By Changing Shift Map, Schedule, Or Pattern Patents (Class 701/55)
  • Patent number: 8000866
    Abstract: An engine is coupled to an input member of a hybrid transmission, the hybrid transmission operative to transfer power between the engine and a second torque machine and an output member. A method for controlling the engine includes monitoring an operator torque request, commanding operation of the hybrid transmission in a continuously variable operating range state, determining engine commands comprising a first engine torque request and a second engine torque request based upon the operator torque request and the operation of the hybrid transmission, determining an engine torque constraint comprising a maximum engine torque based upon a capacity of the hybrid transmission to react the engine torque, and controlling engine operation based upon the first engine torque request only when the second engine torque request exceeds the engine torque constraint.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 16, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Patent number: 7991519
    Abstract: There is provided a method and apparatus to determine operating conditions for a powertrain comprising an internal combustion engine and first and second electrical machines and an electro-mechanical transmission selectively operative to transmit torque therebetween. The method comprises determining a torque output and an operating cost for operating the first and second electrical machines of the hybrid transmission effective to meet an operator torque request when the engine is operating in an engine-off operating state. Determining the torque output for operating the first and second electrical machines comprises executing a predetermined system equation effective to determine motor torque outputs from each of the first and second electrical machines based upon the selected parametric value for the input torque and the operator torque request.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: August 2, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Bryan R. Snyder
  • Patent number: 7983824
    Abstract: A method for operation of a drivetrain including a drive motor and an automatic transmission having at least five shift elements, of which, at least two elements are disengaged in each forward and reverse gear and the other shift elements are engaged. Two successive shifts are accomplished by two overlapped single gear shifts such that: a) during the first shift, a first shift element is engaged or disengaged while a second shift element is disengaged or engaged; b) during the first shift, second and third shift elements are prepared for either engagement or disengagement; and c) during the first and the second shifts at least one fourth shift element is kept engaged or nearly engaged.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: July 19, 2011
    Assignee: ZF Friedrichshafen AG
    Inventors: Klaus Steinhauser, Christian Popp
  • Patent number: 7979184
    Abstract: An automatic transmission controller system and method are disclosed. In particular, disclosed is a system and method for controlling solenoid pressure control valves associated with an automatic transmission. The automatic transmission controller system comprises a controller which is configured to receive one or more electrical signal inputs for attributing each solenoid pressure control valve with one of a set of I-P calibration curves.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: July 12, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Michael T. Dickinson, Chris Hopp
  • Patent number: 7967726
    Abstract: A method of controlling an automatic transmission includes determining whether a coast-down control condition is met, and performing coast-down control if the condition is met. The coast-down control includes selectively downshifting, such that engine speed is maintained above a fuel-cut threshold speed. The coast-down control condition may include a throttle opening being below a threshold opening, a shift-speed being higher than or equal to a threshold shift-speed, and a road slope being smaller than a predetermined slope. The method may also include determining whether a deceleration lock-up control condition is met, and performing deceleration lock-up control, including engaging a lock-up clutch, if the condition is met. The deceleration lock-up control condition may include a throttle opening being below a threshold opening, a shift-speed being below a threshold shift-speed, a brake not being operated, and a difference between an engine speed and a turbine speed being smaller than a reference value.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: June 28, 2011
    Assignee: Hyundai Motor Company
    Inventor: Hoegab Kim
  • Patent number: 7966115
    Abstract: A system and method of controlling shift points of a transmission coupled to an internal combustion engine by modifying at least one transmission shift point schedule may comprise determining a weight of a vehicle carrying the engine and the transmission, modifying the at least one transmission shift point schedule as a function of the weight of the vehicle, and controlling automatic shifting between two or more gear ratios of the transmission in accordance with the modified at least one transmission shift point schedule.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: June 21, 2011
    Assignee: Cummins Inc.
    Inventor: Steven M. Bellinger
  • Patent number: 7957893
    Abstract: Methods and systems for generating, deriving, and enhancing drivable road databases are provided. A baseline road in a road network is defined and position and/or trajectory data collected by vehicles traveling the baseline road are compiled and compared to a representation of the baseline road in an existing database. Identity and/or other property information about the road are assigned form the existing database to the new database.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: June 7, 2011
    Assignee: Dash Navigation, Inc.
