Kalman Patents (Class 701/510)
  • Patent number: 11105655
    Abstract: A system and method for integrated data registration includes at least one host system and a first sensor where the first sensor provides a first input data. The system and method may further include a second sensor where the second sensor provides a second input data, a first navigation data source where the first navigation data source provides a third input data and a second navigation data source where the second navigation data source provides a fourth input data. The system and method may further include at least one non-transitory computer readable storage medium, in operative communication with the host system, first sensor, the second sensor, the first navigation source and the second navigation source, having at least one set of instructions encoded thereon that, when executed by at least one processor, performs operations to perform integrated data registration.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: August 31, 2021
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Wayne W. Altrichter
  • Patent number: 10871374
    Abstract: A device for estimating an aircraft's speed relative to the ground and heading, while making no use of the rotation of the Earth or of the Earth's magnetic field. The device comprises in particular a first linear estimator that hybridizes a measurement of the speed of the aircraft relative to the ground as provided by a global navigation satellite system (GNSS) receiver with measurements of the acceleration and the attitudes of the aircraft coming from an attitude and heading reference system (AHRS) device without a gyrocompass and without a magnetometer. The first estimator is made linear by replacing the single “heading error estimate ??” state of prior art embodiments with two states, namely estimates of the sine and of the cosine of the heading error.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 22, 2020
    Assignee: AIRBUS HELICOPTERS
    Inventors: Jean Paul Petillon, Julien Florens
  • Patent number: 10801861
    Abstract: The invention relates to a method for aligning an inertial navigation system borne by a static or quasi-static carrier, wherein: a plurality of alignment processes that are dimensioned for a plurality of amplitudes of movements of the carrier are implemented simultaneously with different alignment observation durations; a minimum observation duration that corresponds to the alignment observation duration for which the consistency of the alignment information obtained by means of alignment processes dimensioned for a given movement amplitude of the carrier is determined; and the alignment information is determined depending on alignment information determined for this minimum observation duration. The invention also relates to an associated inertial navigation system.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 13, 2020
    Assignee: SAFRAN ELECTRONICS & DEFENSE
    Inventor: Jean Luc Demange
  • Patent number: 10782418
    Abstract: The present invention provides a calculation method for visual navigation integrity monitoring. With the method, by use of an appropriate visual positioning model, a mathematical algorithm and rich navigation measurements, the positioning accuracy and availability of positioning results are improved, and the problem of insufficient performance of satellite integrity algorithms caused by impossible guarantee of availability of a GNSS in complex environments is solved, which is helpful to realize aircraft accurate approach and automatic landing and of great significance to ensure the safety of aviation flight.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: September 22, 2020
    Assignee: BEIHANG UNIVERSITY
    Inventors: Zhipeng Wang, Yanbo Zhu, Cong Du, Kun Fang, Qiang Li
  • Patent number: 10466081
    Abstract: An iterative method determines a bias of a sensor for measuring a substantially continuous physical vector field in a reference frame, in which the sensor is linked in movement to a frame that is mobile in the reference frame. An iteration of the method includes: estimating a bias value in the mobile frame, correcting a measurement from the sensor of the estimated bias value, in the mobile frame, transforming the corrected measurement of the mobile frame in the reference frame, from a rotational change of frame operator between the mobile frame and the reference frame, and forming a criterion representative of a variation of the transformed corrected measurement.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: November 5, 2019
    Assignee: Movea SAS
    Inventor: Joe Youssef
  • Patent number: 10345427
    Abstract: A method for tracking the navigation of a mobile carrier, in which an extended Kalman filter estimates, over successive iterations, a navigation state of the carrier. Each iteration propagates a previous navigation state of the carrier into a propagated state, updates the propagated state according to measurements acquired by at least one navigation sensor. The updating includes: calculating a linear correction term from an innovation representative of a difference between the measurements acquired by the navigation sensor and the propagated state, calculating an exponential of the linear correction in terms of a Lie group, calculating a first correction term expressed in a reference frame that is fixed relative to the carrier, calculating a second correction term expressed in an inertial reference frame in which the carrier is mobile, and adding the second correction term to the value of the variable contained in the propagated state.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: July 9, 2019
    Assignees: SAFRAN ELECTRONICS & DEFENSE, ASSOCIATION POUR LA RECHERCHE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS-A.R.M.I.N.E.S.
