Gas Turbine, Compressor Patents (Class 701/100)
  • Patent number: 9014944
    Abstract: A turbo machine includes a speed probe that is configured to detect a speed of a rotating feature. Engine controls are used by a processor to control operation of the turbo machine. The processor communicates with the speed sensor and receives the speed signal to produce a command signal. A detection module is arranged in parallel with the processor and communicates with the speed probe to receive the speed signal. The detection module compares the speed signal with data to determine whether the speed signal is reliable. In one example, the detection module bypassed the processor and sends a corrective command directly to an engine control device in response to an unreliable speed signal.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: April 21, 2015
    Assignee: United Technologies Corporation
    Inventor: Ronald Stuart Davison
  • Patent number: 9008943
    Abstract: One of a controllable load and a fuel flow to a single-spool turboshaft engine is controlled so that a rotational speed of a single-spool turboshaft engine is substantially regulated to a level corresponding to a corrected rotational speed command, and the other of the fuel flow and the controllable load is controlled so that a torque transmitted from the single-spool turboshaft engine to the controllable load is substantially regulated to a level corresponding to a corrected torque command. Under at least one operating condition, the corrected rotational speed command is determined so as to minimize or nearly minimize a measure of fuel consumption by the single-spool turboshaft engine when operated so that the torque transmitted to the controllable load corresponds to the corrected torque command.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 14, 2015
    Assignee: Williams International Co., L.L.C.
    Inventors: Ray D. Lickfold, Gregg Williams, Robert S. Thompson, Jr.
  • Publication number: 20150100219
    Abstract: This invention concerns a fuel delivery system for an engine, in which two or more discrete fuel compositions are made available to the engine. The system has a vapour trail detection sensor configured to generate a detection signal indicative of a characteristic of a vapour trail. A regulator is configured to regulate a percentage of a first and a second fuel composition delivered to the engine as resultant fuel composition. A controller is arranged to undertake a search of trial fuel compositions by controlling the regulator to deliver to the engine a plurality of trial fuel compositions having different ratios of the first and second fuel compositions. The controller controls delivery of a resultant fuel composition to the engine in response to the vapour trail characteristic detection signals for said plurality of trial fuel compositions.
    Type: Application
    Filed: September 15, 2014
    Publication date: April 9, 2015
    Inventor: Peter SWANN
  • Publication number: 20150100220
    Abstract: This invention concerns a method of delivering fuel to an aircraft engine 60, which involves providing a plurality of distinct fuel sources 20, 22, a first fuel source 20 comprising a first fuel having a first aromatic content and a second fuel source 22 comprising a second fuel having a second aromatic content. One or more ambient atmospheric condition is determined for at least a portion of a flight path of the aircraft, said condition being indicative of a likelihood of contrail 135 formation by the engine 60. A desirous fuel composition for combustion by the engine is determined based upon the one or more ambient atmospheric condition and a ratio of the first and second fuels from said respective fuel sources is selected according to said desirous fuel composition. The selected ratio of the first and second fuels is delivered to the aircraft engine 60.
