Antispin, Traction Control, Or Drive Slip Control Patents (Class 701/82)
  • Publication number: 20140058643
    Abstract: A driving force control apparatus includes: a turning radius estimating unit that estimates a turning radius of a four-wheel-drive vehicle; a target slip angle computing unit that computes a target slip angle at the time of turning of the four-wheel-drive vehicle, on the basis of the estimated turning radius; a target rotational speed computing unit that computes target rotational speeds of right and left rear wheels of the four-wheel-drive vehicle, on the basis of the estimated turning radius, the computed target slip angle, and a vehicle speed; and a driving force control unit that controls driving forces that are transmitted to the right and left rear wheels such that actual rotational speeds of the right and left rear wheels approach the computed target rotational speeds.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 27, 2014
    Applicant: JTEKT Corporation
    Inventor: Akira Kodama
  • Patent number: 8655563
    Abstract: In a braking/driving force control apparatus, a vehicle target braking/driving force and a vehicle target yaw moment through the control of braking/driving forces of wheels are calculated, and when the target braking/driving force and the target yaw moment cannot be achieved through the control of the braking/driving forces of the wheels, the vehicle target braking/driving force after the modification and the vehicle target yaw moment after the modification are calculated such that, within the range where the ratio of the vehicle target braking/driving force after the modification and the vehicle target yaw moment after the modification coincides with the ratio of the target braking/driving force and the target yaw moment, the vehicle braking/driving force and the vehicle yaw moment by the target braking/driving forces of the wheels take the greatest values.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Maeda, Kazuya Okumura, Michitaka Tsuchida, Yoshio Uragami, Kensuke Yoshizue, Satoshi Ando, Koji Sugiyama
  • Patent number: 8649945
    Abstract: A traction force control section of a wheel loader reduces maximum traction force to below the maximum traction force with traction force control in an off state when the traction force control is in an on state. The traction force control section increases the maximum traction force when determination conditions are satisfied with the traction force control in the on state. The determination conditions include that the work situation is digging, that the operation amount of the acceleration operation member is the predetermined operation threshold or more, and that a boom angle is the predetermined angle threshold or more.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 11, 2014
    Assignee: Komatsu Ltd.
    Inventor: Atsushi Shirao
  • Patent number: 8649953
    Abstract: A vehicle is provided comprising: a main body; a plurality of wheels coupled to the main body; a traction motor associated with the main body and coupled to at least one of the wheels for driving the one wheel; control apparatus coupled to the traction motor and generating a motor drive signal to the traction motor; a first sensor for generating a velocity signal indicative of a velocity of the driven wheel; and a further sensor for sensing an acceleration of the main body and generating a vehicle acceleration signal. The control apparatus determining a measured velocity of the driven wheel from the first sensor speed signal, calculating a velocity of the vehicle using the vehicle acceleration signal and comparing the measured velocity of the driven wheel to the calculated velocity of the vehicle to determine wheel slip status.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: February 11, 2014
    Assignee: Crown Equipment Corporation
    Inventor: Nicholas J. Sherman
  • Patent number: 8639429
    Abstract: A tractive force control part of a wheel loader reduces the maximum tractive force when determination conditions are satisfied during tractive force control. The determination conditions include that the work phase is excavation, that the working implement is in the raising hydraulic stall condition and that drive circuit pressure is greater than or equal to a predetermined pressure threshold.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: January 28, 2014
    Assignee: Komatsu Ltd.
    Inventor: Atsushi Shirao
  • Publication number: 20140025274
    Abstract: An electronically controlled speed limiting system for a turf maintenance machine includes at least one traction motor rotating a wheel. At least one hydraulic pump in fluid communication with the traction motor provides hydraulic fluid to operate the traction motor. At least one actuator in fluid communication with the hydraulic pump varies an output of the hydraulic pump. A controller in communication with the actuator commands the actuator to control the output of the hydraulic pump and thereby an operating speed of the wheel. A brake is activated by the controller if a wheel speed sensor signals the wheel is slip-spinning, to mitigate turf damage. A steering position sensor signal is used by the controller to modify brake activation during machine turns. An inclinometer signal is used by the controller to automatically reduce machine speed on inclined surfaces.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 23, 2014
    Applicant: TEXTRON INC.
