Engine Output Control Patents (Class 701/54)
  • Patent number: 9043061
    Abstract: A method includes interpreting a powertrain load variation amplitude and an internal combustion engine output profile. The method further includes determining an engine output differential in response to the powertrain load variation amplitude and the internal combustion engine output profile. The method further includes providing an energy accumulator sizing parameter and/or an alternate motive power provider sizing parameter in response to the engine output differential.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: May 26, 2015
    Assignee: Cummins Inc.
    Inventors: Vivek Anand Sujan, Morgan MacKenzie Andreae, Martin T. Books, Xi Wei
  • Patent number: 9043103
    Abstract: A dog clutch control apparatus for an automated transmission includes a rotary shaft, plural dog clutch mechanisms, each of the dog clutch mechanisms including a clutch ring, a clutch hub arranged next to the clutch ring, a sleeve fitted with the clutch hub, a dog clutch portion which is provided at the clutch ring and selectively meshes with a spline formed at the sleeve, an axial driving device for moving the sleeve, the dog clutch control apparatus includes a disengagement detecting portion for detecting disengagement before the sleeve reaches a neutral position and a control apparatus for controlling operation of the axial driving device, wherein in a case where the disengagement is detected at a time of shifting operation, the control apparatus starts a shift-related control.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: May 26, 2015
    Assignee: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Kyosuke Mori, Masahiko Komura
  • Patent number: 9043102
    Abstract: A method of controlling a vehicle having a transmission system, an engine system, and a braking system includes detecting a braking condition of the braking system. The braking condition is at least one of a brake temperature being above a predetermined brake temperature limit and a braking load being above a predetermined braking load limit. The method also includes detecting a second condition of at least one of the transmission system and the engine system. The method also includes determining whether the second condition satisfies predetermined criteria. Furthermore, the method includes detecting an absolute vehicle acceleration that is below a predetermined acceleration limit. Moreover, the method includes downshifting from a current gear to a lower gear to thereby cause engine braking when the braking condition is satisfied, the second condition satisfies the predetermined criteria, and the absolute vehicle acceleration is below the predetermined acceleration limit.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: May 26, 2015
    Assignee: FCA US LLC
    Inventors: Frederic J. Boissinot, Yi Zhu, Zachary C. Rogalski
  • Publication number: 20150142281
    Abstract: A braking management system for a vehicle having a driveline that has a transmission featuring a continuously variable planetary variator, the braking management system comprising a processor adapted to actuate one or more braking mechanisms based on current state of the vehicle and a braking input from a vehicle operator. The system may prioritize some mechanisms over others to optimize vehicle efficiency or vehicle component longevity.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Inventors: Mark R.J. Versteyhe, Thibaut E. Duchene, Evrim Taskiran
  • Patent number: 9037365
    Abstract: A method for control of a gearbox installed in a motor vehicle (1), which method effects a downshift of the gearbox (20) from a first gear (G1), for which the acceleration a of the vehicle (1) is negative, to a second gear (G2), for which the acceleration a is positive or substantially equal to nil. The downshift involves at least one intermediate gear step between the first gear (G1) and second gear (G2), with a maximum engine speed at each intermediate gear step which is as high as, or higher than, a highest engine speed at a preceding intermediate gear step. Also, a system, a motor vehicle, a computer program and a computer program product for performing the method are disclosed.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 19, 2015
    Assignee: SCANIA CV AB
    Inventors: Fredrik Swartling, Mikael Wågberg
  • Patent number: 9037366
    Abstract: A system and method of controlling a fail-safe for a vehicle is provided. The method includes determining, by a controller, that remaining hydraulic pressure exists in the clutch when the clutch is not opened and a target value of oil pressure for opening the clutch is maintained for a predetermined time period. In addition, whether a vehicle is stopped is confirmed in response to determining that remaining hydraulic pressure exists in the engine clutch. The controller is further configured to transmit a signal to shift to the vehicle to a neutral (N) stage to a transmission controller and shift to the vehicle to the N-stage in response to determining that the vehicle is stopped. Then, the engine is driven by the controller in response to determining that the vehicle is shifted to the N-stage.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: May 19, 2015
    Assignee: Hyundai Motor Company
    Inventors: Seong Wook Moon, Jong Han Oh, Seok Min Jeong
  • Publication number: 20150134213
    Abstract: In a control device for a vehicle on which is mounted a continuously variable transmission capable of mechanically locking a primary pulley at the time of a maximum gear ratio (maximum Low), an idle rotational speed is not always set high to increase a hydraulic pressure at the time of stopping the vehicle. Instead, at the time of stopping the vehicle, when the gear ratio of the continuously variable transmission is the maximum gear ratio, normal idle rotational speed control is performed, and only when the gear ratio is not the maximum gear ratio, idle-up control is performed so that the idle rotational speed is set high, thereby the hydraulic pressure is set high. Thus, by restricting conditions in which the hydraulic pressure is set high by the idle-up control, it is possible to improve fuel efficiency while suppressing generation of a belt slip.
