With Indication Or Control Of Landing Patents (Class 701/16)
  • Patent number: 8914227
    Abstract: A method of generating a flight plan including a number N-1 of segments SGi, i being an integer number between 2 and N. Segment SGilinks an auxiliary departure position to an auxiliary arrival position according to a route. The route is a straight line defined by a list of auxiliary route positions. Each route is stored in a database onboard the aircraft. The method includes a coupled determination of an auxiliary arrival position that is part of the auxiliary positions of at least one of the routes and of a route followed by the segment SGi+1. The coupled determination is produced from an auxiliary departure position and a route Ri, followed by the segment SGi.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: December 16, 2014
    Assignee: Thales
    Inventors: François Coulmeau, Olivier Friedmann, Jean-Christophe Jaillant
  • Patent number: 8914166
    Abstract: Methods and apparatus are provided for visually enhancing approach runway signatures on en Enhanced Flight Vision System (EFVS). The EFVS may retrieve a location and an approach course for a runway, display, on the EFVS, a representation of the runway and the approach course for the runway relative to a position of the aircraft, define an area, along the approach course and before a first end of the runway, where the approach runway signature should be located, and visually enhance, on the EFVS, the defined area.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: December 16, 2014
    Assignee: Honeywell International Inc.
    Inventor: Gang He
  • Publication number: 20140365044
    Abstract: A method having a preparation stage for preparing an approach path (25) to a theoretical position (20?) of a platform (20). During a consolidation stage, a current position (20?) of said platform (20) is determined and an alert is triggered when the distance (D1) between said theoretical position (20?) and said current position (20?) is greater than a first threshold. During a security stage, entities provided with respective automatic identification systems and present in a predetermined monitoring zone (OCZ) are monitored, and a horizontal representation of said approach path (25) is displayed on a display screen (8) together with the following for each entity: a plot (41) representing its current position; an indication (42) of the travel direction of the entity; and a representation (43) relating to the danger level of the entity.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 11, 2014
    Applicant: AIRBUS HELICOPTERS
    Inventors: Nicolas CANALE, Lionel IRAUDO
  • Patent number: 8904880
    Abstract: A method for relaying a radio signal between two points having an obstacle therebetween is described. The method includes maintaining an unmanned aerial vehicle (UAV) in an orientation with respect to the two points, the UAV having at least one passive reflective device having an elongated configuration thereon, transmitting a signal from one of the two points, the transmitted signal impinging the at least one passive reflective device, and receiving the signal at the other of the two points, the received signal being a signal reflected from the at least one passive reflective device.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: December 9, 2014
    Assignee: The Boeing Company
    Inventors: Brian J. Tillotson, Keith J. Glover
  • Patent number: 8903572
    Abstract: In one embodiment an aircraft landing evaluation system comprises a first sensor to detect at least one landing trigger condition in an aircraft landing environment and a second sensor to detect at least one touchdown trigger condition in the aircraft landing environment. The system further comprises a processor coupled to the first sensor and the second sensor, and a memory module coupled to the processor. The memory module comprises logic instructions stored in a computer readable medium which, when executed, configure the processor to collect a plurality of flight parameters associated with the aircraft landing, and to collect a one or more additional flight parameters associated with the aircraft landing. A subset of the plurality of flight parameters are stored in a computer readable memory module coupled to the processing device, and may be presented on a display device coupled to the processing device.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: December 2, 2014
    Assignee: The Boeing Company
    Inventors: Jack S. Hagelin, Jonathan R. Lepere, Richard J. Reuter, Michael R. Anderegg
  • Publication number: 20140350748
    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
    Type: Application
    Filed: August 16, 2012
    Publication date: November 27, 2014
    Applicant: AeroVironment Inc.
