Auto Pilot Patents (Class 701/11)
  • Patent number: 9527586
    Abstract: Disclosed herein are example embodiments for inter-vehicle flight attribute communication for an unoccupied flying vehicle (UFV). For certain example embodiments, at least one machine may: (i) obtain at least one indication related to imparting at least one flight attribute corresponding to a UFV; or (ii) transmit to a remote UFV at least one indicator of at least one flight attribute corresponding to a UFV based at least partially on at least one indication related to imparting at least one flight attribute. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 27, 2016
    Assignee: Elwha LLC
    Inventors: Royce A. Levien, Robert W. Lord, Richard T. Lord, Mark A. Malamud, John D. Rinaldo, Jr., Lowell L. Wood, Jr.
  • Patent number: 9519287
    Abstract: A passenger in an automated vehicle may relinquish control of the vehicle to a control computer when the control computer has determined that it may maneuver the vehicle safely to a destination. The passenger may relinquish or regain control of the vehicle by applying different degrees of pressure, for example, on a steering wheel of the vehicle. The control computer may convey status information to a passenger in a variety of ways including by illuminating elements of the vehicle. The color and location of the illumination may indicate the status of the control computer, for example, whether the control computer has been armed, is ready to take control of the vehicle, or is currently controlling the vehicle.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 13, 2016
    Assignee: Google Inc.
    Inventors: Andrew Timothy Szybalski, Luis Ricardo Prada Gomez, Christopher Paul Urmson, Sebastian Thrun, Philip Nemec
  • Patent number: 9488979
    Abstract: An autonomous vehicle system is configured to receive vehicle commands from one or more parties and to execute those vehicle commands in a way that prevents the execution of stale commands. The autonomous vehicle system includes a finite state machine and a command counter or stored vehicle timestamp, which are used to help reject invalid or stale vehicle commands.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: November 8, 2016
    Assignee: Zipline International Inc.
    Inventors: Andrew Chambers, Keenan Wyrobek, Keller Rinaudo, Ryan Oksenhorn, William Hetzler
  • Patent number: 9401758
    Abstract: An exemplary method is implemented by an unmanned air vehicle (UAV) for providing voice communications to an air traffic control (ATC) station. Two-way first voice communications are supported with a human operator at a control station that is in control of the UAV over a digital radio frequency (RF) link. Two-way second voice communications are supported with a controller at the ATC station over an analog RF link. The first and second voice communications are coupled to each other so that two-way voice communications are provided between the human operator and the controller. A determination is made that the first communications with the human operator is not operative. Based on this determination, autonomous voice announcements of flight parameters of the UAV are generated, and transmitted via the analog radio frequency link to the ATC station.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: July 26, 2016
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Craig S. Bosworth
  • Patent number: 9262931
    Abstract: A system and method for graphically creating an approach course on a navigation display is provided. A processor operatively coupled to a display and is configured to generate an approach course by (1) generating a graphical representation of at least one terminal area procedure, (2) selecting the at least one terminal area procedure on the display, and (3) displaying the approach course including the at least one terminal area procedure. The approach course is then accepted and inserted into a flight plan.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: February 16, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventor: Sudarshan Parthasarathy
  • Patent number: 9232008
    Abstract: A navigation system includes two or more navigation instruments connected with a network, and two or more sensors connected with the network and for detecting information to be used by the navigation instruments. The navigation instrument includes a switch control module for switching between a state in which the navigation instrument functions as a mother unit and as a child unit, a delivery module for transmitting through the network, when one of the navigation instruments functions as the mother unit, representative sensor selection related information to another navigation instrument that functions, the representative sensor selection related information being information about which sensor is to be used among the two or more sensors, and a representative sensor selecting module for selecting the sensor to be used based on the representative sensor selection related information received from the navigation instrument that functions as the mother unit.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 5, 2016
    Assignee: FURUNO ELECTRIC COMPANY LIMITED
    Inventor: Yuichi Hara
  • Patent number: 9208555
    Abstract: Exemplary methods for inspecting electrical equipment in a power distribution network can include the steps of recording, by a mobile device, a photograph with a view of the object, transmitting recording information of the mobile device and the photograph to a computer server hosting a power network description database; generating, from a model stored in the power network description database of a candidate object and based on the recording information of the mobile device, a representation of the candidate object, and comparing the transmitted photograph and the generated representation to identify and characterize the object in the photograph as the candidate object.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: December 8, 2015
    Assignee: ABB TECHNOLOGY AG
    Inventors: Olivier Steiger, Yannick Maret
  • Patent number: 9043051
    Abstract: Present novel and non-trivial system, device, and method for generating and presenting one or more flight management strips on a visual display unit are disclosed. An event generator (“EG”) is configured to receive flight management data representative of one or more future vertical mode actions or future lateral mode actions, generate event data representative of one or more flight management strips, and provide the event data to a presentation system for the subsequent display of flight management strip(s). Each future vertical mode action may be comprised of a vertical FMS event or a speed/thrust FMS event, and each future lateral mode action may be comprised of a lateral FMS event. Also, each flight management strip could be informative of one FMS event and comprised of at least one commencement time row and one FMS event row for displaying time and event information, respectively.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 26, 2015
    Assignee: Rockwell Collins, Inc.