    Type: Application
    Filed: February 29, 2012
    Publication date: May 14, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Wataru Matsubara, Sei Kojima, Akira Hino
  • Publication number: 20150134214
    Abstract: An object of the present invention, in a vehicle integrated control device, is to cause a request torque having an appropriate magnitude and change speed to be given to an engine control unit from a drive system manager. To this end, according to a vehicle integrated control device according to the present invention, a first maximum torque and a second maximum torque are presented to a drive system manager from an engine control unit. The drive system manager refers to the first maximum torque and the second maximum torque which are presented, and determines a request torque to be given to the engine control unit. The first maximum torque is a maximum torque that can be realized when only an operation amount of a throttle is actively changed without actively changing an operation amount of a wastegate valve. The second maximum torque is a maximum torque that can be realized when both the operation amount of the throttle and the operation amount of the wastegate valve are actively changed.
    Type: Application
    Filed: June 28, 2012
    Publication date: May 14, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi Yoshizaki, Shinichi Soejima, Satoru Tanaka, Kiyonori Takahashi
  • Patent number: 9031727
    Abstract: A vehicle running control device in a vehicle includes a power connecting/disconnecting device interrupting power transmission between an engine and drive wheels, the vehicle running control device providing free-run control of interrupting the power transmission with the power connecting/disconnecting device and stopping the engine during inertia running, the vehicle running control device being configured to determine a target vehicle deceleration at the start of the free-run control based on a vehicle speed and to estimate an estimated vehicle deceleration when the free-run control is started, before starting the free-run control, and when the estimated vehicle deceleration is closer to the target vehicle deceleration at the start of the free-run control, the free-run control being more easily provided.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: May 12, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Patent number: 9026326
    Abstract: When a vehicle speed is equal to or higher than a first vehicle speed threshold value or an uphill gradient is lower than a first gradient threshold value and uphill start control is cancelled, if a state where the vehicle speed is lower than a second vehicle speed threshold value and the uphill gradient is equal to or higher than a second gradient threshold value continues for a first set time, uphill start control is executed. When the vehicle speed is decreased after being once increased within a range where the vehicle speed is lower than the first vehicle speed threshold value and uphill start control is cancelled, if a state where the vehicle speed is lower than the second vehicle speed threshold value and the uphill gradient is equal to or higher than the second gradient threshold value continues for a second set time, the uphill start control is executed.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: May 5, 2015
    Assignee: JTEKT Corporation
    Inventors: Tomohiro Nozu, Ryohei Shigeta
  • Patent number: 9026325
    Abstract: This invention relates to the field of very high current integrated power systems and defines a system where an alternating current inductive generator (13), controlled by a generator voltage regulator (14), is coupled to alternating current inductive load (11), controlled by an alternating current inductive load controller (12), all controlled by a supervisory control and data acquisition system (17) with externally adjustable power rate constraints (21) that define a new anticipatory mode integrated power system (10).
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 5, 2015
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Thomas D. Roettger, Mohamed Belkhayat, Craig J. Nordby, Joseph M. Maurio, William Patalon
  • Publication number: 20150120115
    Abstract: An electronic control unit executes throttle torque reduction control for decreasing an engine torque by reducing a throttle opening degree during an upshift of an automatic transmission with respect to the throttle opening degree before a start of the upshift. During the upshift of the automatic transmission, the electronic control unit actuates a waste gate valve in a closing direction with respect to a position of the waste gate valve before the start of the upshift in parallel with execution of the throttle torque reduction control. Thus, a decrease in supercharging pressure due to execution of the throttle torque reduction control is suppressed during the upshift, and the engine torque that has been temporarily decreased in an inertia phase of the upshift recovers immediately after the upshift, so it is possible to suppress deterioration of drivability.
