Velocity Patents (Class 701/507)
  • Patent number: 12240522
    Abstract: The present invention provides a real-time path planning method taking into account dynamic properties of vehicles; the method includes a calculation without connecting to internet of a reachable set and an online path planning; in the calculation without connecting to internet of the reachable set, all vehicle safety states are traversed by means of the vehicle model and the wheel model, thereby predicting the position set capable of being reached by the vehicle at a next moment; in the online path planning, by means of calculating the position set capable of being reached by the vehicle at the next moment with connecting to internet, non-linear dynamic constraints are provided for the exploration of the artificial potential field method, achieving the purpose of real-time planning while taking into account dynamic properties of the vehicles.
    Type: Grant
    Filed: October 14, 2023
    Date of Patent: March 4, 2025
    Assignee: Tongji University
    Inventors: Hong Chen, Lin Zhang, Rongjie Yu, Qiang Meng, Jinlong Hong
  • Patent number: 12017864
    Abstract: A transport system for transporting containers along a transport path in a transport direction includes first and second transporters that define first and second transport-path sections, at least one of which follows a circular arc. A third transport-path section between the first and second transport-path sections comprises an adjustable transition curve.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: June 25, 2024
    Assignee: KHS GmbH
    Inventors: Olaf Muszinski, Andreas Fahldieck, Thomas Stolte, Dominik Weirich
  • Patent number: 11435425
    Abstract: A method of calibrating an inertial measurement unit, the method comprising: (a) collecting data from the inertial measurement unit while stationary as a first step; (b) collecting data from the inertial measurement unit while repositioning the inertial measurement unit around three orthogonal axes of the inertial measurement unit as a second step; (c) calibrating a plurality of gyroscopes using the data collected during the first step and the second step; (d) calibrating a plurality of magnetometers using the data collected during the first step and the second step; (e) calibrating a plurality of accelerometers using the data collected during the first step and the second step; (f) where calibrating the plurality of magnetometers includes extracting parameters for distortion detection and using the extracted parameters to determine if magnetic distortion is present within a local field of the inertial measurement unit.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: September 6, 2022
    Assignee: TECHMAH MEDICAL LLC
    Inventor: Mohamed R. Mahfouz
  • Patent number: 10996742
    Abstract: An AR/VR input device include a processor(s), an internal measurement unit (IMU), and a plurality of sensors configured to detect emissions received from a plurality of remote emitters. The processor(s) can be configured to: determine a time-of-flight (TOF) of the detected emissions, determine a first estimate of a position and orientation of the input device based on the TOF of a subset of the detected emissions and the particular locations of each of the plurality of sensors on the input device that are detecting the detected emissions, determine a second estimate of the position and orientation of the input device based on the measured acceleration and velocity from the IMU, and continuously update a calculated position and orientation of the input device within the AR/VR environment in real-time based on a Beyesian estimation (e.g., Extended Kalman filter) that utilizes the first estimate and second estimate.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 4, 2021
    Assignee: Logitech Europe S.A.
    Inventors: Andreas Connellan, Arash Salarian, Fergal Corcoran, Jacques Chassot, Jerry Ahern, Laleh Makarem, Mario Gutierrez, Maxim Vlasov, Olivier Guédat, Padraig Murphy, Richard Perring
  • Patent number: 10719983
    Abstract: A method, product and system for three dimensional map generation based on crowdsourced positioning readings. The method comprising obtaining a plurality of positioning readings of a plurality of mobile devices. Each reading of the plurality of positioning readings is indicative of an altitude, latitude and longitude of a mobile device, and is determined using one or more sensors of the mobile device. The method comprises clustering the plurality of positioning readings to determine clusters of positioning readings. for each cluster, an altitude value is computed, based on an altitude of each positioning reading in the cluster, whereby determining an estimated altitude based on non-accurate altitude readings. The three-dimensional map is generated based on the plurality of positioning readings and the altitude value of each cluster.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: July 21, 2020
    Assignee: ANAGOG LTD.
