Having Accuracy Improvement Of Position Or Location Patents (Class 701/495)
  • Patent number: 11480434
    Abstract: Provided herein is a system comprising: one or more processors; and a memory storing instructions that, when executed by the one or more processors, causes the system to perform: obtaining a previous pose of a vehicle; acquiring one or more previous readings corresponding to one or more wheel encoders during the previous pose; acquiring one or more readings corresponding to one or more wheel encoders acquired after the previous pose; and adjusting the previous pose based on the one or more readings to obtain a current pose.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: October 25, 2022
    Assignee: Pony AI Inc.
    Inventor: Piaoyang Cui
  • Patent number: 11442466
    Abstract: A self-moving device, including: a moving module, a task execution module, a control module. The control module is electrically connected to the moving module and the task execution module, controls the moving module to actuate the self-moving device to move, controls the task execution module to execute a working task. The self-moving device further includes a satellite navigation apparatus, electrically connected to the control module and configured to receive a satellite signal and output current location information of the self-moving device. The control module determines whether quality of location information output by the satellite navigation apparatus at a current location satisfies a preset condition, controls, if the quality does not satisfy the preset condition, the moving module to actuate the self-moving device to change a moving manner, to enable quality of location information output by the satellite navigation apparatus at a location after the movement to satisfy the preset condition.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: September 13, 2022
    Assignee: POSITEC POWER TOOLS (SUZHOU) CO., LTD.
    Inventors: Yong Shao, Mingming He, Chang Zhou, Zhou Yang, Gen Sun, Yue Rao
  • Patent number: 11372115
    Abstract: The localization of a vehicle is determined using less expensive and computationally robust equipment compared to conventional methods. Localization is determined by estimating the position of a vehicle relative to a map of the environment, and the process thereof includes using a map of the surrounding environment of the vehicle, a model of the motion of the frame of reference of the vehicle (e.g., ego-motion), sensor data from the surrounding environment, and a process to match sensory data to the map. Localization also includes a process to estimate the position based on the sensor data, the motion of the frame of reference of the vehicle, and/or the map. Such methods and systems enable the use of less expensive components while achieving useful results for a variety of applications, such as autonomous vehicles.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: June 28, 2022
    Assignee: CYNGN, INC.
    Inventors: I-Chung Joseph Lin, Elena Ramona Stefanescu, Dhivya Sukumar, Sumit Saxena
  • Patent number: 11169280
    Abstract: Direction estimation in indoor and outdoor locations. At least some of the example embodiments are computer-implemented methods including: determining, by a processor of a mobile device, that the mobile device is approaching a portal between a first navigation domain and a second navigation domain; displaying, on a display device of the mobile device, a merged map concatenating a map of the first navigation domain with a map of the second navigation domain; showing location of the mobile device on the map of the first navigation domain prior to the mobile device transiting through the portal; and then showing location of the mobile device on the map of the second navigation domain.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: November 9, 2021
    Assignee: POINTR LIMITED
    Inventors: Ismail Ege Akpinar, Can Tunca, Mehmet Can Akpinar, Sinan Isik
  • Patent number: 10708723
    Abstract: According to an example aspect of the present invention, there is provided a method for determining the direction of movement of an object, the method comprising determining a cyclical motion of a cyclically moving part of the object by recording acceleration data of said cyclically moving part over a plurality of cycles using an accelerometer or inertial sensor attached to said cyclically moving part, integrating said acceleration data over at least one cycle of movement to determine a tilting of said cyclically moving part of the object relative to the horizontal plane, measuring an external magnetic field of said cyclically moving part of the object using a magnetometer to determine an orientation of said cyclically moving part of the object relative to the external magnetic field, determining the direction of movement of the object based on the tilting and the orientation of the cyclically moving part of the object.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: July 7, 2020
    Assignee: Amer Sports Digital Services Oy
    Inventors: Tuomas Hapola, Heikki Nieminen, Mikko Martikka, Erik Lindman
  • Patent number: 10648821
    Abstract: Systems and methods for route planning. The method includes acquiring, using processing circuitry, travel information. The travel information includes a user destination. Further, the method includes determining, using the processing circuitry, an emotional state of a user based on at least one of a plurality of factors, determining a route plan based on the user destination and the emotional state of the user; and control an aspect of the vehicle based on the route plan.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: May 12, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Tina Brunetti Sayer
  • Patent number: 10555127