    Inventors: Christian Stanton Carver BRYANT, Bryan E. HOLBY, Lynn G. WESTBROOK, Brian MELKA
  • Patent number: 8626404
    Abstract: The described system and method are implemented within a motor grader or other machine for grading of surfaces, wherein the machine includes a ground engaging element, as well as one or more blades for removing surface material. In this context, the described system and method prevent slippage of the ground engaging element against the underlying surface. In an embodiment, a torque limit is applied, wherein the torque limit corresponds to a torque that is less than that required for slippage under the current operating conditions, thus avoiding the problems caused by both overly aggressive and overly conservative cut depth strategies.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 7, 2014
    Assignee: Caterpillar Inc.
    Inventors: Norval P. Thomson, Gregory Durst, Martin Lehman, Shane McBride, Daniel P. Sergison
  • Patent number: 8620546
    Abstract: An on-demand-type drive state control apparatus for a vehicle is provided. In the case where acceleration slippage occurs at drive wheels (rear wheels) of a vehicle when a drive system is in a two-wheel drive state, the drive system is switched from the two-wheel drive state to a four-wheel drive state. That is, the maximum transmittable torque of a multi-disc clutch mechanism increases from “0” to a predetermined value. In the four-wheel drive state, the maximum transmittable torque decreases stepwise from the present value by a predetermined value every time the vehicle travels over a predetermined distance in a state in which none of the wheels cause acceleration slippages. That is, the clutch drive current supplied to the multi-disc clutch mechanism decreases gradually (stepwise or in a plurality of steps), and the drive torque distributed to the front wheels (rear wheels) decreases (increases) gradually.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 31, 2013
    Assignees: Aisin AI Co., Ltd., JTEKT Corporation
    Inventors: Kazutaka Kobayashi, Yoshiyuki Aoyama, Takeshige Miyazaki, Akihiro Ohno, Ryohei Shigeta, Tomoaki Kato, Go Nagayama
  • Patent number: 8620555
    Abstract: A method for assessing slippage of wheels in a vehicle includes the steps of measuring, via a sensor, an initial value of vehicle speed, determining, via a processor, at least one of a minimum vehicle speed and a maximum vehicle speed, and determining, via the processor, wheel slip using the initial value and the at least one of the minimum vehicle speed and the maximum vehicle speed.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Mahir Hodzic, Eric J. Holdorf, Eric E. Krueger, Kevin S. Kidston
  • Patent number: 8606478
    Abstract: A system and a method are provided for controlling a foundation brake of a vehicle having at least one foundation brake device, wherein the usability of the foundation brake is limited to a predetermined total application-time of the foundation brake within a predetermined time interval.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 10, 2013
    Assignee: Volvo Lastvagnar AB
    Inventors: Jens Samsioe, Peter Lingman
  • Publication number: 20130325283
    Abstract: A method for determining the yaw tendency of a vehicle is hereby presented. The method comprises the steps of determining the propulsion states of one or several wheels of said vehicle, and estimating yaw moment variations of a vehicle from said propulsion states, wherein said yaw moment variations are induced from altered propulsion states between at least two of the wheels of said vehicle.