    Type: Application
    Filed: May 14, 2013
    Publication date: April 30, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomohiro Chinbe, Masakazu Owatari, Takaaki Tokura, Masayasu Mizobuchi
  • Publication number: 20150120155
    Abstract: A speed change control system for reducing shift shocks of clutch-to-clutch shifting is provided. The control system is applied to a vehicle in which a transmission having engagement devices is connected to an output side of a prime mover, and in which a gear stage of the transmission is shifted among a plurality of stages by changing engagement states of the engagement devices. The speed change control system carries out a clutch-to-clutch shifting from a predetermined gear stage to another gear stage by reducing a torque capacity of the predetermined engagement device to be disengaged while increasing a torque capacity of another engagement device to be engaged.
    Type: Application
    Filed: May 8, 2012
    Publication date: April 30, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Seiji Masunaga, Yoshio Hasegawa, Seiji Kuwahara, Nobufusa Kobayashi
  • Publication number: 20150120154
    Abstract: A speed change control system for reducing shift shocks of clutch-to-clutch shifting is provided. The control system is applied to a vehicle in which a transmission having a plurality of engagement devices is connected to an output side of a prime mover, and in which a gear stage of the transmission is shifted among a plurality of stages by changing engagement states of the engagement devices. The speed change control system is configured to carry out a clutch-to-clutch shifting of the gear stage from a predetermined gear stage to another gear stage by gradually reducing a torque capacity of the predetermined engagement device to be disengaged while gradually increasing a torque capacity of another engagement device to be engaged.
    Type: Application
    Filed: May 8, 2012
    Publication date: April 30, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Seiji Masunaga, Yoshio Hasefawa, Seiji Kuwahara, Nobufusa Kobayashi
  • Patent number: 9020713
    Abstract: A transmission assembly in a vehicle includes a transmission configured to receive a transmission fluid. A controller operatively connected to the transmission and configured to store a first look-up table defining respective warm-up calibration factors (Fw) for a respective first set of ambient temperatures. The controller has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining a current temperature (TTF) of the transmission fluid. The vehicle is keyed off and then keyed on after a key-off time duration (te), the controller being deactivated when the vehicle is keyed off and activated when the vehicle is keyed on. The controller is configured to determine the current temperature of the transmission fluid (TTF) based at least partially on the first look-up table and a key-on temperature (TTFkey-on) of the transmission fluid.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Kevin P. Houle, Paul A. Adam, Kathryn E. Mulligan
  • Patent number: 9020731
    Abstract: A PI calculation unit of a rectangular-wave voltage control unit calculates a control deviation by performing a PI calculation on a torque deviation relative to a torque command value, and outputs a voltage phase of a rectangular-wave voltage in accordance with the control deviation. A rate-of-change limiter imposes a restriction on the rate of change of the voltage phase. Here, the rate-of-change limiter lessens the restriction on the rate of change of the voltage phase, when the rate of change of the rotational speed of an electric motor is larger than a predetermined value representing an abrupt change of the rotational speed of the electric motor.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Yamada
  • Patent number: 9020799
    Abstract: A method a system and method for optimizing the power distribution between a fuel cell stack and a high voltage battery in a fuel cell vehicle. The method includes defining a virtual battery hydrogen power for the battery that is based on a relationship between a battery power request from the battery and an efficiency of the battery and defining a virtual stack hydrogen power for the fuel cell stack that is based on a relationship between a stack power request from the fuel cell stack and an efficiency of the fuel cell stack. The virtual battery hydrogen power and the virtual stack hydrogen power are converted into polynomial equations and added together to provide a combined power polynomial equation. The combined power polynomial equation is solved to determine a minimum of the fuel cell stack power request by setting a derivative of the virtual stack hydrogen power to zero.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Oliver Maier
  • Patent number: 9014934
