop that includes a process controller, a field device controller and a field device in the process as well as process variable feedback from the process to the process controller. Both the process controller and the field device controller, such as a valve controller, are fine-tuned so that their interaction is taken into account and controller parameters, which provide an optimal control loop performance are found. This results in a significant improvement in the control loop performance, i.e., in a lower process variability, as compared with the traditional tuning method, which does not take into account the interaction between the two controllers.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: April 8, 2003
    Assignee: Metso Automation Oy
    Inventors: Jouni Pyötsiä, Mika Kreivi, Pasi Heikkinen
  • Publication number: 20030065409
    Abstract: A detection system for detecting unusual or unexpected conditions in an environment monitored by one or more sensors generating a data samples for input to the detection system. The detection system includes a predictive signal processor that identifies unexpected data samples output by the sensors. The predictive signal processor includes at least one prediction model M for predicting subsequent data samples of a data stream S input to M from the sensors. M uses past sensor data samples of S that correspond anticipated environmental conditions for iteratively predicting a subsequent likely sensor data sample from S. If there is a sufficient variance between the actual subsequent sensor data of S, and it's corresponding prediction, then a likely event of interest is identified. When the predictive signal processor is not detecting a likely event of interest due to a prediction by M, M iteratively adapts its predictions according to the most recent input data samples.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Peter G. Raeth, Randall L. Bostick, Donald Allen Bertke
  • Publication number: 20030036812
    Abstract: A method and system are invented for adaptively and automatically retuning a closed-loop servo motor that is operating within normal limits. A first active set of configurable tuning constants is assigned to the servo motor, and motor performance is periodically measured to determine if performance is outside a retuning threshold, in which case the active set of configurable tuning constants is replaced by selecting a replacement set of tuning constants from a finite group of discrete predesigned sets of tuning constants. Actual performance of the servo motor is remeasured, and this process is repeated if the performance remains outside the retuning threshold. The predesigned sets of tuning constants are derived and stored in the servo motor software, typically as a result of pretesting the servo motor model by the manufacturer, for example using manual retuning.
    Type: Application
    Filed: August 15, 2001
    Publication date: February 20, 2003
    Applicant: Pitney Bowes Incorporated
    Inventors: Bernard J. Christ, Egbert E. Most, Peter K. Zanger
  • Publication number: 20030023328
    Abstract: A control apparatus, a control method, and an engine control unit are provided for controlling an output of a controlled object which has a relatively large response delay and/or dead time to rapidly and accurately converge to a target value. When the output of the controlled object is chosen to be that of an air/fuel ratio sensor in an internal combustion engine, the output of the air/fuel ratio sensor can be controlled to rapidly and accurately converge to a target value even in an extremely light load operation mode. The control apparatus comprises an ADSM controller for calculating a target air/fuel ratio in accordance with a predicted value of an output deviation based on a AL modulation algorithm, and a PRISM controller for calculating the target air/fuel ratio in accordance with the predicted value based on a sliding mode control algorithm. The control apparatus selects one of the target air/fuel ratios calculated by the two controllers to control the air/fuel ratio using the selected one.
    Type: Application
    Filed: July 25, 2002
    Publication date: January 30, 2003
    Inventor: Yuji Yasui
  • Patent number: 6511280
    Abstract: An adaptive Reed-Solomon(RS) decoder (207) and analogous methods arranged and constructed to decode a RS(n,k) encoded symbol stream, including; a code register (211), coupled to the symbol stream, for storing a received code word including code symbols, an index register (213) for storing a location information corresponding to each of a portion of the code symbols, a processor (215), coupled to the code register (211) and the index register (213), for performing soft decision decoding using an error parameter (217) and an erasure parameter (219) to provide corrected data (215) when the decoding is successful and to provide a failure indication (221) when decoding is unsuccessful, and a controller (223), coupled to the processor (215), for providing the error parameter and the erasure parameter and for adjusting the error parameter and the erasure parameter when the processor provides the failure indication.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: January 28, 2003
    Assignee: Motorola, Inc.