    Inventor: Sarah Barber
  • Patent number: 9043043
    Abstract: The present invention is directed to a flight controls system and a method for navigating an aircraft via the flight controls system implemented on-board an aircraft. The flight controls system may provide a first mode for allowing the aircraft to be autonomously navigated safely to a loiter zone in the event the pilot becomes incapacitated or unable to operate the aircraft. Further, the flight controls system may provide a second mode for providing autonomous landing functionality for the aircraft when the engines of the aircraft have failed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 26, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: David A. Gribble, David L. Leedom, Colin D. Reed
  • Patent number: 9037318
    Abstract: Systems and methods for providing aircraft heading information are provided. In one embodiment, an attitude heading reference device comprises: at least one interface for receiving heading information from one or more IRUs; at least one set of gyroscopes and accelerometers; a memory device for storing data representing heading information received via the at least one interface; and a heading calculator coupled to the at least one interface, the at least one set of gyroscopes and accelerometers, and the memory device. The heading calculator generating a heading output signal based on heading information when reliable heading information is received over the at least one interface; the heading calculator generating the heading output signal based on data from the memory device regarding previously reliable heading information and an output of the at least one set of gyroscopes and accelerometers when reliable heading information is not received over the at least one interface.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: May 19, 2015
    Assignee: Honeywell International Inc.
    Inventors: Mark T. Manfred, Thomas A. Ryno
  • Patent number: 9026275
    Abstract: A on-aircraft computer device predicts aircraft states (e.g., altitude, speed, flight path angle, and fuel consumption) at any given time, while utilizing a Deterministic Genetic Algorithm to search 4-D flight path candidates that can comply with all path constraints to produce a feasible 4-D path candidate as a final OPD flight path to arrive at a metering waypoint in a specified time window.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: May 5, 2015
    Inventors: Shih-Yih Young, Kristen M. Jerome
  • Patent number: 9002542
    Abstract: A method for detecting piloting conflicts between the crew and the autopilot of an aircraft. According to the method, an automatic trajectory is programmed by checking whether the actual values of navigation parameters converge on said corresponding desired values within a predetermined convergence period; in the case where at least one of the actual values does not converge, within the convergence period, on the corresponding desired value, a predictive calculation is carried out, at consecutive future moments, of the value of at least one particular parameter selected amongst the navigation parameters; and in the case where the predicted value of the particular parameter is higher than a corresponding predefined threshold, an alarm is emitted for the crew of the aircraft to notify them about a piloting conflict being able to jeopardize the flight safety of the aircraft. A device for implementing the method. An aircraft including the device.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 7, 2015
    Assignee: Airbus Operations (SAS)
    Inventors: Frédéric Dehais, Charles Lesire, Catherine Tessier, Laure Christophe
  • Patent number: 8996205
    Abstract: A method for regulating an actuator for a control surface is provided, which actuator has an angular position controlled by an autopilot on an aircraft with mechanical flight control. When the value of the torque exerted by the actuator is less than a threshold torque value, the actuator is regulated in terms of position and the maximum speed of movement of the control surface is limited to a value that is dependent on the torque value. When the value of the torque exerted by the actuator is greater than the threshold torque value, the actuator is regulated in terms of torque.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: March 31, 2015
    Assignee: Thales
    Inventors: Romain Pierre, Arnaud Bonnaffoux, Caroline Adamski
  • Patent number: 8989925