    Type: Application
    Filed: January 25, 2011
    Publication date: December 5, 2013
    Inventor: Christian Rylander
  • Patent number: 8589049
    Abstract: System and method for controlling vehicle operating characteristics. The method includes receiving, at a vehicle, global positioning system (GPS) data, and, based on the received GPS data, determining the vehicle's location. The method also identifies terrain map information associated with the vehicle's determined location and determines a terrain based on the terrain map information. The method then modifies one or more vehicle operating characteristics based on the determined terrain.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: November 19, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: William C. Craig
  • Patent number: 8589047
    Abstract: A method is provided for operating a combustion engine of a motor vehicle during a deceleration of the combustion engine. The method includes, but is not limited to determining a degree of depression of an accelerator pedal of the motor vehicle takes place, determining of a degree of depression of a brake pedal of the motor vehicle takes place. Furthermore, an adjusting of a throttle valve arranged in an intake tract of the combustion engine as a function of the determined degree of depression of the accelerator pedal and as a function of the determined degree of depression of the brake pedal takes place. The throttle valve is adjusted into an at least partially opened position in the event that the determined degree of depression of the brake pedal undershoots a first predetermined threshold value and the throttle valve is adjusted into a closed position in the event that the determined degree of depression of the brake pedal exceeds a second predetermined threshold value.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 19, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Torsten Mueller
  • Patent number: 8577577
    Abstract: A vehicle includes a support member and at least one wheel attached to the support member. The support member is capable of oscillating in a front-back direction of the vehicle. The vehicle further includes a torque control unit applying torque to the wheel, and a control loop controlling the torque control unit to adjust the torque applied to the wheel to allow the vehicle to travel while keeping an inverted state of the support member. The control loop controls the torque control unit to apply normal torque and additional torque to the wheel, the normal torque determined according to a deviation between a target value and a controlled variable including at least one of an inclination angular velocity and an inclination angle of the support member in the front-back direction, the additional torque determined according to a power of a velocity parameter of the vehicle.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Susumu Oikawa, Yusuke Kosaka
  • Patent number: 8565995
    Abstract: In a method for detecting wheel slip at at least one wheel which is driven by an engine, the drive torque acting upon the wheel is varied, and the reaction of the wheel to the change in the drive torque is measured and evaluated.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: October 22, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Kueperkoch, Frank Leibeling, Jasper-Jeen Jeninga
  • Patent number: 8565996
    Abstract: Disclosed is a traction control system and method for a vehicle having at least one driven wheel (R, L) with an associated wheel brake, an engine, and an electronic controller encompassing at least two linear sub-controllers designed for different coefficient of friction situations. Each of the at least two linear sub-controllers (CL, CH; CLL, CLH, CHL, CHH) determines a function of a control deviation (e) of at least one wheel specific characteristic, a control variable suggestion (uL, uH; uLL, uLH, uHL, uHH) that includes a control variable suggestion for the wheel brake and a control variable suggestion for the drive engine, and an output control variable (u) including an output control variable for the wheel brake and an output control variable for the drive engine, is determined from the control variable suggestions (uL, uH; uLL, uLH, uHL, uHH) by weighted addition (1).
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: October 22, 2013
    Assignee: Continental Teves A & Co. OHG
    Inventors: Roland Caspari, Gerold Schneider
  • Patent number: 8560186
    Abstract: A method for identifying a driving resistance of a motor vehicle includes the steps of recording values of control and/or state variables of the vehicle during a driving state of the vehicle when a control route is covered, adapting parameters of a vehicle model and/or a model of the area surrounding the vehicle on the basis of the values of the recorded control and state variables, identifying the driving resistance on the basis of the adapted vehicle model and/or the surrounding area model, wherein the parameters of the vehicle model and/or the surrounding area model are adapted on the basis of a distinction between driving states, wherein these driving states include a driving state of a closed drive train with a positive driver demand torque, a driving state of a closed drive train without a positive driver demand torque, and/or and a driving state with an open drive train.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: October 15, 2013
    Assignee: Dr. Ing. h.c.F. Porsche Aktiengesellschaft
    Inventors: Martin Roth, Klaus Bastian, Tobias Radke, Peter Megyesi
  • Patent number: 8554439