    Inventors: Christopher E. Fisher, Thomas Robert Szarek, Justin B. McAllister, Pavel Belik
  • Publication number: 20140350754
    Abstract: A system and method of generating a landing trajectory for use in landing an aircraft onto a deck of a waterborne ship includes sensing motion of the ship, and sensing wind speed and wind direction. The sensed motion of the ship is processed to generate estimates of ship attitude and vertical speed, and the sensed wind speed and wind direction are processed to generate estimates of air-wake disturbances ahead of the aircraft. The landing trajectory is generated based on the estimates of ship attitude and vertical speed and the estimates of air-wake disturbances. The system and method implement model predictive control to calculate the control maneuvers multiple steps ahead, which provides the capability to smoothly control the timing of the aircraft touchdown phase.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael Ray Elgersma, Xiaohong Linda Li
  • Patent number: 8897933
    Abstract: Methods and systems disclosed herein relate to using a rotating flywheel battery in a balloon in a high-altitude balloon network. An example method could include converting, in a balloon, first electrical energy into kinetic mechanical energy. The balloon includes a flywheel battery configured to rotate about a spin axis. The kinetic mechanical energy includes a rotation motion of the flywheel battery. The method could further include storing the kinetic mechanical energy for a finite period of time. Further, the method could include performing, using the flywheel battery, at least one of: i) converting at least a portion of the stored kinetic mechanical energy into second electrical energy; ii) stabilizing at least one motion of the balloon based on the rotational motion of the flywheel battery; and iii) rotating the balloon substantially about a balloon axis substantially perpendicular to the ground surface of the earth.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: November 25, 2014
    Assignee: Google Inc.
    Inventors: Eric Teller, Richard Wayne DeVaul, Clifford L. Biffle
  • Patent number: 8897936
    Abstract: The invention relates to a device (10) for stabilizing the guidance of a vehicle (1), the vehicle (1) having at least one or two which is arranged in such a way that it can be turned relative to the longitudinal axis of the vehicle (1), and steering means that interact with the at least one wheel (2) and are designed to guide the vehicle (1) by turning the at least one wheel (2). The device (10) has a detecting unit (12), which is designed to detect an at least partial transition from static friction to dynamic friction between the at least one wheel (2) and a ground covering (3), and furthermore has a control unit (11), which, when the detecting unit (12) detects the transition from static friction to dynamic friction, is designed to turn the at least one wheel (2) by means of the steering means in such a way that the dynamic friction between the wheel (2) and the ground covering (3) changes back to static friction.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: November 25, 2014
    Assignees: Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Ute Marita Meissner
    Inventors: Klaus-Uwe Hahn, Ute Marita Meissner
  • Patent number: 8897935
    Abstract: This disclosure relates to a system for preventing collisions with a terrain. The system includes a detecting means for detecting risks of collision with the terrain after a predetermined forecasting delay. The system further includes a determining means for determining, based on a trajectory followed by the aircraft, a possible limit point for success of the vertical terrain avoidance maneuver. The system further includes indication means for giving indications on azimuth clearance sections, around the direction in which the aircraft is moving, suitable for success of the vertical terrain avoidance maneuver. The system further includes means for estimating a free-travel distance in each azimuth clearance sector on a straight distancing trajectory with constant gradient and over a distance correspond to more than one minute of flight, the free-travel distance being free of potential conflicts with the terrain.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: November 25, 2014
    Assignee: Thales
    Inventors: Hugues Meunier, Nicolas Marty, Julia Percier
  • Publication number: 20140343764
    Abstract: The method concerns monitoring the approach phase of an aircraft to a runway. This method includes determining successive gateways of the aircraft relative to at least one characteristic point of an approach flight plan of the aircraft or relative to the landing location, and measuring the aircraft speed upon crossing a given gateway. The method further comprises computing a minimum deceleration distance up to a predetermined target speed associated with the gateway following said given gateway, the minimum deceleration distance being an estimated flight distance corresponding to the speed reduction of the aircraft from the measured speed to said target speed; comparing the computed minimum deceleration distance with the distance remaining to be flow to the following gateway; and generating an alert, intended for the aircraft crew, when the distance remaining to be flown to the following gateway is smaller than the computed minimum deceleration distance.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 20, 2014
    Applicant: Thales
    Inventors: Jérôme SACLE, François COULMEAU, Loïc CHARLES
  • Patent number: 8890718
    Abstract: An aircraft terrain awareness warning system is disclosed that includes an interface for entering flight plan details of an aircraft including at least one waypoint. The terrain awareness warning system is configured such that potential-terrain-collision alerts are suppressed in the aircraft during landing operations performed at waypoints associated with landing zones.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: November 18, 2014
    Assignee: Sandel Avionics, Inc.