    Inventor: Brian Smartt
  • Publication number: 20110130931
    Abstract: A gear shift control apparatus for an automatic transmission includes: a gear-shift-state-determining unit for determining the presence or absence of a gear-shift-determination of the automatic transmission; a gear-shift-time-estimating unit, when there is the gear-shift-determination, for estimating gear-shift-completion-time since the present gear is shifted to another gear and, after that, further shifted to the present gear; a fuel-consumption-estimating unit for estimating a first fuel consumption in the case where the vehicle drives for the gear-shift-completion-time in the present gear and a second fuel consumption in the case where the present gear is shifted to another gear and, after that, further shifted to the present gear; and a fuel-consumption-determining unit for determining validity of the gear shift on the basis of fuel consumptions.
    Type: Application
    Filed: May 15, 2009
    Publication date: June 2, 2011
    Inventors: Masato Yoshikawa, Norimi Asahara
  • Patent number: 7953534
    Abstract: The invention relates to a vehicle integrated-control apparatus and method that sets a final control target by coordinating a control target primarily set based on an input of a driver with instruction values from the control systems; and that causes a drive control system to control a drive source and a stepped automatic transmission to achieve the final control target. With this apparatus and method, at least one of the control systems, which provide instruction values to be coordinated with the primarily set control target, is notified of a range of control targets that can be achieved at a current shift speed; a range of control targets that can be achieved by changing the current shift speed to a currently achievable shift speed; and a range of control targets that can be achieved without changing the current shift speed to another shift speed.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: May 31, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Kuwahara, Masato Kaigawa
  • Patent number: 7949442
    Abstract: A method and system for boosting a torque output of a drive train comprises an engine speed detector for detecting an engine speed of an engine having a baseline torque versus engine speed curve. A data processor determines if the detected engine speed is within a first range of engine speeds, if the detected engine speed is within the first range, the electric motor is activated to rotate substantially synchronously with the engine speed within the first range in an electric propulsion mode in accordance with a supplemental torque versus engine speed curve. The supplemental torque versus engine speed curve intercepts the baseline torque versus engine speed curve at a lower engine speed point and a higher engine speed point.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: May 24, 2011
    Assignee: Deere & Company
    Inventors: Alan David Sheidler, Brian Joseph Gilmore, Mark Charles DePoorter, Peter Finamore, Duane Herbert Ziegler, Joseph Albert Teijido
  • Patent number: 7949452
    Abstract: A motor vehicle includes a clutch and an automated transmission between the engine and the drive wheels of the vehicle. A method for shift control in the motor vehicle when starting off or under way includes continuously performing computer simulations of the future driving of the vehicle, at least in response to information on road incline and throttle opening position, for a set of different shift schedules with combinations of engine speeds when shifting and shift steps, and selecting a shift schedule from the set of shift schedules which is optimal with regard to a selected criterion.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: May 24, 2011
    Assignee: Volvo Lastvagnar AB
    Inventors: Anders Eriksson, Marcus Steen
  • Publication number: 20110106355
    Abstract: A vehicle control device for controlling a vehicle drive apparatus, the vehicle control device configured with a release control mechanism that provides feedback controlling supplied oil pressure to a release side element, and an engagement control mechanism that increases supplied oil pressure to an engagement side element as an engagement element on a side to be engaged in a state that the differential rotation speed is substantially constant. The control device is further configured with a phase determining mechanism that determines if the torque phase has started when a condition that a phenomenon accompanying a change of the differential rotation speed due to increase of the supplied oil pressure to the engagement side element is detected is met.
    Type: Application
    Filed: September 10, 2010
    Publication date: May 5, 2011
    Applicant: AISIN AW CO., LTD.
    Inventors: Kohei TSUDA, Yomei Hakumura, Masahiro Asai, Yoichi Tajima, Tomokazu Ito
  • Patent number: 7937195
    Abstract: A system for managing a power source in a vehicle having an engine and an electric machine can set first and second discharge limits for the power source, where the second discharge limit is higher than the first discharge limit. A buffer value can be determined as a function of at least the second discharge limit and an engine-on power requirement. A driver demand for power can be determined, and the engine started when the engine is off and the driver demand for power exceeds the buffer value.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 3, 2011
    Assignee: Ford Global Technologies, LLC
    Inventor: Shailesh Kozarekar
  • Publication number: 20110093173
    Abstract: In a gear shift control device for a vehicle that shifts a transmission having a plurality of gears based on a shift line set in a shift map, an upshift line for shifting to the highest gear, and a downshift line that is located in a high vehicle speed region on the side of a higher vehicle speed than the upshift line are set in the shift map. The downshift line is used when shifting from the highest gear to a prescribed gear that has a larger gear ratio than the highest gear.