    Inventors: Gil Levy, Yaron Aizenbud
  • Patent number: 10071743
    Abstract: A road curve guidance method is provided. The road curve guidance method includes: obtaining link information corresponding to a road on which a vehicle is being driven; determining a position of the vehicle on a link at a future time point based on the obtained link information; and judging a degree of risk of a curve section in which the vehicle is to be driven after a predetermined time using the determined position and speed of the vehicle at a reference time point.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: September 11, 2018
    Assignee: THINKWARE CORPORATION
    Inventor: Suk Pil Ko
  • Patent number: 9534869
    Abstract: A method for the inertial navigation of a projectile equipped with a mediocre-quality inertial init that is fired from a carrier equipped with a precision inertial unit includes, before firing the projectile, the biases of the accelerometers and of the gyrometers of the inertial unit of the projectile are determined using the inertial unit of the carrier. During the inertial navigation of the projectile, the measurements of the accelermeters and of the gyrometers output by the inertial unit of the projectile are corrected by the biases determined before launching.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: January 3, 2017
    Assignee: MBDA FRANCE
    Inventors: Bruno de Araujo, Vincent Guibout, Eric Larcher
  • Patent number: 8990014
    Abstract: Methods, systems, and computer readable storage media are presented for directional scaling of inertial path data to satisfy ranging constraints. The presented techniques take into account scaling confidence information. In addition to bounding potential scale corrections based on the reliability of the inertial path and the magnetic heading confidence, the techniques bound potential scale parameters based on constraints and solve for directional scale parameters.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 24, 2015
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin Funk, Dan Hakim, John Karvounis, Carole Teolis
  • Patent number: 8812235
    Abstract: Embodiments of the present invention provide improved systems and methods for estimating N-dimensional parameters while sensing fewer than N dimensions. In one embodiment a navigational system comprises a processor and an inertial measurement unit (IMU) that provides an output to the processor, the processor providing a navigation solution based on the output of the IMU, wherein the navigation solution includes a calculation of an n-dimensional parameter. Further, the navigational system includes at most two sensors that provide an output to the processor, wherein the processor computes an estimate of an n-dimensional parameter from the output of the at most two sensors for bounding errors in the n-dimensional parameter as calculated by the processor when the trajectory measured by the IMU satisfies movement requirements, wherein “n” is greater than the number of the at most two sensors.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: August 19, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ryan Ingvalson, Wesley J. Hawkinson, Robert C. McCroskey, Paul Samanant
  • Publication number: 20140195152
    Abstract: A system and method for determination of a vehicle or crafts velocity uses on-board time dilation measurements of a moving signal generator and signal generator movement measurements to determine a velocity vector of a craft or vehicle.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Inventor: Robert S. Neiswander
  • Patent number: 8756001
    Abstract: A navigation module and method for providing an INS/GNSS navigation solution for a moving platform is provided, comprising a receiver for receiving absolute navigational information from an external source (e.g., such as a satellite), means for obtaining speed or velocity information and an assembly of self-contained sensors capable of obtaining readings (e.g., such as relative or non-reference based navigational information) about the moving platform, and further comprising at least one processor, coupled to receive the output information from the receiver, sensor assembly and means for obtaining speed or velocity information, and operative to integrate the output information to produce a navigation solution. The at least one processor may operate to provide a navigation solution by using the speed or velocity information to decouple the actual motion of the platform from the readings of the sensor assembly.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 17, 2014
    Assignee: Trusted Positioning Inc.
    Inventors: Jacques Georgy, Aboelmagd Noureldin
  • Patent number: 8744700
    Abstract: A device comprising a processor that detects an autonomously sensed change in a vehicle's operational state from an initial state characterized by a sensed vehicle speed equal to about 0; to an immediately succeeding vehicle state characterized by sensed vehicle speed being greater than about 0 and, verification from a reverse operating mode sensor that longitudinal vehicle speed is in a reverse direction; and presumptively signals the thusly detected change of vehicle operational state as an instance of reverse operation of the associated vehicle.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: June 3, 2014
    Inventors: Darren Beams, Neil Cawse
  • Patent number: 8649978