    Inventors: Pablo Eduardo Sammartino, Weizhong Chen
  • Publication number: 20030018403
    Abstract: A hybrid haptic feedback system in which a host computer and haptic feedback device share processing loads to various degrees in the output of haptic sensations, and features for efficient output of haptic sensations in such a system. A haptic feedback interface device in communication with a host computer includes a device microcontroller outputting force values to the actuator to control output forces. In various embodiments, the microcontroller can determine force values for one type of force effect while receiving force values computed by the host computer for a different type of force effect. For example, the microcontroller can determine closed loop effect values and receive computed open loop effect values from the host; or the microcontroller can determine high frequency open loop effect values and receive low frequency open loop effect values from the host. Various features allow the host to efficiently stream computed force values to the device.
    Type: Application
    Filed: June 25, 2002
    Publication date: January 23, 2003
    Inventors: Adam C. Braun, Kenneth M. Martin, Louis B. Rosenberg
  • Publication number: 20030014894
    Abstract: A tab-clip identification badge for attachment to the clothing of a person. The badge includes a badge substrate having a front surface and a back surface. A tab is provided having an inner surface and an outer surface and an upper portion and a lower portion hingedly attached to the upper portion. The inner surface of the upper portion of the tab is fixedly mounted to the back surface of the badge substrate. When the badge is not in use, the lower portion of the tab covers a portion of the back surface of the badge substrate. When the badge is ready for use the lower portion of the tab can be lifted from the back surface of the badge. An adhesive coating is on the inner surface of the lower portion of the tab. When the badge is not in use the adhesive coating on the lower portion of the tab functions to adhesively and removably mount the lower portion of the tab to the portion of the back surface.
    Type: Application
    Filed: April 13, 2002
    Publication date: January 23, 2003
    Inventor: David Haas
  • Patent number: 6510354
    Abstract: A universal robust filtering process is adapted for eliminating the need of prediscretizing a continuous-time differential model into a discrete-time difference model. It provides a universal robust solution to the most general formulation, in the sense that the system dynamics are described by nonlinear continuous-time differential equations, and the nonlinear measurements are taken at intermittent discrete times randomly spaced. The universal robust filtering process includes the procedures of validating the measurement using fuzzy logic, and incorporating factorized forward filtering and backward smoothing to guarantee numerical stability. It provides users a reliable and convenient solution to extracting internal dynamic system state estimates from noisy measurements, with wider applications, better accuracy, better stability, easier design, and easier implementation.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: January 21, 2003
    Inventor: Ching-Fang Lin
  • Publication number: 20030014144
    Abstract: When Tilted Channel Implant (TCI) is performed on transistor precursor structures having an etch-defined gate length (L2M) and a trim-defined sidewall thickness (SwM), mass production deviations may cause errors between targeted values for these critical dimensions (CD's) and the correspondingly measured CD's. These deviations may respectively cause shifts in the lateral placement of TCI dopants or in the depth of implant of the TCI dopants, thereby tending to cause variation in final device characteristics. Countering adjustments to TCI dosage and TCI energy are automatically made in accordance with the invention. These countering adjustments in the TCI process enable expansion of tolerance ranges in pre-TCI production steps, thereby increase manufacturing yield.
    Type: Application
    Filed: January 19, 2000
    Publication date: January 16, 2003
    Inventors: Zoran Krivokapic, William D. Heavlin
  • Publication number: 20030009241
    Abstract: An open-loop and closed-loop control method is described for starting up or shutting down a process component of a technical process. At least one manipulated variable that is fed to the process is formed by a control device and an upstream model-assisted pilot control. The pilot control contains an optimizer and a process model. The optimizer is fed at least one command variable for the technical process. At least one optimized model manipulated variable which the optimizer outputs is fed to a process model of the pilot control and, is added to at least one output variable of the control device to form the manipulated variable. A model output variable of the process model is fed to the control device as a set-point and fed back to the optimizer along with variables which cannot be measured in the technical process. A device for implementing the method is also described.
    Type: Application
    Filed: June 17, 2002
    Publication date: January 9, 2003
    Inventors: Klaus Kruger, Manfred Rode, Rudiger Franke
  • Patent number: 6487459
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: November 26, 2002
    Assignee: Pavilion Technologies, Inc.