    Type: Application
    Filed: June 2, 2009
    Publication date: April 21, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukihiko Ideshio, Shigeru Okuwaki, Hiroyuki Shibata, Tomohito Ono
  • Patent number: 7920949
    Abstract: A variator torque control system and method utilize a hydraulic actuator to control the variator output via a torque control map, wherein the values of the torque control map are evaluated and modified during use of the map to improve map accuracy. In an example, errors in the map are evaluated to determine whether a system fault has occurred.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: April 5, 2011
    Assignee: Caterpillar Inc.
    Inventors: Brian D Kuras, Frank A DeMarco, Adam J Vaccari, Tyler Bowan
  • Patent number: 7917267
    Abstract: In order to determine an optimized upshift point, it is proposed that a control circuit, on the basis of a current engine operating point (TQCUR;N) calculates a new engine operating point (TQNEW; NNEW) produced when shifting up at approximately the same vehicle speed, wherein the current engine operating point is determined as the optimized upshift point if the calculated new engine operating point is below a preset upper torque limit (TQ_MAX_LIM) and is at the same time above a preset lower engine speed limit (N_MIN_x+1) for the higher gear.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: March 29, 2011
    Assignee: Continental Automotive GmbH
    Inventors: Stefan Aigner, Laurent Bailliard, Gerhard Schopp
  • Patent number: 7917272
    Abstract: In deceleration control apparatus and method for an automotive vehicle, a deceleration control is performed in accordance with a turning travel situation of the vehicle; and an engine throttle opening angle is controlled gradually in a closure direction at a preset variation degree.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 29, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tatsuya Suzuki, Genpei Naitou, Shinji Matsumoto, Tomohiro Jimbo
  • Patent number: 7912613
    Abstract: A riding type vehicle includes an automatic transmission capable of executing a shift change by a clutch actuator and a shift actuator. A clutch is controlled by the clutch actuator and is a multiplate clutch. The multiplate clutch is provided with bias member configured to enlarge a partial clutch engagement region of the clutch. The multiplate clutch is configured such that during shift change, both of the clutch actuator and the shift actuator are controlled to operate in overlapping manner.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: March 22, 2011
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Makoto Kosugi
  • Patent number: 7912615
    Abstract: A method for gear selection during driving of a vehicle in a heavy uphill drive condition is provided, the vehicle including an engine, an automated mechanical transmission, a clutch, a control unit for receiving input signals including signals indicative of vehicle speed, engaged ratio of the transmission, rotational speed of the engine, rotational speed of a input shaft and displacement of a throttle control for engine torque request, and for processing the signals in accordance with programmed logic rules to issue command output signals to the engine, to the transmission and to said clutch.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: March 22, 2011
    Assignee: Volvo Lastvagnar AB
    Inventors: Anders Lindgren, Sixten Berglund, Peter Templin, Anders Eriksson
  • Patent number: 7908065
    Abstract: An ECU executes a program that includes the steps of i) calculating a sporty running counting SC based on a state of a vehicle according to an operation of a driver; ii) changing a condition for executing sporty running in which an upshift is inhibited when an accelerator is suddenly released and in which a downshift is promoted during sudden braking such that the condition is easier to satisfy and changing a condition for returning from sporty running so that it is more difficult to satisfy when the sporty running count SC is equal to or greater than a threshold value; and iii) changing the condition for executing sporty running so that it is more difficult to satisfy and changing the condition for returning from sporty running so that it is easier to satisfy when the sporty running count SC is not equal to or greater than the threshold value.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: March 15, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Kuwahara, Toshihiro Fukumasu, Masami Kondo, Hideki Kubonoya, Naoto Moriya, Masato Kaigawa
  • Patent number: 7908063
    Abstract: An apparatus and method are provided to execute synchronous shifting in a powertrain system having multiple torque-generative devices each operable to independently supply motive torque to the transmission device. The exemplary transmission device comprises a two-mode, compound-split, hybrid electro-mechanical transmission. Operation includes operating in an initial fixed gear ratio, operating the transmission in a mode operation, and, operating the transmission in a final fixed gear ratio. The control system reduces reactive torque of a clutch activating the initial gear, and deactivates the first torque-transfer device when the reactive torque is less than a predetermined value. It determines that speed of an input shaft to the transmission is substantially synchronized with a rotational speed of the second torque-transfer device, and actuates the second torque-transfer device.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: March 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Jy-Jen F. Sah
  • Publication number: 20110054747
    Abstract: An automatic transmission control apparatus includes: a frictional engagement element; a hydraulic pressure supplying section configured to supply a hydraulic pressure to the frictional engagement element; a progression state judging section configured to judge a progression state of the engagement of the frictional engagement element; a rotational speed change rate control section configured to control the hydraulic pressure so that a change rate of a rotational speed of an input shaft of the automatic transmission becomes equal to a target change rate, from when the engagement of the frictional engagement element is started; and a rotational speed feedback control section configured to perform a feedback control of the hydraulic pressure so that the rotational speed of the input shaft of the automatic transmission becomes equal to a target rotational speed, from when the progression state judging section judges a predetermined progression state.