    Abstract: According to an example aspect of the present invention, there is provided a method for determining the direction of movement of an object, the method comprising determining a cyclical motion of a cyclically moving part of the object by recording acceleration data of said cyclically moving part over a plurality of cycles using an accelerometer or inertial sensor attached to said cyclically moving part, integrating said acceleration data over at least one cycle of movement to determine a tilting of said cyclically moving part of the object relative to the horizontal plane, measuring an external magnetic field of said cyclically moving part of the object using a magnetometer to determine an orientation of said cyclically moving part of the object relative to the external magnetic field, determining the direction of movement of the object based on the tilting and the orientation of the cyclically moving part of the object.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: February 4, 2020
    Assignee: Amer Sports Digital Services Oy
    Inventors: Tuomas Hapola, Heikki Nieminen, Mikko Martikka, Erik Lindman
  • Patent number: 9605966
    Abstract: A method estimating orientation of a path followed by a carrier of a movement sensor includes: determining an orientation of the movement sensor with respect to the path; estimating an orientation of the movement sensor with respect to a fixed reference; estimating an orientation of the path with respect to the fixed reference by the determined orientation of the movement sensor and the estimated orientation of the movement sensor; detecting start and end of a phase of disorientation of the movement sensor with respect to the path; updating, after the detected end of the disorientation phase, determined orientation of the movement sensor with respect to the path by orientation of the path with respect to the fixed reference as estimated at the detected start of the disorientation phase and orientation of the movement sensor with respect to the fixed reference as estimated after the detected end of the disorientation phase.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: March 28, 2017
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, Movea
    Inventor: Christophe Villien
  • Patent number: 9439205
    Abstract: Method and devices for optimizing wireless network connections in transportation vehicles are provided. An onboard computing device in a transportation vehicle identifies blackout area with severe wireless signal interference caused by nearby wireless access points in the blackout area. The wireless interference can be remedied by dynamically switching wireless channel for the in-vehicle wireless connection between the onboard computing device and a mobile device in the vehicle. The wireless interference can also be remedied by pre-caching the data needed for a content presentation during a time period when the vehicle travels within the blackout area.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: September 6, 2016
    Assignee: Alpine Electronics of Silicon Valley, Inc.
    Inventors: Rocky Chau-Hsiung Lin, Thomas Yamasaki, Koichiro Kanda, Hirokazu Yamashita
  • Patent number: 9285224
    Abstract: Methods and systems for compensating for gyroscopic errors. A system uses magnetometers to detect and measure a magnetic field local to a personal navigation device. When the local magnetic field is quasi-static, the rate of change of the magnetic field is combined with the rotational rate of change of the device. This generates an estimated gyroscope error. The error can then be used to correct for time-varying inherent gyroscope errors.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: March 15, 2016
    Assignee: UTI LIMITED PARTNERSHIP
    Inventors: Muhammad Haris Afzal, Valerie Renaudin, Gerard Lachapelle
  • Patent number: 9250083
    Abstract: The disclosure generally relates to determining position of a motorized vehicle using wireless techniques. Methods, apparatus and systems are disclosed. A method can include: receiving absolute positioning data; receiving, from a mobile device, at least one of gyroscope data and odometry data; receiving, from a vehicle, at least one of gyroscope data and odometry data; initializing at least a heading to determine a relative path, wherein the relative path is based at least in part on the received data from the mobile device and the vehicle, wherein the received data comprises gyroscope data and odometry data; and shifting the relative path to an estimated path, wherein the estimated path is based at least in part on the absolute positioning data.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: February 2, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Joseph Czompo, Benjamin A. Werner, Vesa Veikko Ruuska, William James Morrison
  • Patent number: 9074894
    Abstract: Vehicle range projection estimation is implemented by a computer processor of a vehicle having logic executable thereon. The logic receives vehicle range projection data from a remote system over a network as a network service. The vehicle range projection data represents a bounded geographic area in which the vehicle is capable of traveling. The bounded geographic area is defined by global positioning system coordinates attributable to the vehicle in conjunction with an available amount of remaining energy of the vehicle. The logic also stores the vehicle range projection data in a storage device. Upon determining an interruption in a network service has occurred, the logic retrieves stored vehicle range projection data from the storage device, scales the stored vehicle range projection data to a level commensurate with an updated amount of remaining energy of the vehicle, and displays a visual representation of scaled vehicle range projection data in the vehicle.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: July 7, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Edward D. Tate, Jr.