    Inventor: Gerald J. Block
  • Patent number: 8892349
    Abstract: In one embodiment, a method comprises receiving, in a computer-based airspace monitoring system, airspace information from a plurality of different sources via a plurality of different communication networks, receiving, in the computer-based airspace monitoring system, a first flightpath parameter from a first aircraft at a first point in time, wherein the first flightpath parameter comprises at least one of a three-dimensional position parameter, a flight trajectory parameter, or a speed parameter, establishing, in the computer-based airspace monitoring system, a first defined airspace in a region proximate the first aircraft, processing, in the computer-based airspace monitoring system, the airspace information for the first defined airspace based on the first position parameter received from the first aircraft to define a first data set of airspace information relevant to the first aircraft, and transmitting the first dataset of airspace information from the computer-based airspace monitoring system to the
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 18, 2014
    Assignee: The Boeing Company
    Inventors: Regina I. Estkowski, Ted D. Whitley, Richard Baumeister, Neale Leslie Fulton
  • Patent number: 8886402
    Abstract: Methods and apparatus are provided for an actively variable shock absorbing system for actively controlling the load response characteristics of a shock absorbing strut. In one embodiment the shock absorbing system comprises a controllable valve adapted for actively varying a load response characteristic of the shock absorbing strut. The shock absorbing system further comprises an electronic control system comprising an input for receiving a signal from a sensor, an algorithm adapted to determine an optimal position for the controllable valve in view of the sensor signal, and an output for sending a control signal to the controllable valve to place the valve in the optimal position.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 11, 2014
    Assignee: Armorworks Enterprises LLC
    Inventor: Ken-An Lou
  • Patent number: 8886368
    Abstract: The present invention discloses a control stick for controlling an UAV formed by a bar with buttons on the bar head and a GUI displaying airplane like icons providing feedback of current steering control status of a UAV.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Prox Dynamics AS
    Inventors: Petter Muren, Dag Henning Paulsen
  • Patent number: 8886450
    Abstract: The present invention is directed to a system and method for identifying maneuvers for a vehicle in conflict situations. A plurality of miss points are calculated for the vehicle and as well as object conditions at which the vehicle will miss an impact with the at least one other object by a range of miss distances. The miss points are displayed such that a plurality of miss points at which the vehicle would miss impact by a given miss distance indicative of a given degree of conflict is visually distinguishable from other miss points at which the vehicle would miss impact by greater miss distances indicative of a lesser degree of conflict. The resulting display indicates varying degrees of potential conflict to present, in a directional view display, a range of available maneuvers for the vehicle in accordance with varying degrees of conflict.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: November 11, 2014
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: David John Gates, Elliot Ashley Gates, Mark Westcott, Neale Leslie Fulton
  • Patent number: 8880247
    Abstract: A method and computer program product for planning a landing approach of an aircraft based on an actual position or first nominal position of the aircraft during its approach for landing on a runway, including providing a stabilization flight path section and stabilization region and/or stabilization point defined by an altitude profile by at least one configuration change point in the stabilization flight path section with a change of the overall profile configuration of the airfoils and with a predetermined final approach flight status of the aircraft, and checking or changing position of the at least one configuration change measure in a change and/or the addition of an additional configuration change measure to the stabilization flight path section and by changing a speed profile along the stabilization flight path section so that the aircraft reaches the predetermined final approach flight status in the stabilization region or at the stabilization point.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 4, 2014
    Assignee: Airbus Operations GmbH
    Inventors: Robert Luckner, Matthias Lauterbach, Björn Dorr
  • Patent number: 8880339
    Abstract: A schematic display for presenting vertical navigation (VNAV) data is disclosed. A planned route such as a flight plan is divided into a series of VNAV legs, and only a VNAV schematic that corresponds to the active VNAV leg is displayed. The VNAV schematic in accordance with the present disclosure is a profile-view schematic for the active VNAV leg, providing a visual representation indicating the locations of the upcoming Top of Climb (TOC) or Top of Descent (TOD). Additional VNAV data may also be presented to provide content context. Since the schematic display in accordance with the present disclosure only displays VNAV data relevant to the active VNAV leg at a given time, the complexities associated with displaying the VNAV schematic is reduced, making the VNAV data easy to read and understand.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 4, 2014
    Assignee: Rockwell Collins Inc.