    Abstract: A slip suppression control system for a vehicle, includes a controller configured to execute traction control for reducing a driving power of a drive wheel when a predetermined start condition is satisfied, and an ON/OFF input device which is configured to switch between a permission state in which the traction control is enabled and an inhibiting state in which the traction control is disenabled. The controller is configured to restrict switching from the permission state to the inhibiting state, in response to a command for switching from the permission state to the inhibiting state which is input to the ON/OFF input device, when a first condition including a condition that the traction control is being executed is satisfied.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: October 8, 2013
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Takeru Oshima, Tatsuya Hirokami
  • Patent number: 8554440
    Abstract: In general, the subject matter described in this specification can be embodied in methods, systems, and program products for performing vehicle traction control. Time intervals between points of rotation of a rotating vehicle output shaft are measured. Indicators of shaft rotation rate are generated using, for each generated indicator, a set of one or more of the time intervals. The generated indicators of shaft rotation rate are used to determine a value indicative of a rate of change of shaft rotation rate. An indicator of a maximum allowable output shaft rotation rate is computed. A current indicator of output shaft rotation rate is determined to exceed the maximum allowable output shaft rotation rate. In response to determining that the current indicator exceeds the maximum allowable output shaft rotation rate, a signal to trigger application of a traction control mechanism is output.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 8, 2013
    Assignee: Davis Intellectual Properties LLC
    Inventor: Shannon R. Davis
  • Patent number: 8548711
    Abstract: Provided is a control device of an inverted pendulum type vehicle capable of adjusting a deviation of a tilt angle of a base body from a desired tilt angle so as to maintain the vehicle in a normal state where the tilt angle matches the desired tilt angle and the vehicle is in halt. When an update condition for updating a tilt offset adjusting variable ?b_xy_offset is satisfied (STEP 21), a posture control calculator 80 performs a first mode arithmetic process (STEP 22) to update the tilt offset adjusting variable ?b_xy_offset, and meanwhile determines imaginary wheel rotational angular acceleration commands ?wdot_x_cmd and ?wdot_y_cmd via a second mode arithmetic process (STEP 23) by using the tilt offset adjusting variable ?b_xy_offset updated in the first mode arithmetic process.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Kazushi Akimoto, Shinichiro Kobashi, Hideo Murakami, Yuichi Uebayashi
  • Patent number: 8548681
    Abstract: A power steering device is mounted on a vehicle and includes a torque applying unit and an applied friction torque changing unit. The torque applying unit sets an applied friction torque applied to a steering wheel based on a real steering angle and a target steering angle, and performs a control of applying the applied friction torque to the steering wheel. The applied friction torque changing unit changes the applied friction torque based on a load condition of the vehicle.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: October 1, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ikuo Kushiro, Kimiaki Ono
  • Patent number: 8543307
    Abstract: Provided is a control device capable of imparting a driving force appropriate for controlling a tilt angle of a loading part to a traveling motion unit, despite the weight of an object to be transported mounted on the loading part capable of freely tilting of an inverted pendulum type vehicle. Velocity command values for defining a desired value of a traveling velocity of a traveling motion unit 5 so as to bring an tilt error between a measured value of the tilt angle of a loading part 3 of an inverted pendulum type vehicle 1 and a desired tilt angle of a predetermined value close to 0 is sequentially determined, and an actuator 7 is controlled so as to make the actual traveling velocity of the traveling motion unit 5 follow a desired value of the traveling velocity defined by the velocity command value.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 24, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Kazushi Akimoto, Shinichiro Kobashi
  • Patent number: 8521384
    Abstract: A turf maintenance vehicle all-wheel drive traction control system includes a primary wheel propelling the vehicle. A first motor rotates the primary wheel. A traction control system has a first portion communicating with the first motor to monitor either a first motor current demand or a rotational speed of the primary wheel or the first motor and generates a traction control value. A secondary wheel rotated by a second motor steers the vehicle in a vehicle non-slip condition. A traction control system second portion determines a secondary wheel steering angle value. A speed threshold limit stored in the traction control system compared to the traction control value generates a slippage occurrence message indicative of a primary wheel traction loss event. A second motor drive signal created by comparing the steering angle value and the slippage occurrence message energizes the second motor during the traction loss event.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: August 27, 2013
    Assignee: Textron Innovations Inc.