    Type: Application
    Filed: July 22, 2010
    Publication date: March 3, 2011
    Inventors: Koji DOHI, Minari Ishii
  • Patent number: 7894966
    Abstract: An upshift control system for use in an automatic transmission including first and second friction elements, the upshift control system including a control unit that determines variation in an engagement capacity of the first friction element or an engagement capacity of the second friction element on the basis of combination of occurrence or non-occurrence of engine racing and compared lengths between a first time that elapses from output of a shift command to a start of an inertia phase and a second time that elapses from the out output of a shift command to a start of change in an actual gear ratio toward a target gear ratio to be achieved after the shifting, and performs a learning correction of a command pressure for the first friction element or a command pressure for the second friction element on the basis of the determination result.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 22, 2011
    Assignee: JATCO Ltd
    Inventors: Cheol Park, Osamu Sato
  • Patent number: 7894969
    Abstract: A control apparatus includes a torque-boost control portion that boosts torque output from the engine, and corrects the operation amount of an adjustment mechanism that adjusts the amount of air taken into the engine to increase the amount of air during a torque phase when the automatic transmission upshifts; and an inertia-phase determination portion that determines whether an inertia phase has started. The torque-boost control portion includes a torque-boost end control portion that executes a torque-boost end control that gradually decreases a correction amount, by which the operation amount is corrected, to zero when the inertia-phase determination portion determines that the inertia phase has started.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: February 22, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Asami, Toshio Sugimura, Takaaki Tokura, Nobufusa Kobayashi
  • Publication number: 20110035123
    Abstract: A number N of position sensors, each associated with one of N shift rails in a shift rail transmission system, wherein the set of N sensors is divided into subsets and each subset is provided a common reference from a control module; and a processing component that determines from data from each sensor whether the shift rail associated with that sensor is in a position of engagement of a first gear, a position of engagement of a second gear, or in a neutral position. Further, providing a first common reference to a first set of shift rail position sensors; providing a second common reference to a second set of shift rail position sensors; receiving sensor data from each position sensor; determining that the data from the first set of position sensors is unreliable; and operating a transmission using only the gears related to the position sensors in the second set.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 10, 2011
    Inventors: Kerfegar K. Katrak, Naresh K. Kodela, Richard E. Zuppann, Christopher Pollack, John Manyala, Todd W. Fritz, Ken R. Anderson, Ian D. McKenzie
  • Publication number: 20110015836
    Abstract: A speed ratio of a continuously variable transmission mechanism 20 is increased when a speed ratio of a subtransmission mechanism 30 connected in series to the continuously variable transmission mechanism 20 is switched from a first speed to a second speed. When an excess rotation speed Nb obtained by subtracting a target rotation speed from an engine rotation speed Ne exceeds a determination value Nr1 during this shifting process, a rapid rotation increase in an internal combustion engine 1 is prevented by reducing a shift speed of the continuously variable transmission mechanism 20 (S105A).