    Inventors: Axel Barrau, Silvere Bonnabel
  • Patent number: 10254767
    Abstract: A system may include first and second sensors configured to be coupled to a vehicle and generate surface sensor signals representative of a surface on which a location marker is disposed, and generate marker sensor signals representative of the location marker. The system may also include a sensor processor configured to estimate at least one of a position or an orientation of the first sensor relative to the surface on which the location marker is disposed based at least in part on the surface sensor signals, and estimate at least one of a position or an orientation of the second sensor relative to the location marker based at least in part on the marker sensor signals. The sensor processor may be configured to calculate at least one of the position or the orientation of the vehicle relative to the location marker based at least in part on the estimations.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: April 9, 2019
    Assignee: Amazon Technologies, Inc.
    Inventor: Ishay Kamon
  • Patent number: 10220958
    Abstract: A method, apparatus and computer-readable medium for landing a flight device are provided. The method includes: detecting whether the flight device meets a condition for landing; detecting whether a current landing area for the flight device is a safe landing area, when the flight device meets the condition for landing, wherein the safe landing area is an area on the ground which enables the flight device to land safely; and adjusting the current landing area for the flight device to the safe landing area, when the current landing area is not the safe landing area.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: March 5, 2019
    Assignee: BEIJING XIAOMI MOBILE SOFTWARE CO., LTD.
    Inventors: Huayijun Liu, Tao Chen, Ke Wu
  • Patent number: 10139232
    Abstract: Technologies for determining a user's location by a mobile computing device include detecting, based on sensed inertial characteristics of the mobile computing device, that a user of the mobile computing device has taken a physical step in a direction. The mobile computing device determines a directional heading of the mobile computing device in the direction and a variation of an orientation of the mobile computing device relative to a previous orientation of the mobile computing device at a previous physical step of the user based on the sensed inertial characteristics. The mobile computing device further applies a Kalman filter to determine a heading of the user based on the determined directional heading of the mobile computing device and the variation of the orientation and determines an estimated location of the user based on the user's determined heading, an estimated step length of the user, and a previous location of the user at the previous physical step.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 27, 2018
    Assignee: Intel Corporation
    Inventors: Ke Han, Ke Ding, Jingyi Ma, Yuhuan Huang
  • Patent number: 10048070
    Abstract: A navigation system to transition from a stationary alignment filter to an in-motion alignment filter is provided. The system comprises a processing unit configured to implement a stationary alignment Kalman filter (SAKF) in gyrocompass alignment mode to generate state estimates and provide corrections when the object is stationary, and to implement an algorithm to compute a covariance for the SAKF that accounts for uncertainty in the SAKF estimates; wherein the processing unit is further configured to implement a continuous alignment filter (CAF) that generates a secondary solution which remains unaffected by the SAKF corrections during a delay period accommodating a delay between the time of actual motion to the time of detected motion, and to implement an algorithm to compute a covariance for CAF that accounts for the uncertainty in CAF during delay period; and wherein outputs of the CAF and its covariance are communicated to an in-motion alignment filter.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: August 14, 2018
    Assignee: Honeywell International Inc.
    Inventors: Karl Keyzer, Kevin D. Vanderwerf
  • Patent number: 9945663
    Abstract: The invention relates to an antenna attitude measurement sensor as well as an attitude measurement method based on this sensor, wherein the antenna attitude measurement sensor is composed of a solar position sensor, a three axial gravity acceleration sensor, a GPS module, a CPU, a power supply module and a memory output module. Antenna attitude measurement method includes the following steps: A. installing antenna attitude measurement sensor; B. acquiring antenna geographic location, antenna hanging height, antenna pitch angle ? and rolling angle ? as well as the incident sunlight azimuth angle ? related to the solar position sensor and the corresponding standard time to form the azimuth angle; C. calculating the vertical incident angle ? and level incident angle ?; D calculating the antenna azimuth ?; E. memory output.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 17, 2018
    Inventor: Shijie Bi
  • Patent number: 9803982
    Abstract: Technologies for determining a user's location by a mobile computing device include detecting, based on sensed inertial characteristics of the mobile computing device, that a user of the mobile computing device has taken a physical step in a direction. The mobile computing device determines a directional heading of the mobile computing device in the direction and a variation of an orientation of the mobile computing device relative to a previous orientation of the mobile computing device at a previous physical step of the user based on the sensed inertial characteristics. The mobile computing device further applies a Kalman filter to determine a heading of the user based on the determined directional heading of the mobile computing device and the variation of the orientation and determines an estimated location of the user based on the user's determined heading, an estimated step length of the user, and a previous location of the user at the previous physical step.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: October 31, 2017
    Assignee: Intel Corporation
    Inventors: Ke Han, Ke Ding, Jingyi Ma, Yuhuan Huang
  • Patent number: 9719782
    Abstract: An avionics system comprises one or more attitude sources, each configured to produce a respective calculated attitude solution; at least one magnetometer configured to measure magnetic field; and at least one attitude monitor configured to use the respective calculated attitude solution from one of the attitude sources to project the measured magnetic field estimate or an Earth Magnetic Field Model (EMFM) estimate such that the measured magnetic field estimate and the EMFM estimate are in a common shared frame. The at least one attitude monitor is further configured to determine a difference between the measured magnetic field estimate and the EMFM estimate in the common shared frame. The at least one attitude monitor is further configured to output an alert, which indicates that the respective calculated attitude solution used to project the measured magnetic field estimate or the EMFM estimate is in error, if the difference exceeds a predetermined threshold.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: August 1, 2017
    Assignee: Honeywell International Inc.