    Abstract: A method of controlling a pump for a hybrid transmission includes commanding a first line pressure of the transmission and deriving a first torque value—an open-loop torque value—from the first line pressure command, and commanding the pump to operate at the first torque value. The method monitors actual speed of the pump and derives a second torque value—a closed-loop torque value—therefrom. A third torque value is derived from the first and second torque values, and the pump commanded to operate at the third torque value. A first speed value may be derived from the first line pressure command, and the second torque value derived from the difference between the monitored and the first speed values. Deriving the third torque value may include a substantially-linear combination of the first and second torque values.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 21, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Jy-Jen F. Sah
  • Patent number: 9008927
    Abstract: A driving force controlling apparatus for a vehicle incorporates an engine and a second motor generator and defines a first engaging unit by engaging a counter drive gear, which is able to output power from the engine, with a final gear; and a second engaging unit by engaging a counter drive gear, which is able to output power from the second motor generator, with the final gear. The power from the driving source (the engine or the second motor generator) in whichever of the first engaging unit and second engaging unit has greater vibration is decreased, whereas the power from the driving source (the engine or the second motor generator) in the engaging unit having less vibration is increased.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: April 14, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuji Iwase
  • Patent number: 9008928
    Abstract: Disclosed is a vehicle control apparatus which can prevent the deterioration of drivability. The ECU can set a control accelerator opening degree to be converted when a control permission condition is established. The control accelerator opening degree is equal to or larger than an accelerator lower limit which is larger than an idle determination value for determining an automatic stopping of an engine by an eco-run. The control accelerator opening degree thus set can prevent the drivability from being deteriorated without the automatic stopping of the engine being caused even if the accelerator opening degree is converted to reduce the torque of the engine with the establishment of the control permission condition.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 14, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshiya Oishi, Masashi Takagi, Michihito Shimada, Yuki Minase, Kenichi Okaya, Tsutomu Miyazaki
  • Patent number: 9008929
    Abstract: A method for controlling a powertrain includes the following steps: (a) determining whether a vehicle is coasting to a stop based on an accelerator pedal position; (b) determining whether an automatic transmission is in first gear; (c) shifting an input clutch from an engaged state to a disengaged state in order to operatively disconnect the automatic transmission from an internal combustion engine if the vehicle is coasting to a stop and the automatic transmission is not in first gear; and (d) shifting the automatic transmission to the first gear in order to allow the internal combustion engine to be shut down while the vehicle is coasting to a stop.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Martin Gentile, Armin Mueller
  • Patent number: 9008924
    Abstract: A transmission control system and method for controlling the level of creep torque supplied by a powertrain. The transmission control system having a controller configured to receive output signals from any one of a driver interface device sensor, a grade sensor, and a brake pedal sensor. Based on the output signals, the level of necessary creep torque and be determined and supplied, reducing unnecessary fuel consumption.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: April 14, 2015
    Assignee: Eaton Corporation
    Inventor: Graeme A. Jackson
  • Patent number: 9008926
    Abstract: A powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member through selective application of a plurality of clutches. A method for controlling the powertrain includes commanding a shift from a fixed gear operating range state to a second operating range state, commanding decreased reactive torque through an off-going clutch during a torque phase of said commanded shift, and decreasing said reactive torque through said off-going clutch through control of engine input torque.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: April 14, 2015
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Patent number: 9002590
    Abstract: A first target engine speed N1 and a high-speed control area F1 are set according to a command value commanded by a command unit. A second target engine speed N2 and a high-speed control area F2 defined on a low-speed side are set according to the first target engine speed N1. A pump displacement D and an engine torque T of a variable displacement hydraulic pump are detected so that a target engine speed N corresponding to each of the detected pump displacement and engine torque is detected according to a preset relationship between a the pump displacement D and the target engine speed N and a preset relationship between the engine torque T and the target engine speed N during an engine control at the high-speed control area F2. The drive of the engine is controlled so that the engine is driven at the target engine speed N.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: April 7, 2015
    Assignee: Komatsu, Ltd.