    Type: Application
    Filed: July 14, 2010
    Publication date: January 20, 2011
    Inventors: Seiichiro TAKAHASHI, Hiroyasu Tanaka, Ryousuke Nonomura, Jouji Seki, Takuichiro Inoue, Mamiko Inoue, Hideaki Suzuki
  • Publication number: 20110015839
    Abstract: A control device for a vehicle continuously variable transmission 4 comprises a shift control means for controlling either of or both the speed ratio at the continuously variable transmission mechanism 20 and the gear position at the subtransmission mechanism 30 so as to adjust an overall speed ratio to a final speed ratio and a torque capacity control means for controlling the torque capacity at a disengagement-side frictional engagement element in the subtransmission mechanism 30 so as to sustain a torque capacity value substantially equal to zero in an inertia phase occurring during a process of adjusting the gear position at the subtransmission mechanism 30 from the first gear position to the second gear position when a negative torque is input to the vehicle continuously variable transmission 4.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Inventors: Seiichiro Takahashi, Hiroyasu Tanaka, Ryousuke Nonomura, Jouji Seki, Takuichiro Inoue, Mamiko Inoue
  • Publication number: 20110015837
    Abstract: A control device for a vehicle continuously variable transmission 4 comprises: inertia phase processing completing means for completing an instruction relating to inertia phase processing before an input rotation speed of the subtransmission mechanism 30 actually reaches an input rotation speed of the second gear position; and torque phase processing starting means for starting an instruction relating to torque phase processing, in which reception of an input torque of the subtransmission mechanism 30 is shifted from a disengagement side frictional engagement element to an engagement side frictional engagement element before the input rotation speed of the subtransmission mechanism 30 actually reaches the input rotation speed of the second gear position, after completing the instruction relating to the inertia phase processing.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 20, 2011
    Inventors: Seiichiro Takahashi, Hiroyasu Tanaka, Ryousuke Nonomura, Jouji Seki, Takuichiro Inoue, Mamiko Inoue
  • Publication number: 20110015835
    Abstract: A control device for a vehicle continuously variable transmission 4 includes: final speed ratio setting means for setting an overall speed ratio of the continuously variable transmission mechanism 20 and the subtransmission mechanism 30 to be reached on the basis of an operating condition of the vehicle as a final speed ratio; shift control means for controlling the continuously variable transmission mechanism 20 and the subtransmission mechanism 30 such that the overall speed ratio aligns with the final speed ratio at a predetermined transient response; stagnation determining means for determining whether or not a stagnation period in which the overall speed ratio stops varying will occur during an upshift; and reduction control means for shortening a time required to advance to an inertia phase from a start of a shift in the subtransmission mechanism 30 following a determination that the stagnation period will occur.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 20, 2011
    Inventors: Seiichiro Takahashi, Hiroyasu Tanaka, Ryousuke Nonomura, Jouji Seki, Takuichiro Inoue, Mamiko Inoue
  • Publication number: 20110015838
    Abstract: A continuously variable transmission 4 for a vehicle includes a variator 20 that modifies a speed ratio continuously and a subtransmission mechanism 30 that is connected in series to the variator 20 and applies a first speed and a second speed, which is higher than the first speed, selectively. When the vehicle is running under a low load/high speed upshift condition having a lower load or a higher speed than a normal upshift condition, the subtransmission mechanism 30 is upshifted from the first speed to the second speed at a lower vehicle speed than under the normal upshift condition, and as a result, both rotation variation in an internal combustion engine 1 accompanying upshifting of the subtransmission mechanism 30 and an increase in a fuel consumption amount of the internal combustion engine 1 due to the shift operation in the continuously variable transmission 4 are suppressed.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Inventors: Seiichiro TAKAHASHI, Hiroyasu Tanaka, Ryousuke Nonomura, Jouji Seki, Takuichiro Inoue, Mamiko Inoue, Tatsuo Ochiai
  • Patent number: 7873452
    Abstract: A method and system for controlling an engine controller in response to actual vehicle load.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: January 18, 2011
    Assignee: Detroit Diesel Corporation
    Inventors: Jeffery Scott Hawkins, Charles Chapin Blake
  • Publication number: 20110010061
    Abstract: A method (42) for preventing incorrect gear shifts in automatic transmissions (14) of motor vehicles comprising the following steps: determining a current output torque (Mis) of a source gear (GSOURCE); generating a history of output torques by storing the current output torque in the source gear (GSOURCE) for a time interval having a predetermined duration; determining an absolute value of a minimal output torque (Mmin) and an absolute value of a maximum output torque (Mmax) from the history (60) of output torques, comparing the two values and determining the greater absolute value; determining (S3) an absolute value of a target torque (MTARGET) of a target gear (GTARGET), if an instruction for a gear change exists; comparing (S4) the absolute value of the target torque (MTARGET) with the greater absolute value; and shifting (S5) the transmission (14) from the source gear (GSOURCE) to the target gear (GTARGET), if the absolute value of the target torque (MTARGET) is less than or equal to the greater absolute
    Type: Application
    Filed: July 30, 2010
    Publication date: January 13, 2011
    Applicant: GETRAG Getriebe-und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventor: Martin Seufert
  • Publication number: 20110004381
    Abstract: [Task] It is an object of the present invention to provide control device and control method for an automatic transmission which are capable of quickly converging an estimated vehicle speed 2 into a highly accurate state while an estimation response characteristic of the estimated vehicle speed 2 is secured. [Means for Solution] When a read-ahead vehicle speed is calculated using an integrator and a delay element, a predetermined gain used for an integral calculation is made small if a result of integral calculation is in excess of a predetermined value based on an actual vehicle speed.