    Abstract: Provided is a velocity calculating device including a vertical acceleration detector that detects a vertical acceleration generated due to an undulation of a contact surface; a horizontal angular velocity detector that detects a horizontal angular velocity generated due to the undulation; a correlation coefficient calculator that calculates a correlation coefficient that represents a degree to which an acceleration in the direction of travel is mixed into the vertical acceleration in accordance with an attachment angle; a true vertical acceleration detector that calculates a true vertical acceleration by subtracting the acceleration in the direction of travel mixed into the vertical acceleration from the vertical acceleration, the acceleration in the direction of travel mixed into the vertical acceleration being calculated using the correlation coefficient; and a velocity calculator that calculates a velocity of a moving body on the basis of the true vertical acceleration and the horizontal angular velocity.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: February 11, 2014
    Assignee: Sony Corporation
    Inventor: Tomohisa Takaoka
  • Patent number: 8612146
    Abstract: A system comprises a gyroscope configured to produce a gyroscope signal, an accelerometer configured to produce an accelerometer signal, and a filter unit coupled to the gyroscope and having a configurable bandwidth. The filter unit configured to filter the gyroscope signal. The system also comprises control logic that is configured to alter the bandwidth of the filter unit based on the accelerometer signal.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: December 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Deric W. Waters, Tarkesh Pande
  • Patent number: 8559491
    Abstract: A method for measuring certain parameters of the impulse response of a propagation channel involving emitters and reflectors that are fixed or mobile, and for detecting and determining the parameters regarding the position and kinematics of the emitters and reflectors, or for auto-locating the reception system implementing the invention, in a system comprising N sensors receiving signals from the emitters or from the reflection on the reflectors. The method determines an ambiguity function which couples the spatial analysis and the delay-distance/Doppler-kinematic analysis, and determines at least one sufficient statistic ?(l,m,K) corresponding to the correlation between the known signal s(kTe) corresponding to the complex envelope of the signal emitted and the output of a filter w(l,m) where l corresponds to a temporal assumption and m corresponds to a frequency assumption.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: October 15, 2013
    Assignee: Thales
    Inventors: Pascal Chevalier, François Delaveau, François Pipon
  • Patent number: 8473208
    Abstract: Provided is a velocity calculating device including a vertical acceleration detector mounted on a moving body that travels on a predetermined travel surface, the vertical acceleration detector detecting an acceleration in a vertical direction generated due to an undulation of the travel surface; a horizontal angular velocity detector mounted on the moving body, the horizontal angular velocity detector detecting an angular velocity around a horizontal axis that is perpendicular to a direction of travel of the moving body, the angular velocity being generated due to the undulation of the travel surface; a velocity calculator that calculates a velocity of the moving body in the direction of travel of the moving body on the basis of the acceleration in the vertical direction and the angular velocity around the horizontal axis; and a velocity corrector that corrects the velocity in accordance with the velocity.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: June 25, 2013
    Assignee: Sony Corporation
    Inventor: Tomohisa Takaoka
  • Patent number: 8380433
    Abstract: Embodiments of the invention provide a blending filter based on extended Kalman filter (EKF), which optimally integrates the IMU navigation data with all other satellite measurements tightly-coupled integration filter. This blending filter can be easily implemented with minor modification to the position engine of stand-alone GNSS receiver. Provided is a low-complexity tightly-coupled integration filter for sensor-assisted global navigation satellite system (GNSS) receiver. The inertial measurement unit (IMU) contains inertial sensors such as accelerometer, magnetometer, and/or gyroscopes Embodiments also include method for pedestrian dead reckoning (PDR) data conversion for ease of GNSS/PDR integration. The PDR position data is converted to user velocity measured at the time instances where GNSS position/velocity estimates are available.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: February 19, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: June Chul Roh, Deric W. Waters, Srinath Hosur, Goutam Dutta
  • Patent number: 8374788
    Abstract: Embodiments of the invention provide methods to calibrate a tightly-coupled integration filter for inertial sensor-assisted GNSS (global navigation satellite system) receiver. The inertial measurement unit (IMU) contains inertial sensors such as accelerometer, magnetometer, and/or gyroscopes. Embodiments include creating a coordinate transformation matrix using a latest position fix (latitude and longitude). Transforming state variables to a local navigation coordinate using coordinate transformation matrix. The state variables of the integration filter which include speed scale-factor and/or heading bias are estimated. A blended calibrated position fix is outputted.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 12, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: June Chul Roh
  • Patent number: 8374783
    Abstract: Systems and methods for determining a position of a vehicle are described. The system includes at least one GNSS sensor mounted to the vehicle for receiving GNSS signals of a global positioning system and at least one physical sensor mounted to the vehicle for generating physical data indicative of a physical parameter of at least a part of the vehicle. The system also includes a recursive statistical estimator, such as a Kalman Filter, in communication with the GNSS sensor(s) for seeding the recursive statistical estimator with an output of the GNSS sensor(s) to determine an estimated position of the vehicle. A data fusion module combines the estimated position and velocity of the vehicle with the physical data thus generating combined data, which is used to seed the recursive statistical estimator to determine an updated estimated position of the vehicle.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 12, 2013