  • Patent number: 9074888
    Abstract: Methods, devices, and systems are presented for compensating for gyroscopic drift in a stabilized gimbal system mounted on a vehicle. When the vehicle is parked and the gimbal is not being commanded to move by an operator, encoders or resolvers of the gimbal stabilized system are read and periodically read thereafter. When the vehicle begins to move or the gimbal is commanded to move, the last periodic reading of the resolvers is used to determine the amount that the gimbal has moved during the rest period. A gyroscopic drift rate is computed by dividing the amount of angular movement by the time period between the readings, and the gyroscopic drift rate is used for corrections while the vehicle is moving or gimbal is commanded to move. Each time the vehicle stops, the gyroscopic drift rate is re-computed and updated. The gyroscope can be heated until the drift rate is constant with respect to temperature, further helping the calibration.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: July 7, 2015
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Thomas D. Linton, Michael T. Fox, Bruce E. Exely
  • Publication number: 20150142309
    Abstract: Implementations of the present invention contemplate obtaining a more accurate estimated horizontal position error (EHPE) under conditions in which the telematics unit of a vehicle cannot receive GNSS signals. In particular, the invention contemplates determining that a vehicle is entering a parking garage and obtaining a more accurate estimated horizontal position error (EHPE) of the vehicle in the parking garage when GNSS signals are unavailable.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: GENERAL MOTORS LLC
    Inventors: Debo Sun, Curtis L. Hay
  • Patent number: 8965684
    Abstract: The present invention pertains to a mobile terminal having an autonomous navigation function, said mobile terminal comprising: a map application which performs map matching on the current position of the mobile terminal on a route to a destination; a measurement unit which detects the movement of the mobile terminal, and which provides sensor information representing the number of steps and travel direction; a position calculation unit which determines the current position of the mobile terminal; a travel direction correction unit which, when it has been estimated that a user is walking straight by determining whether the amount of change of the user's travel direction is within a prescribed range in a prescribed period, corrects the user's travel direction according to the orientation of the straight parts when the user is walking straight on the route; and a current position correction unit which, on the basis of the corrected travel direction and the starting time and starting point when walking straight,
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 24, 2015
    Assignee: NTT DOCOMO, INC.
    Inventor: Makoto Takahashi
  • Patent number: 8930136
    Abstract: A personal navigation device configured to determine heading readings continuously using data from a sensor in the personal navigation device. Heading readings are selected corresponding to a periodic event. A representative heading is determined from the selected heading readings. When a portion of the selected heading readings has a value within a range of the representative heading, a static heading indicator is asserted to indicate the personal navigation device is moving in a static heading. The static heading indicator may be used to smooth an estimated trajectory of the personal navigation device.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 6, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Tarkesh Pande, Jaiganesh Balakrishnan, Deric Waters, Goutam Dutta, Jayawardan Janardhanan, Sthanunathan Ramakrishnan, Sandeep Rao, Karthik Ramasubramanian
  • Patent number: 8880342
    Abstract: A moving body position detection system including an unit acquiring dead reckoning navigation information including a moving body direction; a unit identifying a moving body position based on the dead reckoning navigation information on the moving body; a unit predicting a predicted arrived position of the moving body after a predetermined interval from the position of the moving body based on the dead reckoning navigation information on the moving body; a unit calculating a difference direction angle between a direction from the position of the moving body to the predicted position and the direction of the moving body; a unit correcting the difference direction angle if it is equal to or larger than a threshold; and a unit updating the moving body position based on the difference direction angle.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 4, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yohei Ando, Takuma Yagi
  • Patent number: 8825397
    Abstract: A vehicle navigation system includes a GNSS position engine (GPE) that uses GNSS satellite measurements to compute a first position and velocity of a vehicle and a first quality metric associated with the position and velocity. The system also includes a dead reckoning engine (DRE) that operates parallel with the GPE that computes a second position and velocity and a second quality metric associated with the dead reckoning. The GPE is configured to use the second position and velocity to detect a set of outliers in an incoming GNSS measurement; use the second position and velocity as an initial estimate of its position and velocity for a particular time instant, which is then refined by GNSS measurements received at that particular time instant; and to replace the first position and velocity with the second position and velocity.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Kasargod, Sandeep Rao, Karthik Ramasubramanian, Tarkesh Pande, Sriram Murali