    Type: Application
    Filed: January 26, 2009
    Publication date: January 6, 2011
    Inventors: Naohiro Yamada, Tsukasa Hayashi
  • Publication number: 20100318269
    Abstract: A closed loop shift control apparatus and method based on estimated torque in friction elements controls a torque transfer phase when shifting from a low gear configuration to a high gear configuration for an automatic transmission system. When pressure actuated friction elements are selectively engaged and released to establish torque flow paths in the transmission, estimates of torsional load exerted on the off-going friction element are used to predict the optimal off-going friction element release timing for achieving a consistent shift feel. The estimated torque is preferably calculated by using estimated torque signals generated as a function of speed measurements represented either the engine speed and turbine output speed or transmission output speed and wheel speed under dynamically changing conditions.
    Type: Application
    Filed: August 23, 2010
    Publication date: December 16, 2010
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Diana Yanakiev, Yuji Fujii, Eric Tseng, Gregory Michael Pietron, Joseph F. Kucharski
  • Patent number: 7841962
    Abstract: Methods and apparatus for control of a transmission are described, including provision of a shift initiation signal to the transmission when the engine speed attains an initiation point engine speed, the initiation point engine speed being adjustable as a function of a rate of change of engine speed so as to reduce engine speed variability at shift endpoints.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: November 30, 2010
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Dante T Boutell
  • Publication number: 20100298089
    Abstract: A method of actuating a clutch includes commanding a shift, monitoring slip speed, beginning synchronization, filling to a pre-fill volume, and holding at the pre-fill volume. After slip speed reaches a trigger point, the clutch is filled to a first predicted touch point volume, which is greater than the pre-fill volume. The pre-fill volume is approximately 80 to 90 percent of the first predicted touch point volume. The method may determine slip speed derivative, and set the trigger point based thereupon. The method may monitor actual touch point volume and calculate a flow model, which is used to determine when the pre-fill volume has been reached. Filling the clutch to the pre-fill volume may begin simultaneously with commanding the shift. Pressure is generated by an auxiliary pump, which receives power from sources other than an internal combustion engine.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 25, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Jy-Jen F. Sah
  • Patent number: 7831369
    Abstract: There is provided a method and executable code for controlling operation of a vehicle. The vehicle control occurs during ongoing operation subsequent to deactivating an internal combustion engine which is effective to generate vehicle tractive torque. The method comprises: monitoring conditions external to the vehicle, and, restarting the internal combustion engine when the monitored external conditions indicate an imminent opportunity to move the vehicle in a forward direction.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 9, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Sanjeev M. Naik, Man-Feng Chang, Jeffrey T. Wolak
  • Publication number: 20100280722
    Abstract: Systems and methods for efficiently and effectively controlling the rate of change of ratio, not simply the ratio, in a CVT. By controlling the rate of change of ratio, the acceleration or deceleration of a vehicle can be controlled in an efficient manner. Furthermore, the rate of change of ratio can be controlled by controlling the clamping pressure of the pulleys and/or differential pressure between the pulleys with minimal slip by using a servo control mechanism adapted for control by a system controller based on equilibrium mapping and other control parameters.
    Type: Application
    Filed: April 5, 2010
    Publication date: November 4, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Andrew A. Frank, Thomas Dreumont
  • Publication number: 20100268427
    Abstract: A system and method for controlling a hydraulic transmission uses a clutch fill profile having a hold level that varies as a function of torque. A pressure required for an on-coming clutch to hold the gear of the off-going clutch without a flare or over-speed condition is calculated. This pressure approximates the pressure of the on-coming clutch when a disengage command with respect to the off-going clutch is reached. The pulse and hold phases for the clutch are executed at times that are constant from shift to shift and do not vary as a function of torque or slip.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 21, 2010
    Applicant: Caterpillar Inc.
