Azimuth Patents (Class 701/508)
  • Patent number: 11853078
    Abstract: An autonomous work system comprises a plurality of autonomous work machines. The plurality of autonomous work machines each comprises: a distance specifying unit configured to specify a distance to another autonomous work machine based on image information obtained by imaging surroundings; and a communication unit configured to receive a GNSS signal of a self-machine, and GNSS signal information that has been acquired based on a GNSS signal that has been received by the another autonomous work machine and position information of the another autonomous work machine; and a position specifying unit configured to specify a self-position in a self-work area, based on the position information of the another autonomous work machine and a distance to the another autonomous work machine.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: December 26, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Toru Kawai
  • Patent number: 11442188
    Abstract: A method for imaging a downhole formation. The method includes combining the captured images to generate a partial image of the formation, wherein the partial image includes captured images separated by gaps representing portions of the formation not captured with sensors what were disposed downhole. The method includes locating dips in the formation within the partial image and interpolating the partial image using the located dips within the partial image.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: September 13, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Nam Nguyen, David Orlando Torres, Gary Wayne Kainer
  • Patent number: 11118937
    Abstract: Described is a system for adaptive calibration of a sensor of an inertial measurement unit. Following each sensor measurement, the system performs automatic calibration of a multi-axis sensor. A reliability of a current calibration is assessed. If the current calibration is reliable, then bias and scale factor values are updated according to the most recent sensor measurement, resulting in updated bias and scale factor values. If the current calibration is not reliable, then previous bias and scale factor values are used. The system causes automatic calibration of the multi-axis sensor using either the updated or previous bias and scale factor values.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: September 14, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Adour V. Kabakian, Shuoqin Wang, Logan D. Sorenson, Hung Nguyen, Raviv Perahia
  • Patent number: 10408622
    Abstract: Described is a system for incremental trajectory estimation of an implement. During operation, the system determines a time span of each stationary period of the implement based on accelerometer and gyroscopic data. Gyroscopic bias is then estimated based on the time span and gyroscopic data. An attitude of the implement is then estimated at each time step based on the estimated gyroscopic bias and gyroscopic data. Further, a traveling distance of the implement is estimated. Finally, a trajectory of the implement is estimated based on the estimated attitude and traveling distance. Given the trajectory estimate, an implement (e.g., drilling platform, vehicle, etc.) can be caused to alter its direction based on the trajectory estimate.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 10, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Shuoqin Wang, Logan D. Sorenson, Hung Nguyen, David Chang, Raviv Perahia
  • Patent number: 8990014
    Abstract: Methods, systems, and computer readable storage media are presented for directional scaling of inertial path data to satisfy ranging constraints. The presented techniques take into account scaling confidence information. In addition to bounding potential scale corrections based on the reliability of the inertial path and the magnetic heading confidence, the techniques bound potential scale parameters based on constraints and solve for directional scale parameters.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 24, 2015
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin Funk, Dan Hakim, John Karvounis, Carole Teolis
  • Patent number: 8762000
    Abstract: In a method for operating an at least semi-active chassis of a vehicle, a height profile of a road course which lies ahead in driving direction of the vehicle is determined with at least one sensor unit and at least one actuating unit of the vehicle is proactively controlled with the control unit, wherein an actual obstacle of the road course, which is displayed in the determined height profile is assigned to one of multiple predefined and store categories and a predetermined control signal is transmitted to the at least actuating unit based on the assigned category, wherein the actuating unit executes the control signal.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: June 24, 2014
    Assignee: Audi AG
    Inventors: Andrease Schindler, Christoph Göhrle, Oliver Sawodny
  • Patent number: 8665122
    Abstract: System for detection and depiction of objects in the path of marine vessels and for warning about objects that may constitute a risk to the navigational safety. The system includes a sweeping unit for illumination of objects within the field of view of the system, including a light source which emits a beam within the field of view of the system, an optical sensor and pulse processing unit including optical detectors for monitoring of the beam output power and generation of a start pulse for measurement of distance, for detection/reception of radiant energy reflected from objects, including measurement of distance to the reflecting object(s) based on the time delay between emitted and reflected light, including energy and peak effect of the pulses.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 4, 2014
    Assignee: Kongsberg Seatex AS
    Inventor: John O. Klepsvik
  • Patent number: 8645056
    Abstract: A system and method for controlling a display of geographical data on a primary display device to assist in navigating a mobile platform such as an aircraft, ship, train, land-based motor vehicle, etc. The system includes a graphical user interface module (GUI) for receiving a plurality of user inputs, and an image control module. The GUI generates a primary display of the complete route being traveled on the primary display device. If the entire route does not fit on the display device, then the image control module generates data that the GUI uses to generate a context display on the primary display device. The context display presents the entire route as a smaller image on the primary display device, simultaneously with the primary display. The user inputs for the GUI enable the user to zoom, pan and perform other image control operations on either the primary display or the context display.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: February 4, 2014
    Assignee: The Boeing Company
    Inventors: Patrick Ralf Wipplinger, Jens Schiefele, Thorsten Wiesemann
  • Patent number: 8527485
    Abstract: A system for processing information relating to a vehicle includes one or more electronic control units which can be connected to one another through a vehicle network. The system includes an electronic control device adapted to interface to and exchange data with the network and a nomadic device adapted to exchange data with the electronic device, wherein the electronic control device includes an automatic configuration module adapted to automatically detect parameters of the network so as to retrieve a network database of the vehicle. The network database includes the information required for properly interpreting the data circulating in the network.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: September 3, 2013
    Assignee: RE:LAB S.R.L.