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener
  • Patent number: 6473658
    Abstract: A method for identifying or predicting process parameters of an industrial process, in particular a primary-industry plant, having especially quickly varying process parameters or disturbances affecting the process, with the process parameters to be identified being determined by a process model as a function of measured values from the process, and with the process model having at least one time-invariant or one largely time-invariant process model which represents an image of the process averaged over time, and at least one time-variant process model that is adjusted to at least one time constant of a disturbance or of a variation in parameters of the process.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: October 29, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventors: Einar Bröse, Otto Gramckow, Martin Schlang, Guenter Sörgel
  • Patent number: 6473657
    Abstract: An adaptive motion controller for driving a servo motor. The adaptive motion controller has an amplifier including a voltage command which can be set at a voltage at which the amplifier will be operated, a frequency selector which can be set at a frequency at which the amplifier will be operated, a power supply having a current feedback, and a control for driving the servo motor in a test mode wherein the voltage command is set at a selected voltage, and the frequency selector is sequentially set with a series of different frequencies. The servo motor is operated at each frequency, and the frequency of the series of frequencies that has the lowest current feedback is determined and the frequency selector is set at that frequency when the amplifier is operated to drive the servo motor.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: October 29, 2002
    Assignee: Emhart Glass S.A.
    Inventor: Kevin Moriarty
  • Publication number: 20020156541
    Abstract: A method and apparatus for tuning a feedforward compensation parameter in a motion control system is provided. According to one such embodiment, the method includes the acts of determining an initial value of a feedforward compensation parameter and commanding an initial movement of an actuator according to a test motion routine (wherein the initial value of the parameter is used in the control of the actuator). Error associated with the initial movement is determined. A potential value of the feedforward compensation parameter is determined. A movement of the actuator is commanded according to the test motion routine (wherein the potential value of the parameter is used in the control of the actuator) and error associated with the movement is determined. The errors associated with the movements are compared and, based on the act of comparing the errors, one of the values is selected as a current best value. In a further embodiment, such acts are repeated until the current best value is an optimum value.
    Type: Application
    Filed: December 14, 2001
    Publication date: October 24, 2002
    Inventor: Stephen J. Yutkowitz
  • Patent number: 6470225
    Abstract: A method and apparatus for automatically tuning feedforward parameters is provided, such that feedforward commands can be generated and used in addition to traditional control commands to compensate for known system characteristics. In an exemplary embodiment, feedforward gains are automatically determined after moving an actuator controlled axis, such as a motor imparting motion to a linear slide, through a test motion routine and recording operation data associated with the actuator and axis during the movement. The operation data can include velocity measurements and torque commands. The feedforward gains which are tuned can include a Coulomb friction feedforward gain, a viscous friction feedforward gain, a constant offset feedforward gain, an acceleration feedforward gain, and estimates of velocity loop compensator gains. Capability can also be provided for automatic generation of the test motion routine based upon actuator limit values provided by the user.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: October 22, 2002
    Assignee: Siemens Energy & Automation, Inc.