  • Patent number: 8818720
    Abstract: The present invention relates to processing information generated by GNSS receivers received signals such as GPS, GLONASS, etc. GNSS receivers can determine their position in space. The receivers are capable of determining both coordinates and velocity of their spatial movement. When a receiver is used in any machine control systems, velocity vector heading (in other words, velocity vector orientation) should be determined along with velocity vector's absolute value. Angle, determining velocity vector orientation, is calculated based on velocity vector projections which are computed in navigation receivers. The accuracy of velocity vector orientation calculated based on velocity vector projections strongly enough depends on velocity vector's absolute value. To enhance the accuracy, a method of smoothing primary estimates of velocity vector orientation angles using a modified Kalman filter has been proposed.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 26, 2014
    Assignee: Topcon Positioning Systems, Inc.
    Inventors: Vladimir V. Veitsel, Dmitry P. Nikitin, Andrey V. Plenkin, Andrey V. Veitsel, Mark I. Zhodzishsky, Victor A. Prasolov
  • Patent number: 8798923
    Abstract: A method and device for non-echo ultrasonic Doppler used for corrected inertial navigation includes providing at least one ultrasonic emitter within an environment, each emitter configured for transmitting an ultrasonic tone of a predefined frequency. An initial location of the mobile device is established within the environment. Dead reckoning procedures are initiated using sensors within the mobile device. The device receives at least one ultrasonic tone from an emitter, and converts the at least one ultrasonic tone into a digital waveform. The device determines at least one peak frequency of the digital waveform, and subtracts the at least one peak frequency from each predefined frequency to determine at least one Doppler shift, which is used for correcting the dead reckoning of the mobile device.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 5, 2014
    Assignee: Symbol Technologies, Inc.
    Inventor: Russell E. Calvarese
  • Patent number: 8751151
    Abstract: A system and method for recognizing features for location correction in Simultaneous Localization And Mapping operations, thus facilitating longer duration navigation, is provided. The system may detect features from magnetic, inertial, GPS, light sensors, and/or other sensors that can be associated with a location and recognized when revisited. Feature detection may be implemented on a generally portable tracking system, which may facilitate the use of higher sample rate data for more precise localization of features, improved tracking when network communications are unavailable, and improved ability of the tracking system to act as a smart standalone positioning system to provide rich input to higher level navigation algorithms/systems. The system may detect a transition from structured (such as indoors, in caves, etc.) to unstructured (such as outdoor) environments and from pedestrian motion to travel in a vehicle.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: June 10, 2014
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin E. Funk, Jared Napora, Kamiar Kordari, Ruchika Verma, Amrit Bandyopadhyay, Carole Teolis
  • Patent number: 8718935
    Abstract: An initialization system for a personal navigation system associated with a user, including: a first reference point arrangement configured for communication with the personal navigation system of the user and to facilitate the generation of a first user data set including horizontal position and azimuth angle (x1, y1, ?1); a second reference point arrangement configured for communication with the personal navigation system of the user and to facilitate the generation of a second user data set including horizontal position and azimuth angle (x2, y2, ?2); and at least one control device configured to determine a common coordinate system based at least in part upon the first user data set and the second user data set. An initialization process and arrangement are also disclosed.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 6, 2014
    Assignee: MSA Technology, LLC
    Inventors: Paul A. Miller, Thomas Trautzsch
  • Publication number: 20140121961
    Abstract: A method and device for non-echo ultrasonic Doppler used for corrected inertial navigation includes providing at least one ultrasonic emitter within an environment, each emitter configured for transmitting an ultrasonic tone of a predefined frequency. An initial location of the mobile device is established within the environment. Dead reckoning procedures are initiated using sensors within the mobile device. The device receives at least one ultrasonic tone from an emitter, and converts the at least one ultrasonic tone into a digital waveform. The device determines at least one peak frequency of the digital waveform, and subtracts the at least one peak frequency from each predefined frequency to determine at least one Doppler shift, which is used for correcting the dead reckoning of the mobile device.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: Symbol Technologies, Inc.