    Type: Application
    Filed: September 15, 2014
    Publication date: April 9, 2015
    Inventor: Peter SWANN
  • Patent number: 9002616
    Abstract: In one aspect, a digital engine control system for an aircraft engine is provided. The control system includes a selection unit, the selection unit including a monitoring module configured to determine a measurement of the speed of rotation of the engine from the output signal from one or more protection sensors and to compare the or each speed measurement determined by the selection unit with speed measurements supplied by electronic control units to determine an operating state of each electronic control unit.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: April 7, 2015
    Assignee: Thales
    Inventors: Gilles Genevrier, Claude Bresson
  • Patent number: 9002617
    Abstract: A feedback control system is provided and includes a controller to control an operation of a motive element in accordance with current and previous measured states. The controller includes a servo, a processor and an event trigger controller. The event trigger controller is configured to cause the processor to command the servo to perform model based control (MBC) executions in an event a difference between the current and previous measured states exceeds a threshold based on the previous measured state or the current measured state exceeds a limit, and skip the MBC executions in an event the difference does not exceed the threshold and the current measured state does not exceed the limit.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: April 7, 2015
    Assignee: General Electric Company
    Inventor: Olgu Tanriverdi
  • Patent number: 9002615
    Abstract: A method and system for online power management of a turbine engine is provided. The method includes operating an engine control system on a first bandwidth, filtering at least one data input from the engine control system to a second bandwidth, and receiving, by a power management system operating on the second bandwidth, the at least one filtered data input. The method also includes predicting an engine operating condition using the at least one filtered data input using a closed-loop engine model, determining an optimal engine power management based on the prediction, solving a constrained optimization for a desired optimization objective, and outputting the optimal engine power management to the engine control system.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: April 7, 2015
    Assignee: General Electric Company
    Inventors: Aditya Kumar, Santanu Chatterjee, Pierino Gianni Bonanni, Avinash Vinayak Taware
  • Patent number: 8996277
    Abstract: A gas turbine engine control apparatus comprises a controller 34, a memory 36 associated with the controller 34 and inputs 38 for measurement data from an engine. The controller 34 determines the start of a monitoring cycle at 73, receives measurement data at the inputs 38 during the monitoring cycle, manipulates the measurement data to provide an incremental deterioration value representing deterioration occurring within the engine and during the monitoring cycle, and uses the incremental deterioration value at 72 to update a deterioration value 74 stored in the memory 36, and determines the start of a further monitoring cycle.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: March 31, 2015
    Assignee: Rolls-Royce PLC
    Inventors: Peter Beecroft, Leo Vivian Lewis, Marko Bacic
  • Patent number: 8989877
    Abstract: A system for controlling a machine includes a first model, a second model, a controller, and a comparator. During a first cycle, the first model generates a response signal to the controller while the second model generates a predicted parameter signal. During the first cycle, the comparator transmits a feedback signal to the second model if a predetermined threshold is not met. A method for controlling a machine includes transmitting a response signal from a first model to a controller, generating a control signal to the machine, and generating a predicted parameter value in a second model. The method further includes transmitting a feedback signal to the second model if a predetermined threshold is not met.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventor: Hartmut Scholte-Wassink
  • Publication number: 20150081193
    Abstract: A system and method of adaptively managing a plurality of engines in a multi-engine system, where each engine comprises hot gas components and non-hot gas components, and each engine exhibits a performance margin and a remaining useful life, includes continuously, and in real-time, determining a plurality of different degradation mechanisms for each of the plurality of engines, and continuously, and in real-time, determining which of the determined degradation mechanisms is most limiting. The engines are controlled, based on the most limiting degradation mechanism, in a manner that the remaining useful lives of each engine are substantially equal. The plurality of different degradation mechanisms of each engine are determined based on the engine performance margin, modeled failure predictions of the hot gas components, and modeled failure predictions of the non-hot gas components.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: Honeywell International Inc.
    Inventors: Grant Gordon, Hector Alonso Peralta-Duran, Richard Ling, Michael Gorelik
  • Patent number: 8965659
    Abstract: A system of speed control for a ram air turbine of an aircraft includes a power electronics controller, at least one routing device in communication with the power electronics controller, at least one secondary load in serial communication with the at least one routing device and the power electronics controller, and a ram air turbine (RAT) in communication with the power electronics controller, wherein the power electronics controller is configured to apply the secondary load to the RAT through the at least one routing device in response to a transient speed increase of the RAT.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: February 24, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Dustin L. Kaap, Conor Riordan
  • Publication number: 20150046061
    Abstract: An aircraft powerplant having a shaft is disclosed in one embodiment in which a squeeze-film damper is used. The squeeze-film damper includes a plurality of sectors having a working fluid. A pressure can be controlled in the working fluid to the sectors to discourage changes in the sectors as a result of vehicle maneuvering. A controller is used to operate upon sensed aircraft motion and regulate pressure in the sectors.