    Inventors: Stefano Marzani, Francesco Lolli, Lorenzo Fantesini
  • Patent number: 8374783
    Abstract: Systems and methods for determining a position of a vehicle are described. The system includes at least one GNSS sensor mounted to the vehicle for receiving GNSS signals of a global positioning system and at least one physical sensor mounted to the vehicle for generating physical data indicative of a physical parameter of at least a part of the vehicle. The system also includes a recursive statistical estimator, such as a Kalman Filter, in communication with the GNSS sensor(s) for seeding the recursive statistical estimator with an output of the GNSS sensor(s) to determine an estimated position of the vehicle. A data fusion module combines the estimated position and velocity of the vehicle with the physical data thus generating combined data, which is used to seed the recursive statistical estimator to determine an updated estimated position of the vehicle.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 12, 2013
    Assignee: Leica Geosystems AG
    Inventors: Frank Takac, Oliver Zelzer, William James Kellar
  • Patent number: 8296065
    Abstract: A system vitally determines a position of a train. The system includes a plurality of diverse sensors, such as tachometers and accelerometers, structured to repetitively sense at least change in position and acceleration of the train, a global positioning system sensor, which is diverse from each of the diverse sensors, structured to repetitively sense position of the train, and a track map including a plurality of track segments which may be occupied by the train. A processor cooperates with the diverse sensors, the global positioning system sensor and the track map. The processor includes a routine structured to provide measurement uncertainty for each of the diverse sensors and the global positioning system sensor. The routine cross-checks measurements for the diverse sensors, and cross-checks the global positioning system sensor against the track map. The routine provides the vitally determined position of the train and the uncertainty of the vitally determined position.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Ansaldo STS USA, Inc.
    Inventors: Michael B. Haynie, William R. Laurune
  • Patent number: 8290644
    Abstract: In a method for aiding aircraft landing using a GPS and an MLS within the context of a computed axial approach, the method uses coordinates of an azimuth antenna and/or of an elevation antenna as a reference point for the computation of a position of the aircraft in a reference frame centered on the landing runway. This position of the aircraft is thereafter used to determine an angle of azimuth between a longitudinal axis of the landing runway and the aircraft.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 16, 2012
    Assignee: Thales
    Inventor: Ludovic Bouquet
  • Patent number: 8249807
    Abstract: Provided is a critical point method used to determine the points of a real-time stream of location data, such as Global Positioning System (GPS) data, that should be retained based on their importance in reconstructing the travel path of a mobile device. The method may run on a mobile device or on a server. When run on a mobile device, the method reduces the amount of data transferred between mediums by only transferring points that are critical to reconstructing the path of travel of the mobile device. This reduction saves power used in the wireless transmission and reception of the non-critical data and the bandwidth used while transmitting non-critical data. The method may be run every time a new position is calculated. When a new position is determined to be a critical point, the point is transmitted. If the new position is not a critical point, then the point is discarded.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 21, 2012
    Assignee: University of South Florida
    Inventors: Sean Barbeau, Philip L. Winters, Rafael Perez, Miguel Labrador, Nevine Georggi
  • Publication number: 20120197519
    Abstract: A navigation system and method for determining a location of a navigator in a navigation environment using coded markers located within the navigation environment. In one example, the navigation system includes a camera apparatus configured to obtain an image of a scene containing images of at least one coded marker in a navigation environment, video analytics configured to read the at least one coded marker, and a processor coupled to the video analytics and configured to determine a position fix of a navigator based on a known location of the at least one coded marker.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventor: James Joseph Richardson
  • Patent number: 8224575
    Abstract: A method for processing data in an inertial navigation system having a Kalman filter and computer-readable storage medium containing instructions to configure a processor to perform the same. The method produces more accurate estimates of the position, velocity and attitude of the inertial measurement unit. The method is fully automatic and enables zero-velocity updates and fixed-azimuth updates to be performed simultaneously. The method may also include a multi-stage filtering process to filter digital compass data when used in an environment with extraterrestrial magnetic field sources. The method may also include a fixed-lag smoother to improve estimates of the position, velocity and attitude of the inertial measurement unit. The method also may include processes to constrain altitude errors.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 17, 2012
    Assignee: ENSCO, Inc.
    Inventors: W. Todd Faulkner, Stephen R. Chestnut, David W. A. Taylor
  • Patent number: 8160816
    Abstract: According to a vehicular behavior determination device (100) of the present invention, an angular velocity vector ?(k) which represents an angular velocity around each of 3 axes of a vehicle (1) can be determined in high accuracy on the basis of a temporal variation mode of a posture vector psti(k) (i=x, y, z) which represents a posture of the vehicle (1) in a global coordinate system in an attempt to curtail a manufacture cost and size of the vehicle (1) by avoiding the usage of a 3-axis gyro sensor which is relatively expensive in price and large in size.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: April 17, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazunori Kanai, Ken Oiwa