    Abstract: An improved Horizontal Situation Indicator (HSI) module for use with an aircraft, wherein the HSI module is adapted for accepting Bank Angle Commands or waypoint data from the GPS flight module and for using the same to determine a heading error. The HSI module is further adapted for outputting the heading error to the Flight Director module where it can be used to create a Roll Command for output to the Auto-Pilot, whereby the Auto-Pilot can be commanded to follow a turn using the HSI and the Flight Director without requiring an additional module be added to the aircraft to create the heading error for use by the Flight Director. The waypoint data can be of the “flyover” type or the “flyby” type.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 24, 2015
    Assignee: L-3 Communications Corporation
    Inventor: James Eugene Strickling
  • Patent number: 8989924
    Abstract: The drone comprises altitude determination means (134), with an estimator (152) combining the measures of an ultrasound telemetry sensor (154) and of a barometric sensor (156) to deliver an absolute altitude value of the drone in a terrestrial system. The estimator comprises a predictive filter (152) incorporating a representation of a dynamic model of the drone making it possible to predict the altitude based on the motor commands (158) and to periodically readjust this prediction as a function of the signals delivered by the telemetry sensor (154) and the barometric sensor (156). Validation means analyze the reflected echoes and possibly modify the parameters of the estimator and/or allow or invalidate the signals of the telemetry sensor. The echo analysis also makes it possible to deduce the presence and the configuration of an obstacle within the operating range of the telemetry sensor, to apply if need be a suitable corrective action.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 24, 2015
    Assignee: Parrot
    Inventors: Henri Seydoux, Francois Callou, Mathieu Babel
  • Patent number: 8989921
    Abstract: An electronic flight control system for an aircraft capable of hovering and having at least one rotor. The flight control system is configured to operate in a manual flight control mode, in which the flight control system controls rotor speed in response to direct commands from the pilot; and in at least two automatic flight control modes corresponding to respective flight modes of the aircraft, and in which the flight control system controls rotor speed automatically on the basis of flight conditions. The flight control system is also configured to memorize, for each automatic flight control mode, a respective flight table relating different speed values of the rotor to different values of at least one flight quantity; and to automatically control rotor speed in the automatic flight control modes on the basis of the respective flight tables.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 24, 2015
    Assignee: Agustawestland S.p.A.
    Inventors: Fabio Nannoni, Pierre Abdel Nour, Marco Cicale′
  • Patent number: 8977410
    Abstract: In one or more embodiments, an apparatus and method for operating an unmanned and autonomous vehicle includes a sensor management module configured to direct sensors as to what function they are to provide; a mission management module configured to provide execute function capabilities; an effects management module configured to provide launching and directing weapons to their target capabilities; a vehicle management module; a situation awareness management module configured to provide correlate sensor data of objects, threats, targets, geographic points of interest that the pilot requires in the immediate environment; a communications management module; an information management module configured to provide a database of intelligence-related data; a middleware module configured to interface with the sensor management module, the mission management module, the effects management module, the vehicle management module, the situation awareness management module, the communications management module, and the inf
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 10, 2015
    Assignee: Raytheon Company
    Inventors: Joanne E. Wood, Jamil R. Hashimi, Fred G. Thourot, Stephen P. Johnson, Russell W. Goff, Douglas Carroll
  • Patent number: 8977412
    Abstract: A method of enabling an autopilot (9) to cause a rotorcraft (1) to follow a path. At least one guide mode (G) relative to at least one progression axis (P, R, V, Y) of the rotorcraft (1) is selected by the rotorcraft pilot. Said selection causes the selected guide mode (G) to be inhibited (19) and causes a path setpoint (C) to be acquired (20) from the pilot of the rotorcraft (1) operating a manual control member (4) for controlling the progression of the rotorcraft (1). The path setpoints (C) relating to other guide modes (G) of the rotorcraft (1) that continue to be engaged are conserved in their initial states and the autopilot (9) adapts the commands relating to the progression axes (P, R, V, Y) relating to these other guide modes (G).