    Inventors: John R. Morrison, Douglas Mark Weed, Mark Hickey
  • Patent number: 9671227
    Abstract: A method for evaluating output signals of a rotational rate sensor unit, including providing an n-tuple of angular speed values measured by at least one rotational rate sensor of the rotational rate sensor unit, in a first step; determining an intermediate value as a function of the n-tuple of angular speed values, in a second step; calculating a new change of orientation value as a function of the intermediate value and an earlier change of orientation value stored in a register of the rotational rate sensor unit, in a third step; and storing the new change of orientation value in the register, in a fourth step, repeating the first, second, third, and fourth step until, the new change of orientation value is read out by an external data processing unit connected to the rotational rate sensor unit, and/or, an exceeding of a threshold value is detected.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: June 6, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Claus, Julian Bartholomeyczik
  • Patent number: 9442881
    Abstract: Embodiments are directed towards multi-level entity classification. An object associated with an entity is received. In one embodiment the object comprises and email and the entity comprises the IP address of a sending email server. If the entity has already been classified, as indicated by an entity classification cache, then a corresponding action is taken on the object. However, if the entity has not been classified, the entity is submitted to a fast classifier for classification. A feature collector concurrently fetches available features, including fast features and full features. The fast classifier classifies the entity based on the fast features, storing the result in the entity classification cache. Subsequent objects associated with the entity are processed based on the cached result of the fast classifier. Then, a full classifier classifies the entity based on at least the full features, storing the result in the entity classification cache.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 13, 2016
    Assignee: Yahoo! Inc.
    Inventors: Sharat Narayan, Vishwanath Tumkur Ramarao, Belle Tseng, Markus Weimer, Young Maeng, Jyh-Shin Shue
  • Patent number: 9429953
    Abstract: The present disclosure is directed toward systems and methods for enabling autonomous landing of an unmanned aerial vehicle. For example, systems and methods described herein enable autonomous landing of the unmanned aerial vehicle by providing an unmanned aerial vehicle ground station with various guidance systems for guiding the autonomous landing. In some embodiments, the guidance systems enable autonomous landing by providing one or more LEDs. In other embodiments, the guidance systems enable autonomous landing by providing various types of transmitted energy waves. In at least one embodiment, the guidance systems enable autonomous landing by providing a two-stage landing system that includes two or more types of transmitted energy.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: August 30, 2016
    Assignee: SKYCATCH, INC.