    Type: Application
    Filed: December 3, 2013
    Publication date: February 12, 2015
    Inventors: Andrew D. Copeland, Alan B. Cookerly
  • Publication number: 20150019104
    Abstract: A feedback control system is provided and includes a controller to control an operation of a motive element in accordance with current and previous measured states. The controller includes a servo, a processor and an event trigger controller. The event trigger controller is configured to cause the processor to command the servo to perform model based control (MBC) executions in an event a difference between the current and previous measured states exceeds a threshold based on the previous measured state or the current measured state exceeds a limit, and skip the MBC executions in an event the difference does not exceed the threshold and the current measured state does not exceed the limit.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 15, 2015
    Inventor: Olgu Tanriverdi
  • Patent number: 8935073
    Abstract: A turbofan engine control system and method includes a core nacelle housing (12), a compressor and a turbine. A turbofan is arranged upstream from the core nacelle and is surrounded by a fan nacelle (34). A bypass flow path (39) is arranged downstream from the turbofan between the core and fan nacelles. The bypass flow path includes a nozzle exit area (40). A controller (50) detects at least one of a take-off condition and a landing condition. The controller changes effectively the nozzle exit area to achieve a thrust vector in response to the take-off and landing conditions.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: January 13, 2015
    Assignee: United Technologies Corporation
    Inventors: Wayne Hurwitz, Ashok K. Jain
  • Publication number: 20150000300
    Abstract: The invention relates to a method for detecting a fuel leakage in the fuel distribution system between a fuel control valve and at least one burner of a gas turbine during the operation of the gas turbine. In order to detect a fuel leakage, the fuel consumption is approximated in accordance with the mechanical power of the gas turbine, the fuel amount fed to the fuel distribution system is determined, and the leakage flow is determined from the difference between the fed fuel amount and the fuel consumption. The invention further relates to a gas turbine for performing such a method.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventors: Mengbin ZHANG, Klaus-Dieter LIEDTKE, Wenceslao GRANADOS GOMEZ
  • Publication number: 20150006058
    Abstract: There is provided a system and method for conditioning a noisy signal. A sensing signal is received during each one of a plurality of successive control cycles, the sensing signal comprising a measurement component indicative of a measurement of at least one engine parameter and a noise component. A curve-fitting technique is applied to the received sensing signal for filtering thereof to attenuate the noise component, the filtering comprising, during a first one of the plurality of the control cycles, asymmetrically filtering the sensing signal received during the first control cycle, thereby generating filtered data, and, during a second control cycle subsequent to the first control cycle, symmetrically filtering the sensing signal received during the first control cycle, thereby generating corrected data.
    Type: Application
    Filed: November 1, 2013
    Publication date: January 1, 2015
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: Kim GEORGE, Poi Loon TANG
  • Patent number: 8918264
    Abstract: A method and device aids in monitoring at least one turbine engine in an aircraft. The method includes determining a value illustrating a thermomechanical state of the turbine engine, and comparing the determined value with at least one threshold. The method also includes displaying in the cockpit of the aircraft, at least one indication related to the operation of the turbine engine, according to this comparison. As a result, conditions that could result in mechanical degradation or failure of the turbine engine are identified for a crew of the aircraft.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: December 23, 2014
    Assignee: Airbus Operations (SAS)
    Inventors: Patrick Jegu, Manfred Birnfeld
  • Publication number: 20140365036
    Abstract: An operations support system is provided for an engine receiving fuel. The system includes a diagnostic engine model unit configured to receive engine data from the engine and to generate diagnostics data based on the engine data, the diagnostics data including scalars. The system further includes an engine-specific model unit coupled to the diagnostic engine model unit and configured to receive the scalars and the engine data. The engine-specific model unit includes a fuel flow calculation module configured to determine a current fuel flow for the engine and a set point module configured to generate set point information for the engine using a thermodynamic model that reduces the current fuel flow to the engine, the thermodynamic model being based on component maps associated with the engine. The system further includes a data storage unit coupled to the engine-specific model unit and configured to store the set point information.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Inventors: Kevin Moeckly, Richard Ling
  • Patent number: 8909454
    Abstract: A compression system includes a compressor with adjustable inlet guide vanes (IGVs) and variable stator vanes (VSVs) that are adjustable independently of each other. IGV and VSV control units produce respective IGV and VSV reference commands responsive to respective first and second inputs that may be responsive to measured properties of the compression system. The second input may be provided by a model of the compressor or of the compression system responsive to measured properties. The second input may particularly be an estimate of a property not directly observable, such as stall margin or efficiency.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: December 9, 2014
    Assignee: General Electric Company
    Inventor: Karl Dean Minto
  • Publication number: 20140358398
    Abstract: An automated method for resolving fault in an engine is disclosed. The method may include providing a reasoner module for recommending a set of maintenance actions to resolve fault in the engine, inputting steady state performance data from the engine into the reasoner module, and using the reasoner module to recommend a set of maintenance actions based at least in part on the steady state performance data. A fault resolution system for a gas turbine engine is also disclosed. The fault resolution system may include at least one computer processor operatively configured to receive steady state performance data from the gas turbine engine, and recommend a set of maintenance actions to resolve fault in the gas turbine engine based at least in part on the steady state performance data.