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: March 10, 2015
    Assignee: Airbus Helicopters
    Inventor: Bernard Certain
  • Patent number: 8958928
    Abstract: The appliance includes a touch screen and wireless data transmission implementation for communicating with the drone. Drone piloting commands are activated by fingers contacting and/or moving over locations of corresponding piloting symbols displayed on the screen. The method proceeds by: detecting finger contact at an arbitrary contact point in at least one predefined zone of the screen on which piloting symbols are not already displayed; displaying a piloting icon on the screen at the contact point, the piloting icon including a movable icon displayed at a position that tracks any movement of the finger contact point over the screen from an initial position to an offset position; detecting the movement of the movable icon; on detecting the movement, analyzing the direction and/or the amplitude of the movement relative to the initial position; and activating a piloting command as a function of the result of the analysis.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: February 17, 2015
    Assignee: Parrot
    Inventors: Henri Seydoux, Frederic D'Haeyer
  • Patent number: 8954206
    Abstract: The present disclosure relates to an unmanned aerial vehicle (UAV) able to harvest energy from updrafts and a method of enhancing operation of an unmanned aerial vehicle. The unmanned aerial vehicle with a gliding capability comprises a generator arranged to be driven by a rotor, and a battery, wherein the unmanned aerial vehicle can operate in an energy harvesting mode in which the motion of the unmanned aerial vehicle drives the rotor to rotate, the rotor drives the generator, and the generator charges the battery. In the energy harvesting mode regenerative braking of the generator reduces the forward speed of the unmanned aerial vehicle to generate electricity and prevent the unmanned aerial vehicle from flying above a predetermined altitude.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 10, 2015
    Assignee: The Boeing Company
    Inventor: Alfredo Criado
  • Patent number: 8948933
    Abstract: A flight management system (FMS) including a plurality of FMS components that can include a civil FMS component and a tactical FMS component. Each FMS component can have a processor programmed to execute an FMS software product. The FMS can also include a multi core FMS manager configured to control a plurality of flight management systems and coupled to the plurality of FMS components. The multi core FMS manager can include a plurality of FMS managers, each coupled to one of the FMS components, and a platform interface manager coupled to an avionics system. Each FMS manager can be adapted to transmit flight management data to, and to receive flight management data from, the FMS component to which it is coupled. The platform interface manager can be adapted to provide each FMS component access to the avionics system, such that an aircraft operator can control each FMS component via the FMS.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: February 3, 2015
    Assignee: Lockheed Martini Corporation
    Inventors: Lester J. Pangilinan, John Olsen
  • Patent number: 8942831
    Abstract: Apparatus and methods for controlling a system that operates responsive to a plurality of input control signals are disclosed. During operation the system generates a plurality of output status/control signals. A master controller has at least first and second controllers. The first controller outputs and inputs signals over a first communication path, and the second controller outputs and inputs signals over a second communication path. The first and second controllers output signals based on input signals received over the first and second communication paths, respectively, and also based on stored control data. A plurality of input/output modules are provided. Each of the input/output modules has first and second slave controllers. The first slave controller of each of the input/output modules inputs and outputs signals over the first communication path to the first controller, and the second slave controller outputs and inputs signals over the second communication path.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: January 27, 2015
    Assignee: EI Electronics LLC
    Inventors: Karl A. Davlin, Adel George Tannous, Alan R. Loudermilk
  • Patent number: 8924137
    Abstract: According to aspects of the embodiments, there is provided an apparatus and method to synchronize trajectories from independent systems such as from a flight management system and the ground Air traffic control during the entire history of a flight. Since a number of trajectory discrepancy factors will intervene during the lifetime of a flight, such as a change in flight intent, controller intervention, or large deviations of the actual flight from the predicted trajectory due to prediction errors, there is need to dynamically monitor these deviations and control a dynamic synchronization cycle. A dynamic trajectory synchronization algorithm attempts to bring each of the systems back into balance whenever a disturbance causes an imbalance.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: David So Keung Chan, Joel Klooster, Sergio Torres
  • Patent number: 8886366
    Abstract: Device and method to estimate the state of a moving vehicle overflying a certain terrain. The device comprises a camera oriented toward the terrain, an inertial measurement unit, a device for the processing of images and a “navigation filter”. This filter uses an innovative method to obtain state estimates of the vehicle. Unlike the conventional art, only robust and flexible expressions are used here, producing accurate state estimates, with no possibility of divergence, with no need for initial state estimates or high computational power. The method calculates parameters describing geometrical relationships among points of the trajectory and others on the terrain. These parameters are combined with estimates of the accelerations to obtain estimates of the velocity at a given time and of the gravity acceleration vector. By integrating these estimates, velocity and position profiles are obtained. The state is expressed in a reference system fixed with respect to the terrain.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: November 11, 2014