    Inventors: Samuel Giles Miller, Christian Sanz, Behrooze Sirang, Jonathan Shyaun Noorani
  • Patent number: 9157736
    Abstract: According to one aspect, a method of determining an attitude matrix on a portable electronic device. The method includes determining a first attitude matrix gradient using data from at least one of an accelerometer and a magnetometer, determining a second attitude matrix gradient using data from a gyroscope, fusing the first attitude matrix gradient and the second attitude matrix gradient based on a mixing coefficient to generate a fused gradient, and based on the fused gradient, updating a fine attitude matrix for the portable electronic device.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: October 13, 2015
    Assignee: BLACKBERRY LIMITED
    Inventors: Anand Ravindra Oka, Nazih Almalki, Christopher Harris Snow
  • Patent number: 8990014
    Abstract: Methods, systems, and computer readable storage media are presented for directional scaling of inertial path data to satisfy ranging constraints. The presented techniques take into account scaling confidence information. In addition to bounding potential scale corrections based on the reliability of the inertial path and the magnetic heading confidence, the techniques bound potential scale parameters based on constraints and solve for directional scale parameters.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 24, 2015
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin Funk, Dan Hakim, John Karvounis, Carole Teolis
  • Patent number: 8855911
    Abstract: Systems and methods for navigation using cross correlation on evidence grids are provided. In one embodiment, a system for using cross-correlated evidence grids to acquire navigation information comprises: a navigation processor coupled to an inertial measurement unit, the navigation processor configured to generate a navigation solution; a sensor configured to scan an environment; an evidence grid creator coupled to the sensor and the navigation processor, wherein the evidence grid creator is configured to generate a current evidence grid based on data received from the sensor and the navigation solution; a correlator configured to correlate the current evidence grid against a historical evidence grid stored in a memory to produce displacement information; and where the navigation processor receives correction data derived from correlation of evidence grids and adjusts the navigation solution based on the correction data.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: October 7, 2014
    Assignee: Honeywell International Inc.
    Inventors: Yunqian Ma, John B. McKitterick, Wesley J. Hawkinson
  • Patent number: 8825399
    Abstract: It is presumed and commonly accepted by those skilled in the art of satellite navigation and Kalman filter design that the filter must be provided with the tracker position and velocity a priori in order to determine target position and velocity. Indeed, it is generally asserted that without a priori knowledge (known or measured values) of the tracker position and velocity, line of sight measurements between satellites do not contain adequate information to infer target states. Passive and autonomous navigation of space vehicles without a priori values for the position and velocity of either the target or tracker vehicle is achieved by reconfiguring the extended Kalman filter, or more generally any predictor/correction class filter, to include states for both the target and tracker vehicles. The target and tracker vehicles must both follow trajectories in an inertial frame of reference through the gravitational field of a gravitational body having a known gravitational model.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: September 2, 2014
    Assignee: Raytheon Company
    Inventor: Leonard D. Vance
  • Patent number: 8812235
    Abstract: Embodiments of the present invention provide improved systems and methods for estimating N-dimensional parameters while sensing fewer than N dimensions. In one embodiment a navigational system comprises a processor and an inertial measurement unit (IMU) that provides an output to the processor, the processor providing a navigation solution based on the output of the IMU, wherein the navigation solution includes a calculation of an n-dimensional parameter. Further, the navigational system includes at most two sensors that provide an output to the processor, wherein the processor computes an estimate of an n-dimensional parameter from the output of the at most two sensors for bounding errors in the n-dimensional parameter as calculated by the processor when the trajectory measured by the IMU satisfies movement requirements, wherein “n” is greater than the number of the at most two sensors.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: August 19, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ryan Ingvalson, Wesley J. Hawkinson, Robert C. McCroskey, Paul Samanant
  • Publication number: 20140207374
    Abstract: A system and method for estimating the position of an object, such as a person, animal, or machine. The system includes first and second inertial measurement units, a first and second originator antennas, and a first and second transponder antennas. The system uses data from the inertial measurement units to estimate a position of the object. The system also calculates a range measurement between the first originator antenna and first transponder antenna. The system calculates a first CPD measurement between the second transponder antenna and the first originator antenna, and a second CPD measurement between the second originator antenna and the first transponder antenna. The range measurement and at least one CPD measurement are used to update a Kalman filter for estimating the position of the object. The system determines also updates the Kalman filter when one of the inertial measurement units is in a zero-velocity condition.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Inventors: David W.A. TAYLOR, JR., Bradley David Farnsworth, William Todd Faulkner, Christopher Matthew Foster, Robert Barlow Alwood
  • Patent number: 8725412
    Abstract: A positioning device includes a map data storing unit configured to store map data; autonomous sensors configured to detect behavior information of a moving object; an inertial positioning unit configured to detect an estimated position of the moving object by applying the behavior information detected by the autonomous sensors to positioning results obtained by an electronic navigation positioning unit such as a GPS; a planimetric feature detecting unit configured to detect a planimetric feature located around a road; a planimetric feature position identifying unit configured to identify a position of the planimetric feature; a planimetric feature reference positioning unit configured to estimate a planimetric feature estimated position of the moving object by using the position of the planimetric feature as a reference; and a position estimating unit configured to estimate a position of the moving object by applying the estimated position and the planimetric feature estimated position to a Kalman filter.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norimasa Kobori, Kazunori Kagawa
  • Publication number: 20140121963
    Abstract: A navigation system includes at least one inertial sensor configured to detect motion of the system and generate inertial data; at least one aiding device configured to generate aiding device measurement data; at least one processing unit configured to generate an un-smoothed navigation solution inclusive of navigation state variable error resets based on the inertial data and the aiding device measurement data; wherein the at least one processing unit is further configured to sum the state variable error resets into a cumulative sum of the state variable error resets; wherein the at least one processing unit is further configured to high pass filter the cumulative sum of the state variable error resets; and wherein the at least one processing unit is further configured to subtract the high pass filtered cumulative sum of the state variable error resets from the un-smoothed navigation solution to generate a smoothed navigation solution.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Honeywell International Inc.