    Inventors: Seth A. Cooper, David A. Gribble, David L. Leedom, Geoffrey A. Shapiro, Daniel E. Russell, James E. Winfield
  • Patent number: 8880241
    Abstract: Extended-range monitoring and surveillance of facilities and infrastructure—such as oil, water, and gas pipelines and power lines—employs autonomous vertical take-off and landing (VTOL) capable, small unmanned aerial system (sUAS) aircraft and docking platforms for accommodating the sUAS aircraft. Monitoring and surveillance of facilities using one or more embodiments may be performed continually by the sUAS flying autonomously along a pre-programmed flight path. The sUAS aircraft may have an integrated gas collector and analyzer unit, and capability for downloading collected data and analyzer information from the sUAS aircraft to the docking platforms. The gas collector and analyzer unit may provide remote sensing and in-situ investigation of leaks and other environmental concerns as part of a “standoff” (e.g., remote from operators of the system or the facilities) survey that can keep field operators out of harm's way and monitor health of the environment.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 4, 2014
    Inventor: Farrokh Mohamadi
  • Publication number: 20140316617
    Abstract: A method and system for operating an aircraft having an autoflight system comprising flight guidance functionality and autoland functionality providing input to a flight control system such that both the autoflight and autoland functionality and their corresponding systems are operated at a Design Assurance Level A.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: GE AVIATION SYSTEMS LLC
    Inventor: Sherif Fouad Ali
  • Patent number: 8862290
    Abstract: A method and system for operating an aircraft having an autoflight system comprising flight guidance functionality and autoland functionality providing input to a flight control system such that both the autoflight and autoland functionality and their corresponding systems are operated at a Design Assurance Level A.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: October 14, 2014
    Assignee: GE Aviation Systems LLC
    Inventor: Sherif Fouad Ali
  • Patent number: 8855905
    Abstract: Improved capabilities are described for identifying a first location, at time one, of a plurality of automobiles using cell phone tower triangulation to locate a cell phone within each of the plurality of automobiles, identifying a second location, at time two, for each of the plurality of automobiles using cell phone tower triangulation to locate the cell phone within each of the plurality of automobiles, calculating a vehicle speed for each of the plurality of automobiles using the first and second locations already identified, and creating a traffic condition measure for a route in proximity to the first and second locations. The computer program product may repeat this process in real-time to calculate a real-time traffic condition measure that may be a traffic density measure the computer program product may use to predict a travel time.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: October 7, 2014
    Inventor: Edward H. Nortrup
  • Patent number: 8855839
    Abstract: A fuel assembly and a method of providing fuel is disclosed. The fuel assembly includes a frame, a first fuel storage tank sized to fit within the frame and configured to store one of a liquid and a gaseous fuel, and a fuel control assembly configured to regulate delivery of the gaseous fuel to an external power unit. The fuel control assembly includes a first fuel assembly memory module having stored thereon identifying information of the interchangeable fuel assembly.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 7, 2014
    Assignee: Bright Energy Storage Technologies, LLP
    Inventors: Scott Raymond Frazier, Kevin Pykkonen, Karl Ginter, Jeffrey Orion Pritchard
  • Publication number: 20140297068
    Abstract: A method and apparatus for identifying and analysing an aircraft landing site during flight is provided. The method includes the steps of using image capture means such as an infrared camera to capture in-flight images of the ground in the region of a possible landing site, using a database of computer modelled images of possible aircraft landing sites mapped to a global co-ordinate reference frame to compare the in-flight images with a modelled image of the possible landing site and optimising correspondence between the two images to obtain an in-flight image optimally mapped to the global co-ordinate reference frame. Thereafter, the landing site which corresponds to the optimally mapped in-flight image is analysed to ascertain the presence of any obstructions such as life forms, vehicles or newly erected buildings thereon.