    Inventors: Teruo Akiyama, Hisashi Asada, Takeshi Ooi
  • Patent number: 9002556
    Abstract: A torque response control apparatus for an electric motor of a vehicle comprises a motor torque response control means that is configured to carry out finding a difference between a required acceleration that is variable in accordance with a change of a vehicle driving condition and an actual acceleration that is obtained, at the time of the change of the vehicle driving condition, with the aid of a torque characteristic of the electric motor, the difference being caused by the torque characteristic of the electric motor in which the maximum torque is varied in accordance with a rotation speed of the electric motor; and controlling the torque response of the electric motor in a manner to cause a driver to feel the difference of the actual acceleration from the required acceleration to be small by compensating the difference between the required acceleration and the actual acceleration.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: April 7, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yohei Nakamura, Isamu Kazama
  • Patent number: 9002600
    Abstract: An example method of operation comprises, selectively shutting down engine operation responsive to operating conditions and without receiving an engine shutdown request from the operator, maintaining the automatic transmission in gear during the shutdown, and during an engine restart from the shutdown condition, and with the transmission in gear, transmitting reduced torque to the transmission. For example, slippage of a forward clutch of the transmission may be used to enable the transmission to remain in gear, yet reduce torque transmitted to the vehicle wheels.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: April 7, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Peter John Grutter, Roger Lyle Huffmaster, Felix Nedorezov
  • Patent number: 9002551
    Abstract: A hybrid vehicle includes a combustion engine, an electric motor, and a drive train that is optionally connectible to the electric motor or the combustion engine. An operating mode of the hybrid vehicle is determined automatically as a function of a setpoint torque and an operating state of the hybrid vehicle, the operating mode specifying whether the combustion engine, the electric motor, or the combustion engine and the electric motor is/are used as the drive mechanism of the hybrid vehicle. The operating mode is determined at least such that an efficiency of the drive train including the drive mechanism selected in accordance with the determined operating mode is at a maximum. Depending on the determined operating mode, the combustion engine and/or the electric motor is/are coupled automatically to the drive train for operating the hybrid vehicle.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 7, 2015
    Assignee: Volkswagen AG
    Inventors: Benjamin Krafzig, Norbert Weiβ, Vasoontara Thiamtong, Kai Philipp
  • Patent number: 8996247
    Abstract: The equipment comprises a digital processor implementing an operating system requiring a previous boot before the equipment is in an operational state. A start module is operable, when the device is initially in a power-off state, for: producing a triggering signal upon detection (32) of a vibration by a sensor incorporated in the equipment, and activating (34) the processing means so as to initiate the boot of the operating system, but without activating the lighting means of a front display of the equipment, and finally activating these lighting means upon reception (36) of a vehicle start signal.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: March 31, 2015
    Assignee: Parrot
    Inventor: Guillaume Pinto
  • Patent number: 8996233
    Abstract: A vehicle control device controls a vehicle including a first oil pump adapted to be driven by power generated by a first drive source, automatically stop when a predetermined condition is satisfied, and supply oil to a power transmission unit and a second oil pump adapted to supply oil to the power transmission unit when the drive source is in an automatically stopped state, and includes a control unit adapted to continue an automatic stop until it is determined to restart the first drive source based on a parameter with which a reduction in drive force responsiveness to a drive force request from a driver, not including the stop of the first drive source, can be determined after an automatic stop command of the first drive source is output and if there is an abnormality in the second oil pump.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: March 31, 2015
    Assignee: Jatco Ltd
    Inventors: Kousuke Waku, Hideshi Wakayama, Noritaka Aoyama
  • Patent number: 8996223
    Abstract: The invention relates to an engine operation start control device of a hybrid vehicle comprising a power output device having an internal combustion engine and an electric motor. In this hybrid vehicle, an intermittent control for intermittently operating the engine can be performed and when the operation of the engine is started during the intermittent control being performed, a cranking of the engine is performed until the engine speed reaches a target engine speed. According to the invention, in case that the operation of the engine is started when the speed of the hybrid vehicle is higher than or equal to a predetermined speed and a power required for the power output device is larger than or equal to a predetermined power, the engine speed, which increases as the speed of the hybrid vehicle increases, is set as the target engine speed.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: March 31, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Kamatani, Kenta Watanabe
  • Patent number: 8996262