    Inventor: Todd R. Kabrich
  • Publication number: 20100262344
    Abstract: A closed loop shift control apparatus and method based on friction element load controls a torque transfer phase when shifting from a low gear configuration to a high gear configuration for an automatic transmission system. When pressure actuated friction elements are selectively engaged and released to establish torque flow paths in the transmission, measurements or estimates of torsional load exerted on the off-going friction element are used to predict the optimal off-going friction element release timing for achieving a consistent shift feel. The ideal timing to release the off-going friction element is uniquely defined when torque load exerted onto the off-going friction element becomes substantially zero. An on-coming clutch engagement process is controlled by a closed loop control based on measurements or estimates of on-coming clutch torque capacity for a constant shift feel under dynamically changing conditions.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 14, 2010
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Yuji Fujii, Gregory Michael Pietron, Seung-Hoon Lee, James William Loch McCallum, Mohamed Redissi, David Popejoy, John Butwin, Robert Orley Burkhart, Diana Yanakiev
  • Publication number: 20100256880
    Abstract: In a control apparatus (3, 40) of a vehicle in which a by-wire range switching apparatus (10) that performs range switching of an automatic transmission 2 using an actuator 60 is mounted, even if a range switching failure occurs in the course of performing range switching in a specific pattern (for example, R?D, or D?R) so as to reverse the present drive power direction, vehicle movement can be suppressed or prevented as much as possible. The control apparatus (3, 40) includes a coping means (Steps S1 and S5) that, when the request to switch to a forward range or a reverse range has been identified as a request in that specific pattern, reduces the generated output of a drive source 1 to a lower limit side, and an execution means (Steps S2, S4, and S6) that controls the range switching apparatus 10 so as to establish the requested range.
    Type: Application
    Filed: October 7, 2008
    Publication date: October 7, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tsuyoshi Sato
  • Publication number: 20100250076
    Abstract: The present invention provides a method of selecting and implementing a shift schedule for a transmission in a vehicle that includes an output speed sensor and a controller. The method includes measuring output speed with the output speed sensor and comparing the measured output speed to an output speed threshold. The controller receives throttle percentage and compares the throttle percentage to a throttle threshold. The method also includes calculating output acceleration and transmission gear ratio with the controller. The shift schedule is selected based on the measured output speed, calculated output acceleration, calculated transmission gear ratio, and throttle percentage.
    Type: Application
    Filed: March 24, 2009
    Publication date: September 30, 2010
    Inventors: Jeffrey E. Shultz, Jared S. Shattuck
  • Publication number: 20100250075
    Abstract: A vehicle control device for controlling a vehicle drive device that includes an input member that is drive coupled to an engine, an output member that is drive coupled to a wheel, and a transmission apparatus that has a plurality of engaging elements, that switches a plurality of shift speeds by controlling engaging and releasing of the plurality of the engaging elements, and that transmits to the output member a rotational driving force of the input member by shifting the rotational driving force at gear ratios of the plurality of the shift speeds.
    Type: Application
    Filed: January 28, 2010
    Publication date: September 30, 2010
    Applicant: AISIN AW CO., LTD.