    Type: Application
    Filed: December 19, 2013
    Publication date: December 4, 2014
    Applicant: United Technologies Corporation
    Inventors: Anya R. Brunschwig, Amy R. Nordmark, Bryan P. Donovan, Andrew D. Ruestow, Gregory J. Kacprzynski, Charles Pelosi
  • Patent number: 8903622
    Abstract: The vehicle power generation system includes: a power generation unit, a power supply unit, a clutch mechanism, and a control unit. The power generation unit includes generator, power input shaft, and a power output unit. The clutch mechanism includes a speed increasing unit and a motor controller for attaching the speed increasing unit to the crankshaft or detaching the speed increasing unit from the crankshaft. The control unit is electrically connected to the motor controller, and includes a power generation condition determining unit.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 2, 2014
    Assignee: Kwang Yang Motor Co., Ltd
    Inventor: Chien-Ping Tseng
  • Patent number: 8892332
    Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: November 18, 2014
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Patent number: 8886448
    Abstract: A method of providing a volume-mass law for determination of a fuel flow rate of an engine, particularly providing a fuel flow rate to a helicopter turbine, comprising the steps of: determining a sample type of fuel and a start density ?o of said sample type of fuel in said fuel tank using an equation ?0=aT+b0, with a and b0 being known for said sample type of fuel and calculating real time offset parameters bn from an algorithm to determine real time densities ? of the fuel.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 11, 2014
    Assignee: Airbus Helicopters
    Inventors: Jean-Philippe Evrard, Cyril Passemard
  • Patent number: 8886438
    Abstract: Systems, devices, and methods for controlling a fuel supply for a turbine or other engine using direct and/or indirect indications of power output and optionally one or more secondary control parameters.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: November 11, 2014
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Brant Duke, Jim R. Jarvo, Benoit Lachance, Harris Shafique
  • Patent number: 8869508
    Abstract: A method of managing a gas turbine engine operating line includes detecting an air speed and a fan speed. A data table is referenced that includes a desired variable area fan nozzle position based upon air speed and fan speed. The detected air speed and detected fan speed are compared to the data table to determine a target variable area fan nozzle position. An actual variable area fan nozzle position is adjusted to the target variable area fan nozzle position.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: October 28, 2014
    Assignee: United Technologies Corporation
    Inventors: Geoffrey T. Blackwell, William J. McVey, William G. Tempelman
  • Patent number: 8868313
    Abstract: A method for controlling the combustion in a gas turbine including measuring, with one or more probes situated adjacent to the combustion chamber of the turbine, the amplitude of the pressure oscillations inside the combustion chamber and the persistence time or cycle of the same oscillations, evaluating the behavior under fatigue conditions of the combustion chamber, by constructing the Wohler curve for a certain material which forms the combustion chamber for a predefined combustion frequency and for the amplitude and cycle values of the pressure oscillations measured, measuring the cumulative damage to the combustion chamber during functioning under fatigue conditions of the turbine using the Palmgren-Miner hypothesis and exerting protection actions of the turbine if the cumulative damage value measured is exceeded.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: October 21, 2014
    Assignee: Nuovo Pignone S.p.A.