    Inventor: Stephen J. Yutkowitz
  • Patent number: 6459939
    Abstract: A method for determining the performance of model predictive controllers requiring only closed-loop data and an estimate of the process deadtime. A numerical measure is calculated which is a comparison of the actual variation of the process to the variation that would be expected if the process were controlled by a model predictive controller with no move suppression and no model mismatch. The measure accounts for the fact that the disturbance model employed in the Model Predictive Controller may be different from the actual process disturbance.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: October 1, 2002
    Inventor: Alan J. Hugo
  • Patent number: 6453206
    Abstract: A neural network for predicting values in non-linear functional mappings having a single hidden layer function generator (12) and an output layer (40). The single hidden layer function generator (12) is operable to receive one or more mapping inputs (x1) and generate a plurality of terms (14) from each mapping input. The plurality of terms generated by the single hidden layer function generator (12) includes at least one trigonometric term selected from the group comprising sin(x1), sin(2x1), sin(3x1), cos(x1), cos(2xl), cos(3xl), cosec(xl), cotan(xl), and being free of Gaussian and Sigmoidal terms.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: September 17, 2002
    Assignee: University of Strathclyde
    Inventors: John James Soraghan, Amir Hussain
  • Patent number: 6445963
    Abstract: An advanced control block that implements multiple-input/multiple-output control, such as model predictive control, within a process control system is initiated by creating an initial control block having generic control logic and desired control inputs and control outputs communicatively connected to process outputs and process inputs within a process control routine. A waveform generator within the control block systematically upsets each of the process inputs via the control block outputs using excitation waveforms designed for use in developing a process model. At the same time, a data collection routine collects data indicating the response of each of the process outputs to the waveforms delivered at each of the process inputs. After sufficient data has been collected, a process modeling routine generates a process model from the collected data and a control logic parameter creation routine creates control logic parameters for the control logic from the process model.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: September 3, 2002
    Assignee: Fisher Rosemount Systems, Inc.
    Inventors: Terrence L. Blevins, Wilhelm K. Wojsznis, Vasiliki Tzovla, Dirk Thiele
  • Patent number: 6442534
    Abstract: A control system for an actuator employs a number of discrete feedback controllers each tuned to different operating conditions or parameters. The competing outputs of the feedback controllers are combined using fuzzy logic which dynamically effects a combination depending on the output values. One set of rules in the preferred embodiment gives greater weighting to the output having relatively lower effect on the control process.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: August 27, 2002
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Burton K. Au, Petr Horacek, Miroslav Kes, Bohumir Sladek
  • Publication number: 20020095224
    Abstract: Methods and apparatus for efficient management of memory and force output in a force feedback system including a host computer and a force feedback device. A representation of device memory is maintained on the host computer to allow the host computer knowledge and control over storage and force effects in the device memory. A host cache for force effects is provided to allow almost unlimited numbers of force effects to be created for the device, where any force effects not able to fit in device memory are stored in the host cache. Other aspects of the invention include a playlist stored on the device of force effects being played by the device, and management of force output using relatively small, discrete time intervals.
    Type: Application
    Filed: January 29, 2002
    Publication date: July 18, 2002
    Applicant: Immersion Corporation
    Inventors: Adam C. Braun, Jonathan L. Beamer, Dean C. Chang
  • Publication number: 20020087221
    Abstract: A plant (72) is operable to receive control inputs c(t) and provide an output y(t). The plant (72) has associated therewith state variables s(t) that are not variable. A control network (74) is provided that accurately models the plant (72). The output of the control network (74) provides a predicted output which is combined with a desired output to generate an error. This error is back propagated through an inverse control network (76), which is the inverse of the control network (74) to generate a control error signal that is input to a distributed control system (73) to vary the control inputs to the plant (72) in order to change the output y(t) to meet the desired output. The control network (74) is comprised of a first network NET 1 that is operable to store a representation of the dependency of the control variables on the state variables. The predicted result is subtracted from the actual state variable input and stored as a residual in a residual layer (102).
    Type: Application
    Filed: January 8, 2002
    Publication date: July 4, 2002
    Inventors: James David Keeler, Eric Jon Hartman, Kadir Liano, Ralph Bruce Ferguson
  • Publication number: 20020072811
    Abstract: A multiple region convolver includes tapering between successive models of a physical system. The tapering is performed during a transition period.
    Type: Application
    Filed: September 21, 2001
    Publication date: June 13, 2002
    Inventors: Michael Merchant, Richard Lund, Doug Mann
  • Patent number: 6381504
    Abstract: An on-line optimizer is provided wherein a boiler (720) is optimized by measuring a select plurality of inputs to the boiler (720) and mapping them through a predetermined relationship that defines a single value representing a spacial relationship in the boiler that is a function of the select inputs. This single value is then optimized with the use of a plant optimizer (818) which provides an optimized value. This optimized value is then processed thought the inverse relationship of the single modified value to provide modified inputs to the plant that can be applied to the plant.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: April 30, 2002
    Assignee: Pavilion Technologies, Inc.