    Inventors: Takehiko Suzuki, Kyosuke Komizo, Takahiro Sekii, Yasuhiko Kobayashi
  • Publication number: 20100242671
    Abstract: A transmission includes a controller that has a rapid-deceleration judge and a rapid-deceleration processor. The rapid-deceleration judge judges whether a vehicle is decelerating rapidly or not. The rapid-deceleration processor includes a torque-fluctuation inhibitor, and an after-rapid-deceleration change-speed stage anticipator. The torque-fluctuation inhibitor shuts off power transmission from a power source, or holds power transmission by way of a current change-speed stage or lower, when the vehicle is decelerating rapidly. The after-rapid-deceleration change-speed stage anticipator anticipates a subsequent change-speed stage being adapted for restarting or reaccelerating the vehicle that has come out of rapid deceleration.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Inventors: Hiroki HATORI, Takeshige Miyazaki, Yoshiki Ito, Hiroshi Toyoda, Kiyoshi Nagami, Atsushi Takeuchi
  • Publication number: 20100250074
    Abstract: A control apparatus includes a shift-pressure learning correction controlling section configured to perform a shift-pressure learning correction in which a physical quantity representing a progress of shift is measured at a time of current downshift, and in which an engagement command pressure for a friction element is corrected at a time of next downshift on the basis of a divergence between the measured physical quantity and a target physical quantity; a shift-torque increase controlling section configured to perform a torque increase control in which a command for temporarily increasing torque of a drive source starts to be outputted when a start estimation timing of torque phase has just come during a transition period given between start and end of the downshift; and a learning convergence judging section configured to judges whether the shift-pressure learning correction has converged, configured to prohibit the torque increase control until it is decided that the shift-pressure learning correction has
    Type: Application
    Filed: December 30, 2009
    Publication date: September 30, 2010
    Inventors: Kazuki HIRASAKO, Masami SUZUKI
  • Publication number: 20100241324
    Abstract: In an automatic transmission controller, a gear shift control unit has a target rotational angle position calculator for calculating a target rotational angle position of a gear shift motor, an actual rotational angle position calculator for calculating the actual rotational angle position of the gear shift motor, and an F/B gain setting unit. When a gear shift instruction from a gear shift controller is a gear shift pattern for driving at least a select motor, the F/B gain is set to be larger that of the gear shift pattern in which the select motor is not driven, and also a motor driving mode and a motor braking mode are switched to each other in accordance with the difference between the target rotational angle position and the actual rotational angle position.
    Type: Application
    Filed: December 22, 2009
    Publication date: September 23, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Osamu ISHIKAWA, Takeru Okabe
  • Patent number: 7797089
    Abstract: A system and method for managing a power source in a vehicle having an engine and an electric machine includes setting first and second discharge limits for the power source, where the second discharge limit is higher than the first discharge limit. A buffer value is determined as a function of at least the second discharge limit and an engine-on power requirement. A driver demand for power is determined, and the engine is started when the engine is off and the driver demand for power exceeds the buffer value.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: September 14, 2010
    Assignee: Ford Global Technologies, LLC
    Inventor: Shailesh Kozarekar
  • Publication number: 20100228454
    Abstract: In control apparatus and method for an automatic transmission, a gear shift state of a stepwise variable transmission mechanism is controlled to a target gear shift state by releasing a first engagement section according to a reduction in a capacity of the first engagement section and, simultaneously, by engaging a second engagement section according to an increase in the capacity of the second engagement section, in accordance with a torque inputted to the stepwise variable transmission mechanism and, during an inertia phase, either one of the first and second engagement sections functions as a gear shift state control side engagement section and the capacity of a gear shift state non-control side engagement section which is the other engagement section is increased when determining that it is impossible to make the gear shift state follow up the target gear shift state at the gear shift state control side engagement section.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 9, 2010
    Inventors: Seiichiro Takahashi, Tatsuo Ochiai, Masaaki Uchida, Masato Koga, Ryoji Kadono, Tateki Jozaki, Hideaki Suzuki, Ryousuke Nonomura, Mamiko Inoue
  • Publication number: 20100211275
    Abstract: A control device of a vehicular automatic transmission determines, during shifting to a first target gear position, whether the transmission should be shifted to a second target gear position that is remote from the current gear position than the first target gear position, and determines whether a gearshift to the first target gear position was executed during shifting to a third target gear position. If it is determined that the transmission should be shifted to the second target gear position during a multiple gearshift to the first target gear position which is started during shifting to the third target gear position, a multiple gearshift to the second target gear position is inhibited. If it is determined that the transmission should be shifted to the second target gear position during a single gearshift to the first target gear position, the multiple gearshift to the second target gear position is permitted.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 19, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobufusa KOBAYASHI, Yoshio Hasegawa
  • Patent number: 7774119
    Abstract: A shift control system of an automatic transmission and a method thereof include controlling the off-going and on-coming clutches according to hydraulic pressures of the off-going and on-coming clutches calculated based on a flare amount when a flare occurs, controlling the on-coming clutch according to hydraulic pressure of the on-coming clutch calculated based on a shifting time interval when the flare does not occur and the shifting time interval is smaller than or equal to a predetermined time interval, and controlling the off-going and on-coming clutches according to hydraulic pressures of the off-going and on-coming clutches calculated based on an excess rate of change of a turbine speed when the shifting time interval is larger than a predetermined time interval.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 10, 2010
    Assignee: Hyundai Motor Company
    Inventor: Hyun Soo Shim