    Inventor: Antonio Asti
  • Patent number: 8862363
    Abstract: An electronic engine controller includes a commanded rotor speed input, an altitude input, and a current rotor speed input, a computer processor, and a memory storing a prediction logic. The prediction logic is operable to cause the processor to determine a predictive value representative of a closed loop transient response of a propulsion system's actual corrected low rotor speed in response to a commanded change in low rotor speed.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: October 14, 2014
    Assignee: United Technologies Corporation
    Inventor: Ramesh Rajagopalan
  • Patent number: 8862364
    Abstract: Systems and methods for isolating a performance anomaly within one or more line replaceable units (LRUs) on a gas turbine engine by monitoring the start up transient are presented. The system comprises a set of sensors, an anomaly detector and a fault isolation reasoner. Each sensor of the set monitors at least one operating parameter of at least one engine component. The anomaly detector is configured to detect an anomaly in a component by comparing a particular value of an operating parameter to a base line value of that parameter. The specific cause of the startup anomaly is isolated utilizing a set of component reasoners that is based on the nature of the detected anomaly. The key events during the engine startup are identified by the combination of monitoring physically relevant phases of a startup and monitoring the engine control schedule. The values at these key events are used for comparing at the anomaly detector.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: October 14, 2014
    Assignee: Honeywell International Inc.
    Inventor: Kyusung Kim
  • Patent number: 8862362
    Abstract: A disclosed control system for a gas turbine engine includes a controller configured to set a position of the variable area fan nozzle according to a predetermined schedule of variable area fan nozzle positions corresponding to a flight operating condition. The schedule is determined in view of a relationship between a position of the variable area nozzle and a performance level of the engine at current flight conditions.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: October 14, 2014
    Assignee: United Technologies Corporation
    Inventors: Matthew D. Teicholz, Paul H. Spiesman, Christopher J. Hanlon, John R. Gendron, Glenn D. Bartkowski
  • Patent number: 8862361
    Abstract: A method of controlling a gas turbine engine in a vehicle having an automatic system configured to control fuel flow includes determining whether a vehicle operator is requesting to manually control fuel. A pre-relinquishment value of an engine operating condition is determined while fuel flow is controlled by the automatic system. Fuel flow control is relinquished to the vehicle operator if the vehicle operator is requesting to manually control fuel flow and the pre-relinquishment value is within a predetermined range. A post-relinquishment value of the engine operating condition is determined while fuel flow is controlled by the vehicle operator. Fuel flow control is returned to the automatic system if the post-relinquishment value is not maintained within the predetermined range.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 14, 2014
    Assignee: Honeywell International Inc.
    Inventors: Dale Mukavetz, Guerry Buehman
  • Publication number: 20140303871
    Abstract: A method to optimize resources needed to continue flight if at least one main engine is lost, by relieving a propulsion system that has remained operative of all or some of non-propulsive energy demands, by additional generation of non-propulsive power, operating continuously. The method uses a GPP unit that operates constantly in flight while taking up some of nominal total non-propulsive power of the aircraft, to supply increased non-propulsive power almost instantaneously, based on at least three respective emergency regimes at a time of engine failure. A control and monitoring function of the GPP calculates elapsed time for each emergency regime, and informs a data processing unit thereof, while emitting an alarm if operating periods allocated to each emergency regime are exceeded, and the emergency function adjusts non-propulsive power demands made by the aircraft between main engines and the unit GPP either automatically or on orders of a pilot.