    Inventor: Russell E. Calvarese
  • Patent number: 8706414
    Abstract: The invention is directed to methods and systems for locating and monitoring the status of people and moveable assets, such as first responders, including firefighters and other public service personnel, and their equipment both indoors and out. The invention provides for locating and monitoring the status of people and assets in environments where GPS systems do not operate, or where operation is impaired or otherwise limited. The system and method uses inertial navigation to determine the location, motion and orientation of the personnel or assets and communicates with an external monitoring station to receive requests for location, motion orientation and status information and to transmit the location, motion orientation and status information to the monitoring station.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 22, 2014
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin E. Funk, Amrit Bandyopadhyay, Eric A. Kohn, Neil Goldsman, Carole A. Teolis, Gilmer L. Blankeship
  • Patent number: 8700322
    Abstract: A method and apparatus for using a predetermined portion of terrain elevation maps in a database for aiding in computing a three-dimensional position of a wireless station. Instead of using the entire terrain model of the earth or an entire country, the database consists of an incomplete model, which includes only the most populous areas or specific regions. This reduces the size of the information in the database, which in turn reduces the amount of time to compute the positions of the wireless device.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: April 15, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Wyatt Thomas Riley, Ardalan Heshmati
  • Patent number: 8689426
    Abstract: Aspects of the subject disclosure include, for example, obtaining a mechanical resonating structure comprising a compensating structure, where the compensating structure comprises one or more materials having an adaptive stiffness that reduces a variance in a resonating frequency of the mechanical resonating structure (f0), and adjusting at least one of a value of f0 of the obtained mechanical resonating structure or a value of a temperature for which temperature coefficient of frequency of the obtained mechanical resonating structure is approximately zero (T0) by altering a thickness of at least one targetable material of the mechanical resonating structure. Other embodiments are disclosed.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 8, 2014
    Assignee: Sand 9, Inc.
    Inventors: Florian Thalmayr, Jan H. Kuypers, Klaus Juergen Schoepf
  • Patent number: 8694248
    Abstract: Systems and methods for monitoring the accuracy of a global positioning system (GPS) receiver in a marine vessel utilize a GPS receiver receiving a plurality of satellite signals, calculating a global position of the GPS receiver based on the plurality of signals, and determining a signal to noise ratio (SNR) of each signal in the plurality of signals; and a control circuit having a computer readable medium having executable code, and being connected to the GPS receiver by a communication link. The control circuit calculates an average SNR of the plurality of signals and compares the average SNR to a threshold SNR. In one example the threshold SNR varies depending upon a number of satellites sending the plurality of signals and a speed at which the marine vessel is traveling.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: April 8, 2014
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, William R. Robertson
  • Patent number: 8688375
    Abstract: The present invention is directed to methods and systems for locating and monitoring the status of people and moveable assets, such as first responders, including firefighters and other public service personnel, and their equipment both indoors and out. The invention can provide for locating and monitoring the status of people and assets in environments where GPS systems do not operate, or where operation is impaired or otherwise limited. The system and method uses inertial navigation to determine the location, motion and orientation of the personnel or assets and communicates with an external monitoring station to receive requests for location, motion orientation and status information and to transmit the location, motion orientation and status information to the monitoring station.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: April 1, 2014
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin E. Funk, Amrit Bandyopadhyay, Eric A. Kohn, Neil Goldsman, Carole A. Teolis, Gilmer L. Blankenship
  • Patent number: 8666661
    Abstract: A system and method for video navigation are disclosed. Motion analysis can be performed upon camera images to determine movement of a vehicle, and consequently present position of the vehicle. Feature points can be identified upon a video image. Movement of the feature points between video frames is indicative of movement of the vehicle. Video navigation can be used, for example, in those instances wherein GPS navigation is unavailable.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: March 4, 2014
    Assignee: The Boeing Company
    Inventor: Robert P. Higgins
  • Publication number: 20140031980
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Application
    Filed: November 9, 2012
    Publication date: January 30, 2014
    Inventors: Jens-Steffen Gutmann, Dhiraj Goel, Mario E. Munich
  • Patent number: 8635023
    Abstract: Aspects of the disclosure relate generally to localizing mobile devices. In one example, a first location method associated with a first accuracy value may be used to estimate a location of the mobile device. A confidence circle indicative of a level of confidence in the estimation of the location is calculated. The confidence circle may be displayed on a mobile device. When other location methods become available, the size of the displayed confidence circle may be expanded based on information from an accelerometer of the client device or the accuracy of the other available location methods. This may be especially useful when the mobile device is transitioning between areas which are associated with different location methods that may be more or less accurate.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: January 21, 2014
    Assignee: Google Inc.