    Assignee: CGF S.p.A. Compagnia Generale per Lo Spazio
    Inventor: Igor Vukman
  • Patent number: 8886370
    Abstract: The present invention relates to a friction device (11) for maintaining a control member (2, 8) in a determined position. The device comprises a contact part (16) movable between a declutched stable position and a clutched stable position, and vice versa. The clutched stable position corresponds to a position in which the contact part (16) bears against the control member (2, 8) in such a manner as to establish a determined friction force. An electromechanical drive means moves the contact part (16) between the two stable positions. The device includes remote control means for activating and deactivating the drive means.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: November 11, 2014
    Assignee: Airbus Helicopters
    Inventors: Cédric Carlavan, Pascal Leguay
  • Publication number: 20140330458
    Abstract: A method and system for determining an airspeed of an aircraft, known as assisted aircraft, comprises: a) determining a position; b) measuring a ground speed; c) receiving a plurality of messages from a plurality of other assisting, aircraft, each message containing a first item of information, indicating a position of an assisting aircraft, and a second item of information, indicating a wind speed at the position; d) estimating a wind speed at the position of the assisted aircraft by interpolating the wind speed values at the positions of the assisting aircraft obtained in step c); and e) computing a true speed of the assisted aircraft by using the vector difference between its ground speed, measured in step b), and the wind speed estimated in step d). The method can check operation of an anemometric subsystem aboard an aircraft, to compensate for any malfunction and/or to enable automatic piloting.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 6, 2014
    Inventors: Guillaume MEULLE, Thomas CAUSSAT, Arnaud BEAUFILS, Christophe PIERRE
  • Patent number: 8880339
    Abstract: A schematic display for presenting vertical navigation (VNAV) data is disclosed. A planned route such as a flight plan is divided into a series of VNAV legs, and only a VNAV schematic that corresponds to the active VNAV leg is displayed. The VNAV schematic in accordance with the present disclosure is a profile-view schematic for the active VNAV leg, providing a visual representation indicating the locations of the upcoming Top of Climb (TOC) or Top of Descent (TOD). Additional VNAV data may also be presented to provide content context. Since the schematic display in accordance with the present disclosure only displays VNAV data relevant to the active VNAV leg at a given time, the complexities associated with displaying the VNAV schematic is reduced, making the VNAV data easy to read and understand.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 4, 2014
    Assignee: Rockwell Collins Inc.
    Inventors: Seth A. Cooper, David A. Gribble, David L. Leedom, Geoffrey A. Shapiro, Daniel E. Russell, James E. Winfield
  • Patent number: 8874283
    Abstract: Embodiments of a drone for inspection and a method of use are depicted wherein the drone is utilized in an enclosed space and is capable of being controlled with or without line of sight to the aircraft. The drone may land on generally horizontal or vertical surfaces. A method of use is taught as well.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 28, 2014
    Assignee: United Dynamics Advanced Technologies Corporation
    Inventor: John M. Cavote
  • Patent number: 8855838
    Abstract: The invention relates to an automatic takeoff method for an aircraft with a flexible airfoil, comprising a carriage suspended by rigging lines from an airfoil. According to said method: —said carriage is provided with an autopilot controlling actuators that control said rigging lines; —said airfoil is provided with an airfoil attitude sensor, comprising a biaxial accelerometer and a biaxial rate gyro, capable of defining the position of an airfoil reference frame in relation to the ground, and means for communicating with said autopilot; —during takeoff, information is received from said airfoil attitude sensor and transmitted to said autopilot for the purpose of controlling said actuators. The invention also relates to an airfoil for the implementation of said method, comprising an airfoil attitude sensor with an inertial unit with a biaxial accelerometer and a biaxial rate gyro, and means for communicating with an autopilot. The invention further relates to an aircraft comprising such an airfoil.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 7, 2014
    Assignee: Swissavia SA
    Inventor: Bernard Berthier
  • Publication number: 20140288732
    Abstract: The automatic piloting system includes an element for automatically supplying a computation unit, when the aircraft is guided according to a descending corrected speed and a new corrected speed which is greater than the corrected speed used for guidance of the aircraft is input by the pilot, with a predetermined maximum Mach number which replaces the current Mach number and which is intended to form, together with the new input corrected speed, a pair of speeds which is taken into account by the computation unit for determining the guidance instructions for the aircraft.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Applicant: Airbus Operations S.A.S.