    Type: Application
    Filed: November 23, 2012
    Publication date: October 9, 2014
    Applicant: TURBOMECA
    Inventor: Jean-Michel Presse
  • Publication number: 20140297155
    Abstract: A system and method for controlling the operation of a gas turbine engine supplying power to an aircraft. The engine is controlled according to a reading of an amount of power drawn from the supplied power. The reading is fed directly to a control system, which issues commands for controlling engine parameters comprising an acceleration reference signal, load shedding, variable geometry positioning, and fuel flow. The control system may further issue commands for controlling the amount of power drawn. The control system may further use the reading to monitor the engine's condition.
    Type: Application
    Filed: January 29, 2013
    Publication date: October 2, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventor: PRATT & WHITNEY CANADA CORP.
  • Patent number: 8849542
    Abstract: A method for model-based control of a gas turbine engine is disclosed. An operating point of the gas turbine engine is generated from measured parameters using a component-level model. The component-level model is analytically linearized by taking the first partial derivative of output parameters of each component with respect to input parameters of each component, and evaluating the result at the operating point. Components of the linearized component-level model are combined to form a combined perturbational model of the gas turbine engine, which is inverted to solve for control commands as a function of target parameters and measured parameters.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 30, 2014
    Assignee: United Technologies Corporation
    Inventors: Richard P. Meisner, Jonnalagadda V. R. Prasad, Gi-Yun Chung, Manuj Dhingra
  • Patent number: 8843348
    Abstract: A system and method are provided for determining the health of an engine. The method includes a plurality of standard noise spectra collected from engines with known defects. A noise spectrum of the engine being monitored is sensed and compared to the plurality of standard noise spectra from the engines with known defects. From the comparison, a type and a degree of defect is identified based upon the comparison.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: September 23, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Victor Pascu, Jay M. Francisco
  • Patent number: 8843293
    Abstract: With a method for controlling a gas turbine in a power plant, a multiplicity of operating lines for the gas turbine for different gas turbine inlet temperatures TIT or gas turbine exhaust temperatures TAT and positions of the compressor inlet guide vane cascade VIGV are specified as a function of the load. For minimizing the electricity production costs during operation switching can be optionally carried out between different operating lines during constant or varying power output of the power plant.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: September 23, 2014
    Assignee: Alstom Technology Ltd.
    Inventors: Stefan Rofka, Andreas Rueter, Klaus Doebbeling, Martin Nicklas
  • Publication number: 20140277992
    Abstract: A real-time engine management system having a controller system configured to control demand on a first component of an engine. The controller system is also configured to access a first set of prognostic data about the first component, where the first set of prognostic data includes a remaining lifespan approximation of the first component operating at a present operating condition. The controller system is also configured to identify a temporal length of an engine procedure operating at the present operating condition, alter a current limit constant associated with the first component to increase the remaining lifespan approximation of the first component beyond the temporal length, and implement the current limit constant associated with the first component so that the first component does not fault during the engine procedure.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicants: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Joseph D. Myer, Richard J. Skertic, Keith A. Calhoun
  • Publication number: 20140277991
    Abstract: A real-time gas turbine management system includes a controller system coupled to a gas turbine engine. The controller system is configured to control demand on a first and second component of a gas turbine engine. The controller system is configured to identify a set point reference of the first component, identify a set point reference of the second component, and identify a data set indicative of a level of deterioration of the gas turbine engine. The controller system is also configured to change the set point reference of the first component to extend a lifespan of the gas turbine engine and/or change the set point reference of the second component to extend the lifespan of the gas turbine engine.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: Rolls-Royce North American Technologies, Inc.