  • Patent number: 8669505
    Abstract: The invention relates to a guidance system comprising estimation means able to estimate, in the course of flight, the attitude and the aerodynamic speed of a projectile, as well as the variations in the speed of the wind, on the basis of guidance orders formulated by guidance means of the guidance system, of a reference trajectory and of measurements obtained by measurement means of the system, using a model of the dynamic behavior of the projectile and a model of the dynamics of the wind.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 11, 2014
    Assignee: MBDA France
    Inventors: Vincent Guibout, Eric Larcher
  • Patent number: 8649977
    Abstract: In a GPS composite navigation apparatus of a configuration having a GPS receiver, variation in an estimated position, an estimated velocity, and an estimated azimuth of a moving body when the moving body is not moving is resolved, and the GPS/INS integrated navigation system with good response characteristics from a stationary state to a moving state. A stationary detector for determining the stationary state of the moving body is provided, and when it is determined to be the stationary state by the stationary detector, a measurement model used for measurement-update of a Kalman filter is changed, while a changed amount of an error covariance matrix by the update is corrected.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: February 11, 2014
    Assignee: Furuno Electric Company Limited
    Inventor: Hiroyuki Toda
  • Patent number: 8600660
    Abstract: A state is added to a Kalman filter to model GPS multipath errors. The multipath states may be modeled as either a random walk model or a Gauss-Markov process. The choice of the model depends on the characteristics of the multi-path error and the GPS receiver. Adding this state to the Kalman filter to model multipath improves the navigation system's robustness when operating as a deeply integrated system when multipath is present.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 3, 2013
    Assignee: Honeywell International Inc.
    Inventors: Charles T. Bye, Brian W. Schipper
  • Patent number: 8593341
    Abstract: A position calculation method and apparatus are described. The position calculation apparatus may include an inertial measurement unit and be configured to be coupled with at least one sensor unit for detecting a physical event for use in position calculation. The presence of and type sensor unit may identified, and the position processing to be undertaken may depend on this identification.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: November 26, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Kumar Anand, Shunichi Mizuochi, Shuji Uchida, Takuya Sugimoto, Kenji Onda, Rama Sanjay
  • Patent number: 8583371
    Abstract: The present disclosure provides systems and methods that improve the pointing accuracy of a spacecraft using temperature-sensitive gyros (e.g., MEMS gyros) by using a temperature bias model to compensate for temperature biases of the gyros and using attitude data (e.g., star tracker data) to automatically and continuously calibrate the temperature bias model over the life of the spacecraft. When star tracker data is unavailable (e.g., due to sun interference), the most recently updated temperature bias model is used in open-loop to provide improved estimation of the gyro biases and improved attitude estimation.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: November 12, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Neil E. Goodzeit, Harald J. Weigl
  • Patent number: 8560234
    Abstract: Embodiments include systems and methods of navigation. In on embodiment, a plurality of position and motion states of a vehicle are estimated. The states may be estimated based on information received from a satellite receiver and an inertial measurement sensor. Estimating the states comprises performing one or more of a plurality of update steps at the rate that information is received from the satellite receiver. The states are estimated at a rate greater than the rate at which the update steps are performed. In one embodiment, the states are estimated using a stepped extended Kalman filter.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: October 15, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Aaron D. Kahn
  • Publication number: 20130231860
    Abstract: Systems and methods to incorporate master navigation system resets during transfer alignment are provided. In one embodiment, a system comprises: a set of local inertial sensors; a local navigation processor coupled to local inertial sensors, the local navigation processor receiving inertial navigation data from local inertial sensors and converting the data into a navigation solution; a local Kalman filter (LKF) coupled to the local navigation processor and a master Kalman filter (MKF), the LKF receiving the navigation solution. The LKF receives from the MKF a Precision Transfer Alignment Message (PTAM) that includes at least one navigation aid measurement. The LKF inputs the navigation aid measurement into a measurement formation algorithm and calculates a measurement residual. The LKF receives from the MKF a Reset Transfer Alignment Message (RTAM) that includes a bias correction. The LKF inputs the bias correction into a state propagation algorithm to add to a navigation state.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Scott Snyder, Benjamin Mohr
  • Patent number: 8515672