    Abstract: Method and system providing manual skip-shift for operating the automatic transmission of a vehicle. The method includes accepting the input of gear states by operating a selector mechanism to select a value. The system accepts input of a selected sequence of gear states from a plurality of available gear states, the selected sequence including fewer gear states than the number of available gear states. The system then operates a selector mechanism to select the gear state from the selected sequence. The system also includes an electronic control module, a selector mechanism, and a power train control module.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 31, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Yuji Fujii, Davor Hrovat, Gregory Michael Pietron, Jeffrey Allen Doering, Alex O'Connor Gibson, Nimrod Kapas, Joseph F Kucharski, Diana Yanakiev, James Dottavio
  • Patent number: 8996266
    Abstract: A vehicle includes an engine, an engine control module (ECM), and a dual clutch transmission (DCT) assembly. The DCT assembly has first and second input clutches, first and second gear sets selectively connected to the engine via the respective first and second input clutches, and a transmission control module (TCM). In executing a launch control method, the TCM receives a launch request, receives an actual engine torque, and determines the inertia and acceleration of the engine. The TCM then calculates a clutch torque for the particular input clutch used for vehicle launch as a function of the actual engine torque and the product of the inertia and the acceleration, compares the calculated clutch torque to the commanded clutch torque, modifies a torque-to-position (TTP) table depending on the comparison result, and transmits a clutch position signal to the designated input clutch to command an apply position extracted from the TTP table.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Colin Hultengren, Craig J. Hawkins, Matthew D. Whitton, Crystal Nassouri, Jonathan P. Kish
  • Patent number: 8996263
    Abstract: An electronic controller for a variable ratio transmission and an electronically controllable variable ratio transmission including a variator or other CVT are described herein. The electronic controller can be configured to receive input signals indicative of parameters associated with an engine coupled to the transmission. The electronic controller can also receive one or more control inputs. The electronic controller can determine an active range and an active variator mode based on the input signals and control inputs. The electronic controller can control a final drive ratio of the variable ratio transmission by controlling one or more electronic solenoids that control the ratios of one or more portions of the variable ratio transmission.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 31, 2015
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Stanley B. Quinn, Jr., Alan L. Miller, Scott R. Anderson
  • Publication number: 20150088390
    Abstract: A control device for a drive device of a vehicle which is provided with an engine, a supercharger to raise a pressure of intake air introduced in said engine, an accelerating member manually operable by an operator of the vehicle to accelerate the vehicle, and an automatic transmission constituting a portion of a power transmitting path between said engine and drive wheels, and wherein said engine is placed in a first operating state in which said supercharger is operated, or a second operating state in which an operation of said supercharger is restricted as compared with that in said first operating state, said control device comprising: a speed ratio selection control portion configured to implement a speed ratio selection control to change a method of selecting a speed ratio of said automatic transmission depending upon a rate of increase of an operation amount of said accelerating member, where said engine will be placed in said first operating state if said automatic transmission is shifted to select a
    Type: Application
    Filed: November 18, 2011
    Publication date: March 26, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takaaki Tokura, Masato Kaigawa
  • Publication number: 20150088391
    Abstract: A gear shifting control system for a vehicle includes an engine, a continuously-variable transmission, and an electronic control unit. The vehicle includes driving wheels. The engine includes an electronic throttle valve controlling a torque of the engine. The continuously-variable transmission is disposed in a power transmission path between the engine and the driving wheels. The electronic control unit is configured to i) decrease the torque of the engine by decreasing a throttle opening of the electronic throttle valve when the continuously-variable transmission upshifts, and ii) output a gear shifting start command for starting the upshifting of the continuously-variable transmission with a delay relative to a decrease start command for starting the decrease of the throttle opening of the electronic throttle valve when the continuously-variable transmission upshifts.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 26, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuhei ISHIKAWA, Motonori KIMURA
  • Patent number: 8989928
    Abstract: A system for a watercraft includes memory, a communications module, and a throttle control module. The memory includes a first mapping of measured accelerator position to desired throttle opening. The communications module selectively downloads a second mapping of the measured accelerator position to the desired throttle opening to the memory. The throttle control module generates the desired throttle opening based on the measured accelerator position and a selected one of the first and second mappings. A throttle actuator module opens a throttle valve based on the desired throttle opening.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Clever, Kevin A. Cansiani, Ronald E. Gaskins, Martin Payne, Christopher A. Koches, Lance Norris
  • Patent number: 8989970