    Inventors: Sorelle Alaina Friedler, Mohammed Waleed Kadous, Andrew Lookingbill
  • Publication number: 20130297204
    Abstract: A technique for calibrating sensor data used for dead reckoning positioning comprises the steps of simultaneously recording sensor data of at least one dead reckoning positioning sensor and position data of a position sensor during travel, comparing a first travel path derived from the position data with a second travel path derived from the sensor data, and calibrating the sensor data based on the comparison.
    Type: Application
    Filed: November 8, 2010
    Publication date: November 7, 2013
    Applicant: ELEKTROBIT AUTOMOTIVE GMBH
    Inventor: Florian Bartels
  • Patent number: 8566032
    Abstract: Methods and apparatuses for estimating a user's altitude with respect to the mean sea level are provided. According to some aspects, the present invention is able to estimate altitude in both open sky as well as in degraded GPS signal environments such as dense urban canyon environments where GPS performance is affected by fewer available satellites and/or multipath error. According to other aspects, the present invention uses data from a pressure sensor to estimate altitude, either with or without the use of GPS aiding data. According to further aspects, estimated altitude is integrated with other types of dead reckoning data to provide user context detection pertaining to changes of altitude.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: October 22, 2013
    Assignee: CSR Technology Holdings Inc.
    Inventors: Mahesh Chowdhary, Arun Kumar, Manish Sharma, Ashutosh Pande, Mahaveer Jain, Gagan Narula, Chinmay Agarwal, Kolin Paul
  • Patent number: 8565984
    Abstract: A steering system for a work vehicle towing a towed implement is described. A steering control unit is coupled to a location signal generation arrangement on the vehicle, a steering actuator, a memory for storing desired path data of the implement and a slope sensor for detecting a lateral inclination of the work vehicle or the implement. The steering control unit calculates a lateral offset compensation value to steer the work vehicle such that the implement is moved on the desired path and a slope offset compensation value based upon a signal from the tilt sensor to compensate for slope forces pulling the implement down a lateral slope. A steering signal is sent to the steering actuator based upon the lateral offset compensation value and the slope offset compensation value.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: October 22, 2013
    Assignee: Deere & Comany
    Inventors: Robert Lynn Mayfield, Andrew Karl Wilhem Rekow
  • Patent number: 8560233
    Abstract: A method of determining a GPS position fix is disclosed together with a corresponding GPS receiver and server for the same. The method comprising the steps of: (i) providing standard GPS ephemeris corresponding to that transmitted by a GPS satellite; (ii) providing supplemental GPS ephemeris including at least one parameter describing the fluctuation over time of at least one satellite orbit parameter of standard GPS ephemeris; (iii) measuring psuedoranges to GPS satellites; and (iv) determining a GPS position fix from both the standard and supplemental GPS ephemeris provided in steps (i) and (ii) respectively and the psuedoranges measured in step (iii).
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: October 15, 2013
    Assignee: NXP B.V.