    Inventor: Marine Labastie
  • Patent number: 8838299
    Abstract: The present invention relates to a method of decoupling the mode of automatic following of the lateral profile and the mode of automatic following of the vertical profile of an automatic guidance system of an aircraft (A) flying on a reference trajectory (T). The mode of automatic following of the vertical profile is not disengaged immediately on disengaging the mode of automatic following of the lateral profile. After disengaging the mode of automatic following of the lateral profile, the mode of automatic following of the vertical profile is disengaged automatically only if at least one criterion of lateral separation between the current or short-term position of the aircraft and the lateral profile corresponding to the reference trajectory is satisfied, having regard to the position error.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 16, 2014
    Assignee: Thales
    Inventors: Guy Deker, Manuel Gutierrez-Castaneda
  • Patent number: 8838293
    Abstract: The invention relates to a flight management system for aircraft which makes it possible to carry out tests of the results of the calculations of the main functions for formulating the flight plans and trajectories of the aircraft making it possible to anticipate errors in this formulation, to present them to the crew as a function of criticality criteria, to store them so as to be communicated and processed by the maintenance teams.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 16, 2014
    Assignee: Thales
    Inventors: Manuel Gutierrez-Castaneda, Guy Deker
  • Patent number: 8825234
    Abstract: A method and apparatus for managing a touch screen system. Data generated by an acceleration detector about acceleration of the touch screen system is received. The acceleration detector is located within the touch screen system. An action is initiated by an input manager when the acceleration of the touch screen system reduces usability of the touch screen system.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: September 2, 2014
    Assignee: The Boeing Company
    Inventors: Jeffrey L. Williams, Susan Anne Foster, Jason W. Clark, Samantha Ann Schwartz, Aaron Daniel Pilcher
  • Patent number: 8825230
    Abstract: A computerized method for providing a unified user interface to a plurality of flight management components encapsulated within a flight management system. The method can include receiving a flight management system input dataset from a first flight management system user interface device. The method can also include creating, with a processor programmed to provide a unified user interface, a plurality of flight management system input data portions to be transmitted to a plurality of destination flight management system components. The plurality of flight management system input data portions can be based on the flight management system input dataset and each flight management system input data portion can correspond to one of said plurality of destination flight management system components. Each of said plurality of flight management system input data portions can be transmitted from the processor to said corresponding destination flight management system component.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: September 2, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Lester J. Pangilinan, John Olsen
  • Publication number: 20140244078
    Abstract: A modular vehicle management system is described, comprising a controller module configured to control different types of carrier modules. The controller module includes a computer system and optionally one or more sensors. The computer system is configured to perform operations comprising detecting whether a carrier module is connected to the controller module. If the carrier module is connected to the controller module, the carrier module is authenticated. If the authentication fails, operation of the vehicle is inhibited. The control module is configured to determine carrier module capabilities including information regarding a navigation processing device, and/or a radio modem. The controller adapts to the capabilities of the controller module. Using information from the sensors and the navigation processing device, the vehicle management system navigates the vehicle.
    Type: Application
    Filed: August 16, 2012
    Publication date: August 28, 2014
    Inventors: Jonathan Downey, Bernard Michini
  • Patent number: 8818577
    Abstract: A device includes means for generating and applying to an aircraft protecting orders avoiding a flight with an excessive descent rate. More specifically, the device includes components configured to perform a series of operations including measuring the current vertical speed and the current height of the aircraft and comparing these flight parameters with a safety envelope defining couples of vertical speed and height that are indicative of an excessive descent rate. If the current vertical speed and height are located in the safety envelope, a protection is triggered by generating protecting orders to remove the aircraft from the safety envelope and applying those protecting orders to control surfaces of the aircraft.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: August 26, 2014
    Assignee: Airbus Operations (SAS)
    Inventors: Pascale Louise, Emmanuel Cortet, Erwin Grandperret
  • Patent number: 8818578
    Abstract: An electric motor can assist an engine at high conversion efficiency. A lower limit is set for the torque shared with an engine by the electric motor when the engine and the electric motor are operated together for traveling, and a hybrid ECU has an assistance control unit that implements control to a traveling mode in which the engine and the electric motor operate together, only when it is estimated that the torque shared with the engine by the electric motor is equal to or greater than the torque lower limit when the electric motor and the engine are operated together for traveling.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: August 26, 2014
    Assignee: Hino Motors, Ltd.