    Type: Application
    Filed: October 25, 2012
    Publication date: October 2, 2014
    Applicant: BAE SYSTEMS PLC
    Inventors: James Duncan Revell, Roderick Buchanan
  • Patent number: 8849476
    Abstract: The present invention relates to a method of updating an ATC flight plan of an aircraft in real time to take account of the flight directives. A reference flight plan is designated. In tandem with the receipt of the flight directive messages originating from the ground, then verifying validity of the flight directive messages, if the message is validated in the affirmative, the messages are applied successively to the reference flight plan and stored. Managing, in real time, the complete list of these flight directives and the ATC flight plan.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: September 30, 2014
    Assignee: Thales
    Inventor: François Coulmeau
  • Patent number: 8849478
    Abstract: An aircraft piloting assistance method and system including determining at least one flyable slope with which the aircraft is assumed to be able to fly, based on a value of at least one flight parameter including the weight of the aircraft. The step for determining said slope or slopes with which the aircraft is able to fly, called flyable slopes is performed by a computer, and presenting the flyable slope to a decision-maker.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: September 30, 2014
    Assignee: Thales
    Inventors: Francois Coulmeau, Jerome Sacle, Lionel Verot
  • Patent number: 8849477
    Abstract: Embodiments of a method are provided that may be carried out by an avionics display system deployed on an aircraft and including a monitor. The avionics display system receives position data indicative of the aircraft's detected position from at least one data source. In one embodiment, the method includes the steps of: (i) attributing an error characteristic to the data source, (ii) identifying an airspace assigned to the aircraft at a given time, and (iii) establishing an error-compensated airspace as a function of the error characteristic and the assigned airspace. The aircraft's actual position remains within the assigned airspace provided that the aircraft's detected position resides within the error-compensated airspace. A visual representation of the outer boundaries of the error-compensated airspace is generated on the monitor.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: September 30, 2014
    Assignee: Honeywell International Inc.
    Inventor: Ron Brinkman
  • Patent number: 8843255
    Abstract: Methods are provided for presenting procedure information for an airport on a display device onboard an aircraft. A method comprises displaying a map on a display device and displaying a briefing panel overlying a portion the map. The briefing panel includes a plurality of segments, wherein each segment is associated with a type of procedure information for the airport.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 23, 2014
    Assignee: Honeywell International Inc.
    Inventors: Blake Wilson, Jary Engels, Ivan Sandy Wyatt, Roger W. Burgin
  • Patent number: 8843250
    Abstract: A vertical situation display system for use in a vehicle such as, for example, an aircraft, is provided. A side view of an intended route of flight may be shown with altitude restrictions, airspace and instrument approach information, a projected flight path and range to airspeed symbol. The system may show terrain, weather, and traffic information along the intended route of flight. The system may be used in conjunction with a navigational display to enhance situational awareness. The system includes a computer, an electronic display device, an electronic entry device, a memory and a database. The database may contain terrain, airspace and flight planning data and may be updatable.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: September 23, 2014
    Assignee: The Boeing Company
    Inventors: Michael J. Tucker, Sherwin S. Chen, John Wiedemann, Jason L. Hammack
  • Publication number: 20140277857
    Abstract: Methods, systems, and computer readable media are disclosed for direct arming aircraft runway approach guidance modes, for example and without limitation, for aircraft operational. In some aspects, a method for directly arming a runway approach guidance mode of an aircraft includes displaying on a display unit an airport, selecting the airport and selecting an active runway for final approach, displaying an path toward the selected final approach runway, selecting the final approach runway, displaying on the display unit at least one symbol associated with at least one runway approach guidance mode, and arming at least one of the at least one runway approach guidance mode.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: AIRBUS OPERATIONS (SAS)
    Inventors: Thierry BOURRET, Pascale LOUISE, Claire OLLAGNON, Nicolas CHAUVEAU, Sebastien GIULIANO, Sebastien DRIEUX
  • Publication number: 20140257602
    Abstract: Method, and apparatus, and computer readable medium embodying the computer program product are provided for instructing a pilot of an aircraft to go-around and make another approach and landing attempt. During an approach maneuver, it is determined whether an operational parameter of the aircraft exceeds a threshold and whether the aircraft has reached a decision height altitude. A go-around instruction to the pilot when the aircraft has reached the decision height altitude and the operational parameter exceeds the threshold.