    Inventors: John P. Havener, Stephen Piche, Donald Semrad, Brian K. Stephenson
  • Patent number: 6381505
    Abstract: A method and apparatus for steady-state target calculation that explicitly accounts for model uncertainty is disclosed. In accordance with one aspect of the invention, when model uncertainty is incorporated, the linear program associated with the steady-state target calculation can be recast as a highly structured nonlinear program. In accordance with another aspect of the invention, primal-dual interior point methods can be applied to take advantage of the resulting special structure. For a system having characteristic gain parameters G having a known uncertainty description, the present invention provides a method and apparatus for selecting steady-state targets for said system-manipulated variables such that all system-controlled variables will remain feasible at steady-state for all possible values of the parameters G within the known uncertainty description.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: April 30, 2002
    Assignee: Aspen Technology, Inc.
    Inventors: Dean E. Kassmann, Thomas A. Badgwell, Robert B. Hawkins
  • Patent number: 6363289
    Abstract: A plant (72) is operable to receive control inputs c(t) and provide an output y(t). The plant (72) has associated therewith state variables s(t) that are not variable. A control network (74) is provided that accurately models the plant (72). The output of the control network (74) provides a predicted output which is combined with a desired output to generate an error. This error is back propagated through an inverse control network (76), which is the inverse of the control network (74) to generate a control error signal that is input to a distributed control system (73) to vary the control inputs to the plant (72) in order to change the output y(t) to meet the desired output. The control network (74) is comprised of a first network NET 1 that is operable to store a representation of the dependency of the control variables on the state variables. The predicted result is subtracted from the actual state variable input and stored as a residual in a residual layer (102).
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: March 26, 2002
    Assignee: Pavilion Technologies, Inc.
    Inventors: James David Keeler, Eric Jon Hartman, Kadir Liano, Ralph Bruce Ferguson
  • Patent number: 6351677
    Abstract: According to the invention, a Cartesian control means (16) comprising a phase rotator (50) and a phase adjuster (52) is provided. With a method and a device according to the invention, a system is provided that is unconditionally stable with respect to non-phase alignment, regardless of input power changes, temperature and component ageing. No certain conditions need to be placed upon the control system to ensure stability, i.e. the system is non-obtrusive and requires no off-line calibration. The inclusion of the phase rotator (50) and phase adjustment techniques into the Cartesian control system makes this possible.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: February 26, 2002
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Scott Allen Leyonhjelm, Mark Briffa
  • Patent number: 6341244
    Abstract: A control capability is provided for feed-forward torque control of numerically controlled, elastic and thus oscillating multiple-mass systems, which capability takes account of the elastic behavior between a drive and the load connected to it. This is achieved essentially in that a spring torque which causes oscillations and is associated with the most pronounced natural frequency of the multiple-mass system is derived from a reference model and is compensated for by applying disturbance compensation variables to a feed-forward torque control path.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: January 22, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventor: Wolfgang Papiernik
  • Patent number: 6330483
    Abstract: An optimal control system is described having multiple aspects. In one aspect, an arrangement is provided for eliminating integrator windup. This aspect includes forming a control difference signal that is a combination of differenced inputs and then subsequently integrating and limiting the control difference signal to form a control signal that is provided to the plant. In another aspect, an arrangement is provided for eliminating cross-channel coupling. In this aspect, an error signal is formed as the difference between a commanded signal and a regulator sensor signal. In addition, an injection error signal is combined with the error signal. The injection error is of an amount sufficient to ensure that only an attainable command signal is provided to the plant, without significant cross-channel coupling due to saturation of a control effector. In another aspect, an arrangement is provided for improving output mixing of the control signal between available plant effectors.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: December 11, 2001
    Assignee: The Boeing Company
    Inventor: Russell L. Dailey
  • Patent number: 6325093
    Abstract: A water distributing installation controller includes water pumps for supplying clear water from a filtration plant to a distributing reservoir, a level gauge for measuring the water level of the distributing reservoir, a first flow meter for measuring the water supply directed thereto, a second flow meter for measuring the water delivery directed to a distributing area, a pumps-number control part for controlling the number of pumps operated, and a short-term demand prediction part for providing short-term demand prediction data on the water delivery to the pumps-number control part at the request thereof.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: December 4, 2001