    Inventors: Sean C. O'Connor, Gregory Merriweather, Harry L. Derby, V, Martin M. Carlson, Kenneth R. Wilson
  • Publication number: 20130204504
    Abstract: A method for transferring the drive torque from the wheels having a low traction to the wheels having a higher traction, the method being configured for vehicles in which not all driven wheels are equipped with a rotational speed sensor. In order to be able to perform a starting aid function, it is provided to measure the rotational speed of the cardan shaft and to put it in relation to the wheel rotational speed of at least one wheel which has a rotational speed sensor. If the deviation between the cardan shaft rotational speed and the measured wheel rotational speed is too high, at least one of the wheels, which does not have a rotational speed sensor, is braked automatically so that the vehicle is able to start.
    Type: Application
    Filed: July 11, 2011
    Publication date: August 8, 2013
    Inventors: Lars Bieniek, Frank Dieterich, Michael Frank Schmidt
  • Patent number: 8504273
    Abstract: A process is provided for limiting a torque or an amount characteristic thereof of a control loop used for stabilizing a vehicle. A coefficient of friction is detected according to the process. The coefficient of friction is estimated by way of vehicle-internal quantities. As a function of the coefficient of friction, a limit value is determined for the torque or the amount characteristic thereof. The torque or the amount characteristic thereof will subsequently be limited to the limit value.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: August 6, 2013
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Martin Bonfigt, Ralf Pillmeier, Silvia Moradiellos Rios, Manfred Wachinger
  • Publication number: 20130197772
    Abstract: A hydrostatic drive system includes an anti-slip control unit having a hydraulic pump which supplies a plurality of hydraulic motors of a plurality of axles with pressure medium. Based on a detected slip, a control device switches over between a two-wheel and a multiple-wheel drive and controls the driving torque. Optimal distribution of driving torque and traction between the axles or wheels of the drive system is set in the drive system. A method for anti-slip control of a hydrostatic drive system includes reacting to a slip situation by activating a hydraulic motor for axles or wheels which until then were not driven, or driven only with low driving torque or by increasing the driving torque of wheels which until then did not slip. The capacity of the hydraulic motor of the axles or wheels is raised to enable the activation/increase.
    Type: Application
    Filed: May 25, 2011
    Publication date: August 1, 2013
    Applicant: Rober Bosch GmbH
    Inventor: Michael Brand
  • Patent number: 8494727
    Abstract: In order to achieve a solution which assists a farmer in working land in a way which reduces the risk of soil compaction of the land there is, among others, a method of determining a work trajectory to be followed by an agricultural work vehicle. The method includes accessing a soil carry capacity map of an area of land to be worked by the agricultural work vehicle, receiving load data of the agricultural work vehicle so as to determine the agricultural work vehicle load and determining the work trajectory to be followed by the agricultural work vehicle. The work trajectory is determined by correlating the soil carry capacity map and the load data of the agricultural work vehicle, so as to optimize that the area to be worked with low carry capacity is worked with low agricultural work vehicle load.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: July 23, 2013
    Assignee: Aarhus Universitet
    Inventors: Ole Green, Dionysios D. Bochtis
  • Patent number: 8494747
    Abstract: A method for stabilizing an unstable driving state in a single-track vehicle, in particular a motorcycle, wherein a prespecified driving situation, in particular braking, particularly while driving in a straight trajectory or a nearly straight trajectory, is detected; at least one yaw rate ({dot over (?)}) and/or one side slip angle (?) of the vehicle is determined for the detection of an unstable driving state of the vehicle; the determined yaw rate ({dot over (?)}) and/or the determined side slip angle (?) is/are evaluated; and when an unstable driving stat is detected, the braking torque of one wheel, in particular the front wheel, is reduced. A device for stabilizing an unstable driving state in a single-track vehicle is also disclosed.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: July 23, 2013
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Michael Kremer, Hans Georg Ihrig
  • Patent number: 8489299