    Type: Application
    Filed: February 26, 2014
    Publication date: September 11, 2014
    Applicant: Gulfstream Aerospace Corporation
    Inventor: Randy Gaston
  • Publication number: 20140257601
    Abstract: Disclosed is a runway alerting method and system for a landing an aircraft. The method includes determining stopping positions for the aircraft along the runway using aircraft energy state, deceleration and braking information and displaying the stopping positions on a display. A system is provided that includes a first apparatus that is configured to determine an aircraft speed relative to the ground, a second apparatus that is configured to determine the aircraft's position, and a third apparatus that can provide information about the runway of intended landing. A flight system coupled to the first and second apparatus is configured to determine a minimum and corporate stopping position for the aircraft using the aircraft speed and the position relative to the runway. The minimum and corporation stopping positions are presented to the aircraft pilot on a display to as assist the pilot in safely landing the aircraft.
    Type: Application
    Filed: November 25, 2013
    Publication date: September 11, 2014
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Thomas Horne, Thomas Landers, John Mayo
  • Publication number: 20140257603
    Abstract: A method provides alert information, regarding an aircraft wheel braking system, to an operator of an aircraft during an aircraft landing. An input of a target deceleration rate for the landing aircraft is received prior to the aircraft having landed on a ground surface. At least one sensor electronically collects information relevant to a real-time deceleration rate of the aircraft after the aircraft has landed on the ground surface, and the real-time deceleration rate of the aircraft is calculated. The target deceleration rate is compared to the calculated deceleration rate to determine an effectiveness of the aircraft wheel braking system. A visual, audible, or tactile alert is optionally provided to the operator of the aircraft, and data from this system could also be used as an input for various other aircraft safety systems. A system for performing the method is also provided.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Inventors: Stephen Lyle McKeown, Peter Paul Kleinschmidt, Jeffrey Alan Laidman
  • Patent number: 8831799
    Abstract: Methods, systems, and computer-readable media are described herein for providing flight director guidance throughout a flare maneuver during landing operations. A pre-flare flight path to a runway may be received, and a flare engage altitude calculated. A flare command path may be calculated having a slope associated with a desired descent rate at a desired touchdown location on a runway. An aircraft flare trajectory may be calculated that transitions the aircraft from the flare engage altitude on the pre-flare flight path to the flare command path at the desired touchdown location. A flight director command may be provided during the flare maneuver that aligns a current flight path with the aircraft flare trajectory.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: September 9, 2014
    Assignee: The Boeing Company
    Inventors: Benjamin David Levine, Steven Barry Krogh
  • Publication number: 20140249702
    Abstract: A system for configuring landing supports of a load to land on uneven terrain includes a terrain sensor configured to detect a terrain characteristic of the uneven terrain. The system further includes landing supports configured to support the load upon landing. The system also includes a support control device operatively coupled to the landing supports, and a landing support control computer that is operatively coupled to the terrain sensor, landing supports, and support control device. The landing support control computer may determine if landing on the uneven terrain is allowable, based on the terrain characteristic and a load characteristic of the load. Upon determining that landing on the uneven terrain is allowable, the support control device configures the landing supports for landing on the uneven terrain.
    Type: Application
    Filed: October 4, 2012
    Publication date: September 4, 2014
    Applicant: THE BOEING COMPANY
    Inventor: THE BOEING COMPANY
  • Publication number: 20140249703
    Abstract: Systems and methods to accurately display lateral deviation symbology in offset approaches to runways is provided. A system for on-aircraft display of lateral deviation symbology for use in offset approaches comprises means for generating a conformal video display representation of an aircraft's current position, means for notifying a flight crew of the existence of an offset approach, means for displaying an extended runway center line, and means for displaying an approach line.
    Type: Application
    Filed: May 14, 2014
    Publication date: September 4, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Gang He
  • Patent number: 8825227
    Abstract: A device for a motorized aircraft includes at least one avionic component positioned in the aircraft, at least one engine interface positioned in the aircraft and at least one engine controller positioned in or near an engine of the aircraft. The at least one engine interface is designed to exchange data between the at least one avionic component and the at least one engine controller. The at least one engine interface is generic and able to communicate with engine controllers of various types that may be mounted on the aircraft. The at least one engine controller is specific to a particular engine.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: September 2, 2014
    Assignee: Airbus Operations S.A.S.