    Inventors: Amites Sarkar, Andrew T. Yule
  • Patent number: 8543329
    Abstract: An apparatus includes a display displaying a first map representing a position of the apparatus obtained as a result of a first positioning, and further displaying a second map representing the position of the apparatus and being obtained as a result of a second positioning which is started before displaying the first map, the second map being displayed without responding to a request for displaying the position of the apparatus obtained as a result of the second positioning.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: September 24, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Keiichi Hirano
  • Patent number: 8498758
    Abstract: Present novel and non-trivial system, device, and method for generating altitude data and/or height data are disclosed. A processor receives navigation data from an external source such as a global positioning system (“GPS”); receives navigation data from multiple internal sources; receives object data representative of terrain or surface feature elevation; determines an instant measurement of aircraft altitude as a function of these inputs; and generates aircraft altitude data responsive to such determination. In an additional embodiment, the processor receives reference point data representative of the elevation of the stationary reference point (e.g., a landing threshold point); determines an instant measurement of aircraft height as a function of this input and the instant measurement of aircraft altitude; and generates aircraft height data responsive to such determination.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: July 30, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Douglas A Bell, James H. Doty, Sarah Barber, Felix B. Turcios
  • Patent number: 8478492
    Abstract: Embodiments of the present invention are directed to a method and system for performing non-contact based determination of the position of an implement. In one embodiment, a non-contact based measurement system is used to determine the relative position of an implement coupled with a mobile machine. The geographic position of the mobile machine is determined and the geographic position of said implement based upon the geographic position of the mobile machine and the position of the implement relative to the mobile machine.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: July 2, 2013
    Assignee: Caterpillar Trimble Control Technologies, Inc.
    Inventors: Arthur James Taylor, Mark Nichols, Philip Jackson
  • Patent number: 8447518
    Abstract: A current position detector for a vehicle includes: an angular speed sensor; a speed sensor; a GPS receiver; a traveling trajectory estimating element for estimating a relative trajectory based on an orientation change amount and a traveling distance, and for estimating a traveling trajectory based on the relative trajectory and a GPS signal; and an error estimating element for estimating and correcting each error of an angular speed signal, a speed signal and the GPS signal. The error estimating element estimates a gain error of the angular speed signal such that an attachment angle gain error attributed to an attachment angle of the angular speed sensor and an angular speed gain error attributed to a non-linear gain property of the angular speed sensor are independently estimated.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: May 21, 2013
    Assignee: DENSO CORPORATION
    Inventor: Hideki Tanino
  • Patent number: 8447520
    Abstract: Device for aiding the navigation and guidance of an aircraft, and system comprising such a device. The device (1) comprises at least three independent channels and it comprises at least one computer (2) which contains means (4) for storing and means (6, 7) for calculating positions and deviations.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 21, 2013
    Assignee: Airbus Operations (SAS)
    Inventors: Josep Gine I Cortiella, Jean-Philippe Huynh
  • Patent number: 8442791
    Abstract: A position for a vehicle is corrected by detecting landmarks on the journey route and correcting the measured vehicle position when a landmark of this kind has been identified. The landmarks are stored in a database in the vehicle with associated exact GPS positions. When a landmark is reached, the associated exact GPS position is compared with the position measured in the vehicle, whereupon the measured position is corrected. In this way, the position finding can be improved.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: May 14, 2013
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Ulrich Stählin
  • Publication number: 20130116921
    Abstract: A vehicle navigation system includes a GNSS position engine (GPE) that uses GNSS satellite measurements to compute a first position and velocity of a vehicle and a first quality metric associated with the position and velocity. The system also includes a dead reckoning engine (DRE) that operates parallel with the GPE that computes a second position and velocity and a second quality metric associated with the dead reckoning. The GPE is configured to use the second position and velocity to detect a set of outliers in an incoming GNSS measurement; use the second position and velocity as an initial estimate of its position and velocity for a particular time instant, which is then refined by GNSS measurements received at that particular time instant; and to replace the first position and velocity with the second position and velocity.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 9, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Texas Instruments Incorporated
  • Patent number: 8370028