    Assignee: Leica Geosystems AG
    Inventors: Frank Takac, Oliver Zelzer, William James Kellar
  • Patent number: 8346469
    Abstract: A method and apparatus for determining protection levels in a satellite navigation system includes the following steps: (1) determining an integrity risk at the alert limit for a plurality of application situations—for example, starting from approaches in category I (Category I precision approach) up to the operation “oceanic enroute;” (2) determining an interval of the alert limits between the largest set of alert limits which produces too high an integrity risk, and the smallest set of alert limits which produces an acceptable integrity risk; and (3) carrying out an interval nesting for the interval of the alert limits that was determined in the previous step, the integrity risk between the horizontal and the vertical being divided in the same way as it is obtained from the relationship between these integrity risks in the largest set of alert limits.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: January 1, 2013
    Assignee: Astrium GmbH
    Inventor: Hans Trautenberg
  • Patent number: 8332137
    Abstract: A navigation system includes a pressure sensor, a calibration module in communication with the pressure sensor, and an altitude module in communication with the calibration module. The calibration module is configured to determine a dynamic pressure proportionality coefficient based at least in part on a static pressure proportionality coefficient, a measured pressure value from the pressure sensor, and a velocity value. The altitude module is configured to calculate a sensor-based altitude value based at least in part on the determined dynamic pressure proportionality coefficient.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: December 11, 2012
    Assignee: Qualcomm Incorporated
    Inventors: SaiPradeep Venkatraman, Quanwei Liu, Lionel Garin
  • Patent number: 8296065
    Abstract: A system vitally determines a position of a train. The system includes a plurality of diverse sensors, such as tachometers and accelerometers, structured to repetitively sense at least change in position and acceleration of the train, a global positioning system sensor, which is diverse from each of the diverse sensors, structured to repetitively sense position of the train, and a track map including a plurality of track segments which may be occupied by the train. A processor cooperates with the diverse sensors, the global positioning system sensor and the track map. The processor includes a routine structured to provide measurement uncertainty for each of the diverse sensors and the global positioning system sensor. The routine cross-checks measurements for the diverse sensors, and cross-checks the global positioning system sensor against the track map. The routine provides the vitally determined position of the train and the uncertainty of the vitally determined position.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Ansaldo STS USA, Inc.
    Inventors: Michael B. Haynie, William R. Laurune
  • Publication number: 20120191345
    Abstract: Embodiments of the invention provide methods to calibrate a tightly-coupled integration filter for inertial sensor-assisted GNSS (global navigation satellite system) receiver. The inertial measurement unit (IMU) contains inertial sensors such as accelerometer, magnetometer, and/or gyroscopes. Embodiments include creating a coordinate transformation matrix using a latest position fix (latitude and longitude). Transforming state variables to a local navigation coordinate using coordinate transformation matrix. The state variables of the integration filter which include speed scale-factor and/or heading bias are estimated. A blended calibrated position fix is outputted.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 26, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: June Chul Roh
  • Patent number: 8224575
    Abstract: A method for processing data in an inertial navigation system having a Kalman filter and computer-readable storage medium containing instructions to configure a processor to perform the same. The method produces more accurate estimates of the position, velocity and attitude of the inertial measurement unit. The method is fully automatic and enables zero-velocity updates and fixed-azimuth updates to be performed simultaneously. The method may also include a multi-stage filtering process to filter digital compass data when used in an environment with extraterrestrial magnetic field sources. The method may also include a fixed-lag smoother to improve estimates of the position, velocity and attitude of the inertial measurement unit. The method also may include processes to constrain altitude errors.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 17, 2012
    Assignee: ENSCO, Inc.
    Inventors: W. Todd Faulkner, Stephen R. Chestnut, David W. A. Taylor
  • Patent number: 8160816
    Abstract: According to a vehicular behavior determination device (100) of the present invention, an angular velocity vector ?(k) which represents an angular velocity around each of 3 axes of a vehicle (1) can be determined in high accuracy on the basis of a temporal variation mode of a posture vector psti(k) (i=x, y, z) which represents a posture of the vehicle (1) in a global coordinate system in an attempt to curtail a manufacture cost and size of the vehicle (1) by avoiding the usage of a 3-axis gyro sensor which is relatively expensive in price and large in size.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: April 17, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazunori Kanai, Ken Oiwa