    Inventors: Laurent Saint-Marc, Luc Brunel, Patrick Zaccaria, Matthieu Alexandre, Julien Feau, Frédéric Leborgne, Thierry Immordino, Jean-François Belkadi, Nathalie Durand
  • Patent number: 8825234
    Abstract: A method and apparatus for managing a touch screen system. Data generated by an acceleration detector about acceleration of the touch screen system is received. The acceleration detector is located within the touch screen system. An action is initiated by an input manager when the acceleration of the touch screen system reduces usability of the touch screen system.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: September 2, 2014
    Assignee: The Boeing Company
    Inventors: Jeffrey L. Williams, Susan Anne Foster, Jason W. Clark, Samantha Ann Schwartz, Aaron Daniel Pilcher
  • Patent number: 8825238
    Abstract: A system is provided for monitoring an energy height of an aircraft during landing. The system includes a database including landing distance data; a processing unit configured to receive the landing distance data from the database and to calculate a landing distance of the aircraft based on a velocity and a height of the aircraft, the processing unit further configured to provide display signals based on the landing distance; and a visual display coupled to the processing unit and configured to provide a visual image based on the display signals.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: September 2, 2014
    Assignee: Honeywell International Inc.
    Inventors: Dave Peptione, Blake Wilson, Roger W. Burgin
  • Publication number: 20140244079
    Abstract: A procedure for facilitating the approach to a platform [PF] with an aircraft [1] including a construction stage [STP1] for a database [5] that includes, for each stored platform [PF], attributes that include at least one platform identifier, the coordinates of the platform, a landing height [HDECK] of a landing zone of the platform, and the radius (OR) of a circle within which the platform is inscribed. During a parameterization stage [STP2], the target platform to be reached is determined, along with a course (CRS) to be followed and a height parameter relative to a minimum decision altitude (MDA). During a construction stage [STP3], the position of an initial approach fix (IAF) is determined, along with the position of a final approach fix (FAF), an offset point (OIP), and a decision point (MAP), in response to the information and in response to the attributes.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: AIRBUS HELICOPTERS
    Inventors: Lionel IRAUDO, Nicolas CANALE
  • Patent number: 8818581
    Abstract: A method is described that includes performing a), b) and c) below with an electronic control unit of a parafoil: a) after being dropped from an airborne vehicle, wirelessly receiving the parafoil's desired landing location; b) determining a flight path for the parafoil that lands at the desired landing location; and, c) controlling the parafoil's flight path consistently with the determined flight path.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 26, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eugene Bourakov, Oleg Yakimenko
  • Patent number: 8818582
    Abstract: A method for guiding an aircraft during its final approach to a landing runway, whereby the aircraft is guided during its approach by aircraft position information obtained from an GNSS satellite navigation system, wherein: prior to the start of the final approach a first time tFAF is determined corresponding with the start of said final approach and a second time tTD corresponding with the landing of the aircraft on said runway, then a set of satellites is determined of the satellite navigation system for excluding from the calculation of said aircraft position information during at least a part of the time interval comprised between said first and second times; and during the final approach, the aircraft position information is determined while excluding the information corresponding with all the satellites of said set of satellites and the aircraft is guided along its final approach path by said position information.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: August 26, 2014
    Assignees: Airbus Operations S.A.S., Ecole Nationale de l'Aviation Civile (E.N.A.C.)
    Inventors: Pierre Neri, Laurent Azoulai, Jean Muller, Christophe Macabiau
  • Publication number: 20140236390
    Abstract: Extended-range monitoring and surveillance of facilities and infrastructure—such as oil, water, and gas pipelines and power lines—employs autonomous vertical take-off and landing (VTOL) capable, small unmanned aerial system (sUAS) aircraft and docking platforms for accommodating the sUAS aircraft. Monitoring and surveillance of facilities using one or more embodiments may be performed continually by the sUAS flying autonomously along a pre-programmed flight path. The sUAS aircraft may have an integrated gas collector and analyzer unit, and capability for downloading collected data and analyzer information from the sUAS aircraft to the docking platforms. The gas collector and analyzer unit may provide remote sensing and in-situ investigation of leaks and other environmental concerns as part of a “standoff” (e.g., remote from operators of the system or the facilities) survey that can keep field operators out of harm's way and monitor health of the environment.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Inventor: Farrokh Mohamadi
  • Patent number: 8812181
    Abstract: Systems and methods to accurately display lateral deviation symbology in offset approaches to runways is provided. A system for on-aircraft display of lateral deviation symbology for use in offset approaches comprises means for generating a conformal video display representation of an aircraft's current position, means for notifying a flight crew of the existence of an offset approach, means for displaying an extended runway center line, and means for displaying an approach line.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 19, 2014
    Assignee: Honeywell International Inc.