    Abstract: A method is disclosed for obtaining a signal representing motor vehicle acceleration. The method involves obtaining a high pass filtered vehicle acceleration signal and a low pass filtered vehicle acceleration signal. One of these signals (preferably the high pass filtered signal) is obtained based upon the net driving force applied to the vehicle, which can be used to obtain an estimate of acceleration by means of an adoptive vehicle model (28). The other signal is obtained by measurement, for example by differentiating a measured vehicle speed signal with respect to time. Adding the two filtered signals together gives a vehicle acceleration signal of potentially good quality.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: July 16, 2013
    Assignee: Torotrak (Development) Limited
    Inventor: Stephen William Murray
  • Patent number: 8479861
    Abstract: A travelling control apparatus 1 includes: rotational speed ratio detection units 2 configured to output signals S1, S2 of respective rotational speeds of front and rear wheels; a rotational speed ratio calculation measure 3 for calculating data Da of a rotational speed ratio of the wheels from the signals S1, S2; a rotational speed ratio sort measure 4 for sorting the data Da into data D1 within a range of a set range T1 and data D2 out of the range; a reference data generation measure 5 for averaging the data D1 and generating an average value thereof as reference data Ds; and a slip determination measure 6 for comparing data Da1 of the rotational speed ratio of the wheels with the reference data Ds, and in a case of the data Da1 being out of a set range T2, for determining that one of the wheels is slipping.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 9, 2013
    Assignee: Sakai Heavy Industries, Ltd.
    Inventors: Nobuyuki Haruyama, Takabumi Tezuka, Masayuki Yoshida
  • Patent number: 8483911
    Abstract: In a method and a device for controlling the stability of a vehicle, in particular a utility vehicle, an anti-tilt control process is carried out in which at least one lateral acceleration signal, one steering wheel angle signal and one vehicle speed signal are sensed and control signals for vehicle interventions are formed therefrom and output, and a yaw control process is carried out during which the steering wheel angle signal, the lateral acceleration signal and the vehicle speed signal are sensed, a yaw rate setpoint value signal and a yaw rate actual value signal are determined and compared with one another and a yaw control process is carried out during which control signals for vehicle interventions are formed and output.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: July 9, 2013
    Assignee: WABCO GmbH
    Inventor: Thomas Reich
  • Patent number: 8478490
    Abstract: A control device of an inverted pendulum type vehicle capable of controlling fluctuation of a traveling velocity of a vehicle according to operating state of the vehicle. A traveling motion unit controlling element 50 of an inverted pendulum type vehicle 1 includes a first processing mode and a second processing mode. In the first processing mode, determines a manipulated variable for control so as to bring a tilt angle of a payload supporting part 3 and a traveling velocity of a representative point of the vehicle 1 closer to a desired value. In the second processing mode, the traveling motion unit controlling element 50 determines the manipulated variable for control while making a sensitivity to change of the manipulated variable for control with respect to a measured value of the traveling velocity of the representative point to be relatively lower than that in the first processing mode.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: July 2, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Kazushi Akimoto, Shinichiro Kobashi, Hideo Murakami, Yuichi Uebayashi
  • Patent number: 8478470
    Abstract: A drivetrain system for a mobile machine is disclosed. The drivetrain system may have an engine, a generator driven by the engine to generate electric power, and a traction motor driven by the electric power from the generator. The drivetrain system may also have a controller in communication with the engine, the generator, and the traction motor. The controller may be configured to determine a change in loading on the traction motor, and determine a change in fueling of the engine that will be required to accommodate the change in loading on the traction motor. The controller may also be configured to selectively rate-limit the change in fueling, and implement the rate-limited change in fueling prior to transmission of the change in loading on the traction motor to the engine.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: July 2, 2013
    Assignee: Caterpillar Inc.