    Inventor: Naoki Yuda
  • Patent number: 8818581
    Abstract: A method is described that includes performing a), b) and c) below with an electronic control unit of a parafoil: a) after being dropped from an airborne vehicle, wirelessly receiving the parafoil's desired landing location; b) determining a flight path for the parafoil that lands at the desired landing location; and, c) controlling the parafoil's flight path consistently with the determined flight path.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 26, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eugene Bourakov, Oleg Yakimenko
  • Patent number: 8818582
    Abstract: A method for guiding an aircraft during its final approach to a landing runway, whereby the aircraft is guided during its approach by aircraft position information obtained from an GNSS satellite navigation system, wherein: prior to the start of the final approach a first time tFAF is determined corresponding with the start of said final approach and a second time tTD corresponding with the landing of the aircraft on said runway, then a set of satellites is determined of the satellite navigation system for excluding from the calculation of said aircraft position information during at least a part of the time interval comprised between said first and second times; and during the final approach, the aircraft position information is determined while excluding the information corresponding with all the satellites of said set of satellites and the aircraft is guided along its final approach path by said position information.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: August 26, 2014
    Assignees: Airbus Operations S.A.S., Ecole Nationale de l'Aviation Civile (E.N.A.C.)
    Inventors: Pierre Neri, Laurent Azoulai, Jean Muller, Christophe Macabiau
  • Patent number: 8805600
    Abstract: A flight control system includes at least one actuator for a mobile flight surface of an aircraft, and a flight control module in communication with the actuator. The module includes a first and a second computer. Each computer calculates a control command established according to at least one predetermined law for control of the flight surface. The first computer, known as validating computer, comprises logic means adapted for comparing its control command with that of the second computer, known as master computer, and for transmitting the result of the comparison to the actuator. The actuator comprises logic means adapted for deciding, on the basis of the result, to execute or not to execute the command of the master computer. An aircraft comprising such a system is also disclosed.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: August 12, 2014
    Assignees: Airbus Operations S.A.S., Le Centre National de la Recherche Scientifique (CNRS)
    Inventors: Manel Sghairi, Patrice Brot, Jean-Jacques Aubert, Agnan De Bonneval, Yves Crouzet
  • Patent number: 8797278
    Abstract: A method and apparatus for managing a map of an airport. The map of the airport is displayed on a display device. A movement of a number of fingers with respect to a number of aeronautical objects on the map of the airport is detected. Information generated by an operation based on the number of aeronautical objects on the map of the airport is displayed in response to detecting the movement of the number of fingers with respect to the number of aeronautical objects on the map of the airport.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: August 5, 2014
    Assignee: The Boeing Company
    Inventors: Andre Lutz, Cindy Dorfmann, Jason W. Clark
  • Patent number: 8788123
    Abstract: A device (10) for assisted piloting of an aircraft having a rotary wing with a plurality of second blades (3?) and a propulsion unit with a plurality of first blades (2?). The device includes control means (30, 40) for delivering a movement order (O) for moving in a direction, said device (10) having a processor unit (20) for transforming said order (O) into an acceleration setpoint (C) along said direction, and then for transforming said acceleration setpoint (C) into at least one required longitudinal attitude setpoint (?*) that is transmitted to a first automatic system (26) for maintaining longitudinal attitude by controlling a longitudinal cyclic pitch of the second blades (3?), and into a first required load factor setpoint (Nx*) in a longitudinal direction that is transmitted to a second automatic system (25) for maintaining load factor by controlling the collective pitch of the first blades.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: July 22, 2014
    Assignee: Airbus Helicopters
    Inventors: Marc Salesse-Lavergne, Nicholas Queiras, Paul Eglin
  • Patent number: 8788187
    Abstract: A method and system for providing taxiway navigational information to a crewmember of an airplane taxiing at an airport. An airport taxiway navigation system (“ATNS”) that executes on an onboard computer system that displays a map of the taxiways of an airport, receives the name of each taxiway of the taxi route specified by the taxi clearance, and highlights the taxiways on a displayed map to provide a visual indication of the cleared taxi route for the crewmembers.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: July 22, 2014
    Assignee: The Boeing Company
    Inventors: Reagan Doose, Richard W. Ellerbrock, Glade L. Hulet, John M. Jauglias, Matthew T. Majka
  • Patent number: 8781654
    Abstract: The device includes elements of a processing unit which determine a limit trajectory representing a flight trajectory which is compatible with the aircraft performance during the approach and which shows the limits for the flight of the aircraft. For example, a vertical profile and a horizontal trajectory are determined, with the horizontal trajectory being non-linear so that the energy of the aircraft can be sufficiently dissipated before final approach along an approach axis, while also avoiding obstacles. Thus, a flight trajectory is determined even when the aircraft has deviated from a flight plan and approach axis.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 15, 2014