    Inventor: Gang He
  • Publication number: 20140229034
    Abstract: The present invention applies model-based processing to a sensor output from a sensor such as a sonar, radar, or laser range finder. In particular, embodiments of the invention use a priori knowledge of a model signal return expected from a particular object to identify the location of the object relative to the sensor (and/or vice versa). In some embodiments the object is augmented with reflectors that return the sensor signal back towards the sensor so that the object can be more easily detected by the sensor. In preferred embodiments the reflectors are arranged in an a priori known pattern on the object, to help identify both the location and the orientation of the object with respect to the sensor. In the preferred embodiment, the sensor is a sonar, mounted on an unmanned underwater vehicle (UUV).
    Type: Application
    Filed: July 5, 2013
    Publication date: August 14, 2014
    Inventors: CHRISTOPHER ROBERT SPENCE, EDMUND PETER SPARKS
  • Publication number: 20140222257
    Abstract: A system and method is disclosed for anticipating a missed approach point (MAP) during an instrument landing of an aircraft. Symbology is generated and displayed that graphically represents a lateral distance between a runway threshold and a virtual inner marker. The MAP is identified as the location of the aircraft when the symbology reaches a displayed runway threshold.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ivan Sandy Wyatt, Gang He, Thea L. Feyereisen
  • Patent number: 8798819
    Abstract: A monitor on-board an aircraft which uses radio altitude measurements as the basic observable altitude during runway approach. The basic concept utilizes the aircraft's navigation system, which includes means to store and retrieve radio altitude thresholds as a function of the distance along the desired path from the runway thresholds. These threshold functions are determined in advance based on a radio altitude reference which is defined as the expected radio altimeter measurement that would be made if the airplane were exactly on the desired reference path. Vertical containment monitoring is achieved by comparing the radio altitude measurement to computed thresholds for both too high and too low. During the approach, an annunciation message can be generated if the radio altitude measurement is above or below the threshold limits.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: August 5, 2014
    Assignee: The Boeing Company
    Inventor: Timothy Allen Murphy
  • Patent number: 8798818
    Abstract: A method and system for dynamically evaluating a quantity of context sensitive information used by an operator of an airborne mobile platform in performing an operational procedure involving said mobile platform, and determining, in real time, a sub-quantity of context sensitive information that pertains to only that sub-quantity of information required by said operator to execute said operational procedure. The sub-quantity of information is then displayed on a display in real time for the operator. The method and system significantly eases the cognitive workload of the operator by enabling the operator to focus on and digest only that sub-quantity of information that is pertinent to performing the operational procedure with the specific type of mobile platform being operated. In one embodiment the sub-quantity of information pertains to minima information for performing an aircraft landing approach operation.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: August 5, 2014
    Assignee: The Boeing Company
    Inventors: Thorsten Wiesemann, Patrick R. Wipplinger, Theodore B. Thompson
  • Publication number: 20140207315
    Abstract: A system and method displays an intercept point on a synthetic vision display that conforms to the flight path intercepting the terrain when the nose of the helicopter is pitched up during landing. A steep approach during landing may be detected by an evaluation of, for example, attitude of the helicopter, rate of descent, and airspeed.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: HONEYWELL INTERNATIONAL INC.
  • Patent number: 8788127
    Abstract: A beacon receiving system on a pallet of a container cargo bundle is airdropped from a cargo airplane. The beacon receiving system comprises a sensor that detects during descent a beacon signal generated from a beacon placed at the target drop location. The sensor provides signals to a microcontroller that ascertains an angle at which the beacon signal is received. An inertial measurement unit provides signals indicating a tilt of the pallet during descent, which is used by the microcontroller to determine an offset angle of the received beacon signal. This information is used to steer the container cargo bundle during descent to achieve high precision in landing at the desired target drop location. The beacon signal may comprises a modulated light signal which can be distinguished by the sensor from other light sources.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 22, 2014
    Assignee: The Boeing Company
    Inventors: Dale F. Waldo, David Ray Riley, Thomas Lyman Weaver