    Assignee: Kabushiki Kaisha Meidensha
    Inventor: Nobuo Ooshima
  • Patent number: 6317640
    Abstract: Method for adequately modeling process induced variabilities is disclosed that comprises the steps of acquiring experimental data and defining a particular design space. Values for the mean and standard deviation of the experimental data at each of the points defining the design space are calculated. The experimental values of the output parameters at each of the design points is normalized to extract the shape of the distribution of each of the design points. The normalized values are then merged to form a cumulative distribution function associated with the data. The cumulative distribution function is applied to a new design point in a predicted fashion by first calculating a mean and standard deviation value for the new point by interpolating from the mean and standard deviation values from the experimental data. The cumulative distribution function is then scaled and centered using the interpolated mean and standard deviation values to provide a predicted data distribution for the new design point.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: November 13, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Suraj Rao, Sharad Saxena, Pushkar P. Apte, Purnendu K. Mozumder, Richard Gene Burch, Karthik Vasanth, Joseph Carl Davis, Chenjing L. Fernando
  • Patent number: 6314327
    Abstract: A system and method for calculating a future function value, such as velocity, for an object, from derivative values, such as acceleration, includes a sensor, such as an accelerometer, coupled to an object, such as a car. By predetermining a sampling rate of the derivative values and determining the highest frequency in the sampled signal, a set of prediction coefficients can be derived for use in a prediction formula which generates the future function value. A processor, which derives the prediction coefficients and implements the prediction formula may use the future function value to control operation of the object or a related object. By including a past function value in the prediction formula, a highly accurate future function value can be determined.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: November 6, 2001
    Assignee: The University of Akron
    Inventors: Dale H. Mugler, Yan Wu
  • Patent number: 6289265
    Abstract: The posture inclination of the robot is detected, a moment of compensating total floor reaction force about a desired total floor reaction force central point is determined therefrom to be distributed to each foot such that the position/posture of the feet are rotated by predetermined amounts about the desired total floor reaction force central point and a desired foot floor reaction force central points respectively. And by parallel-translating the feet in phase, the force component of the actual total floor reaction force is also controlled. In addition, the internal force components (which do not influence on the actual total floor reaction force) generated by the actual foot floor reaction force are controlled independently.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: September 11, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Tadaaki Hasegawa, Takashi Matsumoto
  • Patent number: 6285913
    Abstract: A method for compensating for static friction in an actuating device includes the steps of generating an actual signal y2(t) corresponding to a quantity which is controllable by the actuating device, generating a set value signal y1(t) generating a control signal s1(t) based on the set value signal y1(t) and the actual value signal y2(t), and supplying the control signal to the actuating device for controlling the same. The method also includes the steps of generating an intermittent signal s2(t) compensating for friction, sensing the sign of the derivative with respect to time of the control signal s1(t), giving the signal s2(t) compensating for friction the same sign as the derivative, and adding the signal s2(t) compensating for friction to the control signal s1(t) before supplying the same to the actuating device.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: September 4, 2001
    Assignee: Alfa Laval Automation AB
    Inventor: Tore Hägglund
  • Patent number: 6285971
    Abstract: A method for the estimation of the state variables of nonlinear systems with exogenous inputs is based on improved extended Kalman filtering (EKF) type techniques. The method uses a discrete-time model, based on a set of nonlinear differential equations describing the system, that is linearized about the current operating point. The time update for the state estimates is performed using integration methods. Integration, which is accomplished through the use of matrix exponential techniques, avoids the inaccuracies of approximate numerical integration techniques. The updated state estimates and corresponding covariance estimates use a common time-varying system model for ensuring stability of both estimates. Other improvements include the use of QR factorization for both time and measurement updating of square-root covariance and Kalman gain matrices and the use of simulated annealing for ensuring that globally optimal estimates are produced.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: September 4, 2001
    Assignee: Voyan Technology
    Inventors: Sunil C. Shah, Pradeep Pandey