    Assignee: Airbus Operations (SAS)
    Inventors: Andrea Giovannini, Thomas Pastre
  • Patent number: 8774987
    Abstract: A method for vertical gust suppression due to turbulence for an aircraft having at least one of direct lift control surfaces or pitch control surfaces. The method includes sensing atmospheric turbulence, measuring the sensed atmospheric turbulence to generate turbulence data, generating a command based on the turbulence data, and applying the command to aircraft controls to actuate the direct lift control surfaces or the pitch control surfaces based on the turbulence data. Therefore, an aircraft response to the actuation of the direct lift control surfaces or the pitch control surfaces reduces a vertical acceleration, a pitch acceleration, a pitch rate, a pitch attitude or a structural load of the aircraft due to the turbulence. Thus, the method reduces the effects of vertical gusts of wind on the aircraft, improves the comfort level for aircraft passengers and crew, and reduces diversions the aircraft may take to avoid the turbulence.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 8, 2014
    Assignee: The Boeing Company
    Inventors: Vincent M. Walton, Christopher J. Borland, Tze L. Siu, Kioumars Najmabadi, Edward E. Coleman, David P. Marquis, Dianne L. McMullin, Kevin H. Milligan
  • Patent number: 8774985
    Abstract: A system for use in generating a command trajectory for an aircraft is provided. The system includes a natural frequency determining module configured to determine a closure rate of the aircraft to a selected flight path, compare the closure rate of the aircraft to a threshold closure rate, and calculate a natural frequency based on whether the closure rate is below the threshold closure rate. The system further includes a command processor coupled to the natural frequency determining module and configured to receive the calculated natural frequency from the natural frequency determining module, and generate a command trajectory using the calculated natural frequency.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 8, 2014
    Assignee: The Boeing Company
    Inventors: Jasmine Beth Minteer-Levine, Steven Barry Krogh
  • Patent number: 8768540
    Abstract: There is provided an avionics system that provides several avionics functions within a single LRU. In one embodiment, the system comprises a software-configurable RF assembly, one or more processor assemblies that are configured to provide multiple TAWS/TCAS/Mode S/ADS-B/ATC functions, interfaces to allow connections to aircraft electronics and data loaders, and multipurpose antennas. In one embodiment, a common processor architecture allows generic avionics processors to be configured to operate a number of TAWS/TCAS/Mode S/ADS-B/ATC functions without the need for multiple LRUs, and software-defined RF functions allow RF circuitry that interfaces to the processors to handle current and future communication needs.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: July 1, 2014
    Assignee: L-3 Communications Corporation
    Inventors: Cyro A. Stone, James R. Troxel, Gregory T. Stayton
  • Patent number: 8763950
    Abstract: A method and apparatus for reconfiguring flight control of an aircraft during a failure while the aircraft is flying. The method and apparatus provide a control law that is software-implemented and configured to automatically send flight control data to a mixing/mapping matrix. The method and apparatus also provide a reconfiguration management tool configured to communicate with the mixing/mapping matrix in order to safely transfer authority from a failed actuator to a back-up actuator. The method and apparatus also provide a sensor management tool for providing input to the reconfiguration management tool in order to smooth any transient conditions that may occur during reconfiguration. The method and apparatus provide for a way of smoothing any possible transient situation that might otherwise occur by employment of a fader, the fader being used to gradually convert positioning of failed actuators and positioning of reconfigured actuators.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: July 1, 2014
    Assignee: Texron Innovations Inc.
    Inventors: Shyhpyng Jack Shue, John James Corrigan, Eric Thomas Bird, Tommie Lynn Wood, Alan Carl Ewing
  • Patent number: 8768555
    Abstract: An autonomous control system for an unmanned aerial vehicle is provided. In one example, the control system includes a first control mode component configured to generate a first command to provide a first autonomous control mode for the unmanned aerial vehicle, a second control mode component configured to generate a second command to provide a second autonomous control mode for the unmanned aerial vehicle, and an intelligence synthesizer configured to resolve functional conflicts between the first and second autonomous control modes.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: July 1, 2014
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8761971
    Abstract: An aircraft system comprising a display system, a graphical user interface, a first grouping of the controls in the graphical user interface, and a second grouping of the controls in the graphical user interface. The graphical user interface is configured to display controls on the display system. The controls are for commands sent to an auto-flight system in an aircraft that control flight of the aircraft. The first grouping of the controls is configured to control sending of the commands to the auto-flight system from a flight management system in the aircraft. The second grouping of the controls is configured to control sending of the commands to the auto-flight system from a user input to the graphical user interface.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: June 24, 2014
    Assignee: The Boeing Company
    Inventor: Gary Gershzohn