    Inventors: Richard J. Skertic, Joseph D. Myer
  • Patent number: 8838359
    Abstract: Starter control valve failure prediction machines, systems, computer readable media, program products, and computer implemented methods to predict and trend starter control valve failures in gas turbine engines using a starter control valve health prognostic and to make predictions of starter control valve failures, are provided.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 16, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Hai Qiu, Naresh Sundaram Iyer, Weizhong Yan
  • Publication number: 20140257667
    Abstract: A method of synchronizing engines of an airplane in accordance with at least one activation logic (10, 10?) defining a deactivated state (20), a primed state (22), and at least one activated state (16, 18), and comprising: passing (32) synchronization from the deactivated state to the primed state when a pilot of the airplane issues an activation order; passing (36) synchronization from the primed state to the activated state when at least certain safety and/or activation conditions are satisfied; and passing (24, 34) synchronization from the activated or primed state to the deactivated state when the pilot issues a deactivation order or whenever at least some of the safety conditions are not satisfied.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: SNECMA
    Inventors: Florent NOBELEN, Cedrik Djelassi
  • Publication number: 20140257666
    Abstract: A system is provided that includes a memory storing a turbomachinery degradation model configured to model degradation of a turbomachinery over time. The system also includes a controller communicatively coupled to the memory and configured to control the turbomachinery based on a feedback signal and the turbomachinery degradation model. Moreover, the turbomachinery degradation model is configured to use a target power to derive a control parameter by estimating a modeled power of the turbomachinery, and the controller is configured to use the control parameter to control the turbomachinery.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sidharth Abrol, David Spencer Ewens, Alan Meier Truesdale
  • Patent number: 8831855
    Abstract: A method for monitoring a servo-control loop (3) of an actuator system (2) for actuating variable-geometry components of a turbojet, said method comprising: an estimation step of estimating a plurality of monitoring parameters from operating data of the servo-control loop (2); an evaluation step of evaluating a plurality of indicators from the monitoring parameters; an evaluation step for evaluating at least one signature matrix, each signature matrix being representative of the values of at least some of the indicators; and a detection and location step of detecting and locating a degradation affecting the servo-control loop as a function of said at least one signature matrix.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: September 9, 2014
    Assignee: SNECMA
    Inventors: Jean-Remi Andre Masse, Christian Aurousseau, Regis Michel Paul Deldalle, Xavier Flandrois, Aziz Sif
  • Patent number: 8825214
    Abstract: A method is provided for the measurement of parameters of a gas present in a gas turbine combustion chamber. The method includes tuning a laser to a range containing the absorption lines of species to be analyzed in the gas, and directing the laser light through the combustion chamber and detecting laser light reflected off boundary walls of the combustion chamber. In order to analyze the absorption spectrum measured at high temperatures and pressures, a signature recognition algorithm is applied to the spectrum. The measured absorption spectrum is cross-correlated with a calibration absorption model spectrum for the absorption lines at several temperatures, pressures, and concentrations generated prior to the measurement. Values for pressure, temperature, and concentrations of selected species in the gas are determined simultaneously allowing direct control of the combustion chamber process. An apparatus for carrying out the method is also provided.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: September 2, 2014
    Assignee: Alstom Technology Ltd.
    Inventor: Ken Yves Haffner
  • Patent number: 8825342
    Abstract: The system for mitigating an overspeeding condition of a turbine engine can include a sensor for measuring an actual speed of a gas generator turbine of the turbine engine and a processor for deriving a delta, the delta being a comparison between the actual speed of the gas generator turbine and a predicted gas generator turbine speed. The system is configured for detecting the overspeeding condition when delta is higher than a predetermined threshold. A method of detecting an overspeeding condition during operation of a turbine engine can include measuring an actual speed of a gas generator turbine, then evaluating a delta between the actual speed of the gas generator turbine and a predicted speed of the gas generator turbine, then comparing the delta to a threshold value.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: September 2, 2014
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Joseph M. Schaeffer, Areian A. Kouros, Christopher Cawelti, Curtis L. Moore, Michael D. Trantham
  • Publication number: 20140244133
    Abstract: A device and a method for determining a residual life expectancy of a rotor of a gas turbine. The method includes receiving at a computer operating conditions of the gas turbine, receiving a gas turbine rotor inspection result, updating, based on the operating conditions of the gas turbine and the gas turbine rotor inspection result, a database for a fleet corresponding to the gas turbine, and calculating the residual life expectancy of the rotor of the gas turbine.
    Type: Application
    Filed: July 25, 2012
    Publication date: August 28, 2014
    Applicant: NUOVO PIGNONE S.p.A.