    Abstract: Systems and methods to incorporate master navigation system resets during transfer alignment are provided. In one embodiment, a system comprises: a set of local inertial sensors; a local navigation processor coupled to local inertial sensors, the local navigation processor receiving inertial navigation data from local inertial sensors and converting the data into a navigation solution; a local Kalman filter (LKF) coupled to the local navigation processor and a master Kalman filter (MKF), the LKF receiving the navigation solution. The LKF receives from the MKF a Precision Transfer Alignment Message (PTAM) that includes at least one navigation aid measurement. The LKF inputs the navigation aid measurement into a measurement formation algorithm and calculates a measurement residual. The LKF receives from the MKF a Reset Transfer Alignment Message (RTAM) that includes a bias correction. The LKF inputs the bias correction into a state propagation algorithm to add to a navigation state.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 20, 2013
    Assignee: Honeywell International Inc.
    Inventors: Scott Snyder, Benjamin Mohr
  • Patent number: 8447443
    Abstract: A computerized system and method for peak-seeking-control that uses a unique Kalman filter design to optimize a control loop, in real time, to either maximize or minimize a performance function of a physical object (“plant”). The system and method achieves more accurate and efficient peak-seeking-control by using a time-varying Kalman filter to estimate both the performance function gradient (slope) and Hessian (curvature) based on direct position measurements of the plant, and does not rely upon modeling the plant response to persistent excitation. The system and method can be naturally applied in various applications in which plant performance functions have multiple independent parameters, and it does not depend upon frequency separation to distinguish between system dimensions.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 21, 2013
    Assignees: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration, The Regents of the University of California
    Inventors: John J Ryan, Jason L Speyer
  • Patent number: 8406996
    Abstract: Inertial navigation systems for wheeled vehicles with constrained motion degrees of freedom are described.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: March 26, 2013
    Assignee: Trimble Navigation Limited
    Inventor: Peter Van Wyck Loomis
  • Patent number: 8374783
    Abstract: Systems and methods for determining a position of a vehicle are described. The system includes at least one GNSS sensor mounted to the vehicle for receiving GNSS signals of a global positioning system and at least one physical sensor mounted to the vehicle for generating physical data indicative of a physical parameter of at least a part of the vehicle. The system also includes a recursive statistical estimator, such as a Kalman Filter, in communication with the GNSS sensor(s) for seeding the recursive statistical estimator with an output of the GNSS sensor(s) to determine an estimated position of the vehicle. A data fusion module combines the estimated position and velocity of the vehicle with the physical data thus generating combined data, which is used to seed the recursive statistical estimator to determine an updated estimated position of the vehicle.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 12, 2013
    Assignee: Leica Geosystems AG
    Inventors: Frank Takac, Oliver Zelzer, William James Kellar
  • Patent number: 8370064
    Abstract: A system for navigation and tracking may include an inertial navigation system adapted to generate a replica GNSS signal and a global navigation satellite system. The global navigation satellite system may include a module to digitize a GNSS signal received from a constellation of global navigation satellites. A correlator receives the digitized GNSS signal and the replica GNSS signal. The correlator correlates the digitized GNSS signal to the replica GNSS signal to generate a correlated GNSS signal. A coherent integration module coherently integrates the correlated GNSS signal to generate an integrated signal having a predetermined rate. A filter receives the integrated signal and generates a data signal for navigation and tracking. An output device may present the navigation and tracking information based on the data signal, or the navigation and tracking information may be used to provide guidance for a vehicle or may be used to track a target.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: February 5, 2013
    Assignee: The Boeing Company
    Inventors: Rongsheng Li, Kamran Ghassemi
  • Patent number: 8255161
    Abstract: A system comprises at least one inertial sensor operable to provide inertial sensor data during a trip; a processing unit coupled to the at least one inertial sensor, the processing unit operable to calculate navigation data based on the inertial sensor data and to estimate error in the inertial sensor data, wherein the processing unit is further operable to adjust subsequent inertial sensor data received during the trip from the at least one inertial sensor in order to compensate for the estimated error; and a memory coupled to the navigation unit and operable to store data between power cycles; wherein the processing unit is further operable to calculate a current trip error estimate from a plurality of error estimates during the trip and to estimate a repeatability error component based on the current trip error estimate and previous trip error estimates stored in the memory; wherein the repeatability error component is stored in the memory, the processing unit being further operable to update inertial sen
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 28, 2012
    Assignee: Honeywell International Inc.