    Abstract: There is disclosed a continuously variable ratio transmission assembly (“variator”) comprising a roller which transmits drive between a pair of races, the roller being movable in accordance with changes in variator ratio, a hydraulic actuator which applies a biasing force to the roller, at least one valve connected to the actuator through a hydraulic line to control pressure applied to the actuator and so to control the biasing force, and an electronic control which determines the required biasing force and sets the valve accordingly, wherein the valve setting is additionally dependent upon a rate of flow in the hydraulic line.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: March 24, 2015
    Assignee: Torotrak (Development) Limited
    Inventor: Stephen William Murray
  • Patent number: 8983692
    Abstract: A method to control a hybrid powertrain including an engine, an electric machine, and a transmission through a transition from an initial operating point to a target operating point includes monitoring a break point in a non-convex data set defined by an engine torque below which a growl condition cannot occur and a threshold low motor torque required for the grown condition, comparing the target operating point to the break point, and controlling the powertrain based upon the target operating point and the comparing.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Jeremy Wise, Sean W. McGrogan
  • Publication number: 20150073671
    Abstract: A speed ratio control device for an automatic transmission of a vehicle calculate a minimum engine rotation speed based on a travel load, and sets a target speed ratio such that the engine rotation speed does not fall below the minimum engine rotation speed. If the travel load of the vehicle is equal to or greater than a predetermined value, a higher value is used for the minimum engine rotation speed compared to a case when the travel load of the vehicle is smaller than the predetermined value. Re-acceleration performance of the vehicle under a high travel load as in a case when the vehicle travels uphill while towing another vehicle is thereby improved.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 12, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Jun Inoue
  • Patent number: 8977460
    Abstract: A method managing a device distributing engine torque between main and secondary wheel sets of a motor vehicle, the distributing device including an actuator distributing engine torque, a control unit exhibiting plural distribution modes of the engine torque and adopting one distribution mode as a function of a variable and a button selecting a distribution mode delivering an information item representative of the button position, the control unit determining, in regular operation, the variable, as a function of the information item; the method includes: detecting potential failure of the selection button, including verifying consistency of the information item; activation of degraded mode of operation, when a failure of the button is detected, in which a constant value is allocated to the variable; during degraded operation, monitoring end of failure, including verifying consistency of the information item; activation of regular mode of operation, when end of failure is detected.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 10, 2015
    Assignee: RENAULT s.a.s.
    Inventors: Pascal Febrer, Francois Foussard, Stephane Guegan, Alessandro Monti
  • Patent number: 8977449
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, a holding force of a vehicle parked on a hill is adjusted depending on a grade of the hill.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: March 10, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, David Oshinsky, James William Loch McCallum, Adam Nathan Banker, Felix Nedorezov
  • Publication number: 20150066318
    Abstract: A control method for a vehicle transmission includes, in a TCU, receiving the rpm of an engine from an rpm sensor and determining whether to perform shifting of gears depending on the received rpm, when the shifting of gears is determined, allowing the TCU to control an ECU to cut off fuel supplied to the engine combustion chamber and to release a clutch connecting the engine and the transmission, after the control action is performed, monitoring a change in pressure of engine cylinders and allowing engine braking action to be activated, and when the rpm is reduced to a predefined value or less after the engine braking action, performing a shifting action.
    Type: Application
    Filed: December 10, 2013
    Publication date: March 5, 2015
    Applicants: Kia Motors Corporation, Hyundai Motor Company
    Inventors: Sung Ho Park, Hyung Bin Park
  • Patent number: 8972118
    Abstract: A method of and a control unit arranged for controlling an internal combustion engine connected to a torque converter arranged to operate in a torque converter mode or a lock up mode are provided. The method includes determining whether the torque converter mode or the lock up mode is presently in operation and selecting to control an engine speed (N) in dependence of an operator input when the torque converter mode is present, and selecting to control an engine output power and/or engine output torque in dependence of operator input to the accelerator unit when the lock up mode is present.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: March 3, 2015
    Assignee: Volvo Construction Equipment AB
    Inventor: Björn Brattberg
  • Patent number: 8972188
    Abstract: An end-user can input a correction to a map error, directly on the device. The device is then able to use the correction without external processing of the correction. Hence, it is no longer necessary for an end-user to simply report errors to the map vendor over a web link, then wait for that map vendor to verify the error, update its maps and finally supply the end-user with updates—a cycle that can take months and sometimes years to complete. Instead, the navigation device can use the correction immediately. End-users can also share corrections with other end-users and also with a shared remote server that aggregates, validates and distributes correction.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: March 3, 2015
    Assignee: TomTom International B.V.