    Inventors: Roberto De Prosperis, Paolo Di Sisto, Maciej Borkowski
  • Publication number: 20140244132
    Abstract: Devices and methods relating to gas turbine engines and engine temperature trim verification are disclosed. An exemplary method comprises acquiring signals representing a plurality of engine parameters measured while the engine is operating and determining a recommended trim thermocouple resistance based at least partly on the measured parameters. The engine parameters may comprise at least an engine inlet temperature and an exhaust temperature.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: David Benjamin MEISELS, Gilles LEBOEUF
  • Patent number: 8818683
    Abstract: A method for operating a gas turbine engine includes coupling at least one sensor within the gas turbine engine to transmit a signal indicative of a vibration level of a rotor assembly within the gas turbine engine, detecting the vibration level of the rotor assembly based on the signal transmitted from the at least one sensor, comparing the detected vibration level to a predetermined vibration threshold, and generating an output if the detected vibration amplitude exceeds the threshold amplitude for a predetermined duration to facilitate identifying a gas turbine engine impulse event.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: August 26, 2014
    Assignee: General Electric Company
    Inventors: Gert Johannes van der Merwe, David Allen Bradford
  • Patent number: 8818684
    Abstract: Certain embodiments of the invention may include systems, methods, and apparatus for detecting failure in gas turbine hardware. According to an example embodiment of the invention, a method for detecting a failure in a gas turbine is provided. The method can include monitoring a parameter associated with the turbine, wherein the monitored parameter comprises at least one turbine bucket temperature, detecting an event associated with operation of the turbine, wherein the event is based at least in part on the monitored parameter, and initiating shutdown of the turbine upon detection of the event wherein the monitored parameter is above a predetermined value for at least a predetermined time duration.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: August 26, 2014
    Assignee: General Electric Company
    Inventors: Justin V. John, Nirm Velumylum Nirmalan, John Charles Intile, Scott William Szepek, Daniel Joseph Peczka, Bradley Steven Carey
  • Publication number: 20140236451
    Abstract: A method of characterizing a turbine engine, the method comprising: steps of using measurements from an accelerometer monitoring a particular turbine engine while it is starting to detect the energy released by any contact during said starting between the rotor and the stator of the turbine engine, and of associating any such detection of contact with thermodynamic data measured on the particular turbine engine; and then a recognition training step, based on the associations, to enable a thermal context of the turbine engine to be used to recognize the presence of a rotor thermal unbalance to be taken into account in order to avoid contacts between the rotor and the stator on starting.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 21, 2014
    Applicant: SNECMA
    Inventors: Valerio GEREZ, Serge Christian Joel Blanchard, Julien Alexis Louis Ricordeau
  • Publication number: 20140236450
    Abstract: This invention relates to the operation of gas turbine engines, and in particular to determining deterioration of components during operation. In a specific embodiment, the invention is concerned with determining the actions to be taken when a foreign body impact has been detected, for example on a fan blade. Accordingly, the invention provides a method to take one or more FOD detection apparatus, analyse the likely (probabilistic) outcome, and provide a system to determine subsequent action that assures safety whilst minimising operational disruption. This invention provides a method and apparatus to identify FOD or bird impact to gas turbine fan blades, assessing the damage that may have occurred whist still in flight and determining post impact actions, including replacement parts.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 21, 2014
    Applicant: ROLLS-ROYCE PLC
    Inventor: Ian Colin Deuchar CARE
  • Patent number: 8781709
    Abstract: A monitoring method for monitoring a filter of a feed circuit for feeding an aircraft engine with fuel, the method including: detecting clogging of the filter; issuing an indication message; determining a current stage from among a plurality of successive stages of a mission of the aircraft, including at least a stage during which clogging of the filter is not capable of being caused by ice, and a stage during which clogging of the filter might be caused by ice; and in response to detecting clogging, determining the type of clogging as a function of the current stage; wherein during the issuing an indication message, the message that is issued depends on the type of clogging.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 15, 2014
    Assignee: SNECMA
    Inventors: Kim Florentin, Karim Soyah