    Inventors: Matthew D. Meads, Keith A. Leisinger, Rajeswari Addepalli
  • Patent number: 8478483
    Abstract: In an apparatus for detecting a skid occurred on a four-wheel drive vehicle having a prime mover and a transmission, an actual rear right/left wheel speed ratio between the rear right/left wheel speeds is calculated based on detected front and rear wheel rotational speeds, a front/rear wheel slip ratio during grip-driving is calculated by retrieving characteristics of a front/rear wheel slip ratio set with respect to a rear right/left wheel speed ratio using the calculated actual rear right/left wheel speed ratio, an actual front/rear wheel slip ratio is calculated based on the detected front wheel rotational speed and the rear wheel rotational speed, and occurrence of skid is then determined based on a difference between the calculated front/rear wheel slip ratio during grip-driving and the calculated actual front/rear wheel slip ratio.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: July 2, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuichiro Takemori, Masatoshi Noguchi, Yuzo Okubo
  • Patent number: 8473172
    Abstract: Systems and methods for assisted direct start control are provided. An example method varies engine torque, forward clutch engagement pressure, and wheel brake pressure during a vehicle launch responsive to longitudinal vehicle grade to improve launch performance.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: June 25, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Roger Lyle Huffmaster
  • Patent number: 8463498
    Abstract: A method for controlling the side slip angle of a rear-wheel drive vehicle when turning; the control method provides for the steps of: detecting the position of an accelerator control which is displaced along a predetermined stroke; using a first initial part of the stroke of the accelerator control for directly controlling the generation of the drive torque so that the generated drive torque depends on the position of the accelerator control; and using a second final part of the stroke of the accelerator control to directly control a side slip angle of the vehicle when turning so that the side slip angle depends on the position of the accelerator control.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: June 11, 2013
    Assignee: Ferrari S.p.A.
    Inventors: Amedeo Visconti, Martino Cavanna
  • Patent number: 8463523
    Abstract: An inverted pendulum type vehicle includes a loaded mode in which an object to be transported is loaded on a boarding unit, and a non-loaded state mode in which the object to be transported is not loaded thereon. When traveling velocities of a representative point of the vehicle in a steady-state, in which tilt errors ?be_x_s, ?be_y_s between actual tilt angles of a boarding unit and desired tilt angles thereof are maintained, constant are Vb_x_stb, Vb_y_stb, a traveling motion of a traveling motion unit is controlled such that at least a ratio of a magnitude of Vb_x_stb with respect to a magnitude of ?be_x_s becomes a smaller ratio in the non-loaded state mode than in the loaded state mode. Such inverted pendulum type vehicle is difficult to move in the non-loaded state mode, and is easy to move in the loaded mode.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: June 11, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazushi Akimoto, Hideo Murakami, Toru Takenaka
  • Patent number: 8457858
    Abstract: A front/rear driving/braking force control unit 30 calculates driving/braking forces of front and rear axles that minimize energy loss realizing a target steering characteristic as first front/rear driving/braking forces Fxfte, Fxrte and calculates driving/braking forces of the front and rear axles that realize the target steering characteristic and maximize the sum of maximum tire lateral forces of the front and rear axles as second front/rear driving/braking forces Fxftp, Fxrtp.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 4, 2013
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Patent number: 8447437
    Abstract: An assistant driving system with video recognition includes a camera array capturing environment images for the environment around the vehicle, an image recognition unit identifying environment objects and their image, location, color, speed and direction from the environment images, an environment monitor and control unit receiving the information generated by the image recognition unit and creating the rebuild environment information for the vicinity of the vehicle as well as judging the space relationship between the vehicle and the environment objects to generate the warning information, a video recognition display unit showing a single image for the rebuild environment information, a vehicle warning unit performing the processes corresponding to the warning information, a vehicle driving unit generating the driving control command based on the rebuild environment information, and a vehicle controlling unit receiving the driving control command to control the throttle, brake or steering wheel of the vehic
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: May 21, 2013
    Inventor: Yan-Hong Chiang
  • Patent number: 8442737
    Abstract: A method for operating a vehicle braking system for motor vehicles including a hybrid or electric drive and hydraulically actutable wheel brakes on the front axle, wherein the wheels associated with the rear axle are driven at least partially by an electric motor that can be operated as a generator to recover braking energy and, in generator mode, exerts a braking force on the vehicle wheel associated with the respective axle, thereby generating a drag torque including the braking torque and the regeneration torque of the electric drive, the drag torque being separately regulatable on the front and rear axles. To prevent overbraking of the rear axle and a loss of driving stability of the vehicle, a regeneration torque acting on the rear axle is controlled or regulated such that the drag torque acting on the rear axle does not exceed a maximum drag torque value associated with that axle.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: May 14, 2013
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Frank Seurer, Daniel Fischer, Stefan Stölzl
  • Publication number: 20130103236
    Abstract: This invention features a solution to use a pocket size pc, smartphone, or tablet or any other type of mobile personal computer as the main computer of a vehicle, in the highly computerized future vehicles. By connecting the smartphone/tablet/etc to the car interface, the phone/tablet/etc will become the brain of the machine, and acts as a vehicle computer system. By the use of the car manufacturer application software, or use of 3rd party application software, It can be programmed for controlling/replacing many of the vehicle subsystems and accessories.