    Inventor: Charles T. Bye
  • Publication number: 20120209520
    Abstract: Embodiments of the present invention provide improved systems and methods for estimating N-dimensional parameters while sensing fewer than N dimensions. In one embodiment a navigational system comprises a processor and an inertial measurement unit (IMU) that provides an output to the processor, the processor providing a navigation solution based on the output of the IMU, wherein the navigation solution includes a calculation of an n-dimensional parameter. Further, the navigational system includes at most two sensors that provide an output to the processor, wherein the processor computes an estimate of an n-dimensional parameter from the output of the at most two sensors for bounding errors in the n-dimensional parameter as calculated by the processor when the trajectory measured by the IMU satisfies movement requirements, wherein “n” is greater than the number of the at most two sensors.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Applicant: Honeywell International Inc.
    Inventors: Ryan Ingvalson, Wesley J. Hawkinson, Robert C. McCroskey, Paul Samanant
  • Patent number: 8224575
    Abstract: A method for processing data in an inertial navigation system having a Kalman filter and computer-readable storage medium containing instructions to configure a processor to perform the same. The method produces more accurate estimates of the position, velocity and attitude of the inertial measurement unit. The method is fully automatic and enables zero-velocity updates and fixed-azimuth updates to be performed simultaneously. The method may also include a multi-stage filtering process to filter digital compass data when used in an environment with extraterrestrial magnetic field sources. The method may also include a fixed-lag smoother to improve estimates of the position, velocity and attitude of the inertial measurement unit. The method also may include processes to constrain altitude errors.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 17, 2012
    Assignee: ENSCO, Inc.
    Inventors: W. Todd Faulkner, Stephen R. Chestnut, David W. A. Taylor
  • Publication number: 20120150441
    Abstract: Systems and methods for navigation using cross correlation on evidence grids are provided. In one embodiment, a system for using cross-correlated evidence grids to acquire navigation information comprises: a navigation processor coupled to an inertial measurement unit, the navigation processor configured to generate a navigation solution; a sensor configured to scan an environment; an evidence grid creator coupled to the sensor and the navigation processor, wherein the evidence grid creator is configured to generate a current evidence grid based on data received from the sensor and the navigation solution; a correlator configured to correlate the current evidence grid against a historical evidence grid stored in a memory to produce displacement information; and where the navigation processor receives correction data derived from correlation of evidence grids and adjusts the navigation solution based on the correction data.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Yunqian Ma, John B. McKitterick, Wesley J. Hawkinson
  • Patent number: 8185309
    Abstract: An inertial system is provided. The system includes at least one inertial sensor, a processing unit and a plurality of Kalman filters implemented in the processing unit. The Kalman filters receive information from the at least one inertial sensor. At most one of the plurality of Kalman filters has processed zero velocity updates on the last cycle.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 22, 2012
    Assignee: Honeywell International Inc.
    Inventors: Kenneth S. Morgan, Helen V. Younskevicius
  • Patent number: 8150624
    Abstract: Systems and methods are provided for tracking a moving person. The system comprises a controller configured to receive acceleration data that characterizes an acceleration of the moving person in three dimensions. The controller comprises a step rate component that determines a step rate for the person based on a vertical component of the acceleration data. The controller also comprises a body offset component that determines a body offset angle based on a spectral analysis of the acceleration data and the step rate. The controller further comprises a velocity component that determines a reference velocity vector based on the body offset angle and the step rate.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: April 3, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Stephen A. Berardi, Joseph A. Fax
  • Publication number: 20120053834
    Abstract: Inertial navigation systems for wheeled vehicles with constrained motion degrees of freedom are described.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 1, 2012
    Applicant: Trimble Navigation Limited
    Inventor: Peter Van Wyck Loomis