    Abstract: A GPS sensor senses a current position of a vehicle. A map database stores map data. A controller obtains road information of a road ahead of the vehicle from the map data based on the sensed current position of the vehicle. Then, the controller measures a distance from the vehicle to a predetermined object, which serves as a sensing subject, on the road when the obtained road information is predetermined road information. Then, the controller outputs the measured distance as control information of the vehicle.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: February 5, 2013
    Assignee: Denso Corporation
    Inventor: Kazunao Yamada
  • Patent number: 8332137
    Abstract: A navigation system includes a pressure sensor, a calibration module in communication with the pressure sensor, and an altitude module in communication with the calibration module. The calibration module is configured to determine a dynamic pressure proportionality coefficient based at least in part on a static pressure proportionality coefficient, a measured pressure value from the pressure sensor, and a velocity value. The altitude module is configured to calculate a sensor-based altitude value based at least in part on the determined dynamic pressure proportionality coefficient.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: December 11, 2012
    Assignee: Qualcomm Incorporated
    Inventors: SaiPradeep Venkatraman, Quanwei Liu, Lionel Garin
  • Patent number: 8271191
    Abstract: Methods and systems for determining reliability of Global Positioning System (GPS) ground speed. An example system receives GPS track information and GPS ground speed, determines a change in GPS track information and determines reliability of the GPS ground speed based on the determined change in GPS track information relative to the GPS ground speed. The system sets a GPS ground speed based on the determined reliability. A GPS ground speed output is set to zero, if the GPS ground speed is determined unreliable and the GPS ground speed output is set to the GPS ground speed, if the GPS ground speed is determined reliable. The system sends the GPS ground speed output to a Runway Awareness and Advisory System (RAAS). Also, the system sets the GPS ground speed output to zero, if a received GPS ground speed validity signal or a received GPS track validity signal indicate invalid.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: September 18, 2012
    Assignee: Honeywell International Inc.
    Inventors: Yasuo Ishihara, Kevin J Conner, Steve C. Johnson
  • Patent number: 8244450
    Abstract: Vehicle position information providing devices, methods, and programs acquire a first current position of a vehicle based on a radio signal received from a GPS satellite and acquire a second current position of the vehicle based on a signal received by a communication device that communicates over a mobile phone network. The devices, methods, and programs determine whether the first current position and the second current position coincide. If the first current position and the second current position do not coincide, the devices, methods, and programs cause the communication device to transmit information relating to the first current position to an information center.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: August 14, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Hiroki Ishikawa, Yukio Yamamoto, Toshihiro Kano
  • Patent number: 8229663
    Abstract: A vehicle awareness system for monitoring remote vehicles relative to a host vehicle. The vehicle awareness system includes at least one object sensing device and a vehicle-to-vehicle communication device. A data collection module is provided for obtaining a sensor object data map and vehicle-to-vehicle object data map. A fusion module merges the sensor object data map and vehicle-to-vehicle object data map for generating a cumulative object data map. A tracking module estimates the relative position of the remote vehicles to the host vehicle.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Shuqing Zeng, Hariharan Krishnan, Varsha Sadekar
  • Patent number: 8209121
    Abstract: The present invention provides systems and methods for improving the accuracy of location data, such as GPS data. In an embodiment, the present invention adjusts coordinates by receiving a sequence of coordinates corresponding to a plurality of locations; identifying in a map database, for each location, polyline features within a distance from the coordinates for the location; calculating emission probabilities for the polyline features; calculating transition probabilities for the polyline feature; and adjusting the coordinates for the plurality of locations so that the adjusted coordinates correspond to polyline features belonging to a sequence of polyline features selected, based on the emission probabilities and the transition probabilities, to be the most likely sequence of polyline features that correspond to the sequence of coordinates.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: June 26, 2012
    Assignee: Google Inc.
    Inventor: Abhijit Ogale
  • Patent number: 8140266
    Abstract: Based on positioning accuracy of an own vehicle required for appropriately carrying out assistance control carried out according to a position of the own vehicle, an execution condition for map matching correcting the position of the own vehicle is set. Specifically, setting is made in such a manner that, as the positioning accuracy is higher and an error thereof is smaller, an execution frequency of map matching becomes higher. Then, map matching is carried out according to the thus-set execution condition.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 20, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aisin AW Co., Ltd.
    Inventors: Motohiro Nakamura, Kiyokazu Okada, Hidenobu Suzuki, Masaki Nakamura, Makoto Hasunuma