    Inventors: Pieter Geelen, Harold Goddjn
  • Patent number: 8968153
    Abstract: A method of controlling a launch clutch during an engine restart event commands a positive torque capacity before the engine reaches idle speed. Early application of the launch clutch reduces the time delay between brake pedal release and vehicle acceleration. To avoid excessive drag on the engine during the restart event, the torque capacity is adjusted using closed loop control. A controller calculates a maximum rate of change of torque capacity based on measured engine speed and an engine acceleration and does not increase the commanded torque capacity faster than the calculated rate. In some circumstances the maximum rate of change may be negative, resulting in a reduction in commanded torque capacity.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Matthew John Shelton, Hong Jiang, Felix Nedorezov, Roger Lyle Huffmaster
  • Patent number: 8960132
    Abstract: An ECU executes a program including the steps of carrying out low-load control when an IG OFF operation is performed, when a vehicle is running, and when stop of an engine is not permitted, carrying out gate cut-off control, ending low-load control and gate cut-off control when a brake pedal has been operated, when a vehicle speed is lower than a threshold value, or when a prescribed time period has elapsed since the IG OFF operation, permitting stop of the engine, and carrying out fuel cut control.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: February 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideaki Yaguchi, Takeshi Hoshiba, Akihiro Kimura, Masahiro Naito
  • Patent number: 8958960
    Abstract: A coast stop vehicle includes power transmission means provided between a drive source and drive wheels, drive source automatic stop means configured to stop the drive source during vehicle running when a value indicating a driving state of the vehicle is in a drive source stop permission region, slip determination means configured to determine whether or not there is slip in the power transmission means while the drive source is stopped by the drive source automatic stop means, and a changer means configured to narrow the drive source stop permission region when the occurrence of the slip in the power transmission means was determined by the slip determination means.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Jatco Ltd
    Inventors: Hideshi Wakayama, Noritaka Aoyama, Kousuke Waku, Hiroyasu Tanaka, Keichi Tatewaki
  • Publication number: 20150046049
    Abstract: A method of controlling a launch clutch during an engine restart event commands a positive torque capacity before the engine reaches idle speed. Early application of the launch clutch reduces the time delay between brake pedal release and vehicle acceleration. To avoid excessive drag on the engine during the restart event, the torque capacity is adjusted using closed loop control. A controller calculates a maximum rate of change of torque capacity based on measured engine speed and an engine acceleration and does not increase the commanded torque capacity faster than the calculated rate. In some circumstances the maximum rate of change may be negative, resulting in a reduction in commanded torque capacity.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Matthew John Shelton, Hong Jiang, Felix Nedorezov, Roger Lyle Huffmaster
  • Publication number: 20150039192
    Abstract: A system for improving performance of a hybrid vehicle at higher elevations. The system includes a plurality of wheels, an engine, an altitude sensor, a transmission, a memory for storing target engine speeds, and a processor. The engine provides a torque to the plurality of wheels through the transmission, based on gear ratios limited by a wide open throttle (WOT) guard. The altitude sensor determines an elevation of the vehicle. Above a certain threshold elevation, the processor changes the WOT guard to improve performance at lower gears, such as standing start performance.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Christopher T. Gauthier
  • Publication number: 20150039193
    Abstract: A system according to the principles of the present disclosure includes an axle torque determination module, an engine torque determination module, a torque security module, and an engine torque control module. The axle torque determination module determines an axle torque request based on a driver input and a vehicle speed. The engine torque determination module determines an engine torque request based on the axle torque request and at least one of a first turbine speed and whether a clutch of a torque converter is applied. The torque security module determines a secured torque request based on at least one of the driver input, the vehicle speed, and an engine speed. The engine torque control module controls an amount of torque produced by an engine based on one of the engine torque request and the secured torque request.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 5, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: MICHAEL LIVSHIZ, RYAN Z. GOODE, RICHARD B. JESS, MICHAEL L. WATERMAN, RONALD F. LOCHOCKI, JR.