    Type: Application
    Filed: September 3, 2012
    Publication date: April 25, 2013
    Inventor: BEHRANG MEHRGAN
  • Patent number: 8423253
    Abstract: A torque applying device is provided for applying a driving torque to at least a pair of wheels, and a torque restraining device is provided for restraining the torque created on the wheels to be applied with the torque by the torque applying device. A friction braking device is provided for applying a braking torque to each wheel in response to operation of a brake pedal. An automatic braking control device automatically actuates the friction braking device independently of operation of the brake pedal, to apply the braking torque to each wheel. And, a torque restraining cancellation device is provided for cancelling the torque restraining operation for a time period determined in response to a vehicle speed decreasing state, after a condition for initiating the automatic braking control was fulfilled.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 16, 2013
    Assignee: Advics Co., Ltd.
    Inventors: Yukio Mori, Koicho Kokubo
  • Patent number: 8423258
    Abstract: Systems and methods for detecting wheel-spinning situations of a vehicle. One system includes a controller. The controller is configured to determine a speed of each wheel of the vehicle based on information received from a plurality of wheel speed sensors, to identify a second slowest wheel of the vehicle based on the speed of each wheel, to calculate a vehicle acceleration torque based on an acceleration of the second slowest wheel of the vehicle and a mass of the vehicle, to calculate a torque ratio based on the vehicle acceleration torque and a wheel drive torque, and to activate a traction control system when the torque ratio is greater than a predetermined threshold.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: April 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Rick Robinson, Qingyuan Li, Hsien-cheng Wu
  • Publication number: 20130085642
    Abstract: The invention proposes a system that uses a novel method to analyze the surface being about to be traversed by a vehicle. The system can be used to enhance vehicle safety and control. The system makes use of AER cameras such as the Silicon Retina. The Silicon Retina is used monitor the surface to be traversed, and a processing unit analyzes the surface based on the signal provided by the Silicon Retina. The proposed surface analysis method carried out by the system surpasses state-of-art analysis methods.
    Type: Application
    Filed: September 7, 2012
    Publication date: April 4, 2013
    Applicant: HONDA RESEARCH INSTITUTE EUROPE GMBH
    Inventor: Andrew Alexander DANKERS
  • Patent number: 8412431
    Abstract: A materials handling vehicle is provided comprising: a frame; wheels supported on the frame; a traction motor coupled to one of the wheels to effect rotation of the one wheel; a speed control element operable by an operator to define a speed control signal corresponding to a desired speed of the traction motor; a system associated with a steerable wheel to effect angular movement of the steerable wheel; and control apparatus coupled to the speed control element to receive the speed control signal, and coupled to the traction motor to generate a drive signal to the traction motor in response to the speed control signal to control the operation of the traction motor. The control apparatus may determine an acceleration value for the traction motor based on at least one of an angular position of the steerable wheel, a speed of the traction motor and a current position of the speed control element as defined by the speed control signal.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: April 2, 2013
    Assignee: Crown Equipment Corporation
    Inventors: George Robert Wetterer, James Francis Schloemer, Monty L. Crabill, Eric L. Jensen
  • Patent number: 8412435
    Abstract: A system, method and computer program product is provided for detecting if a vehicle has spun. A normal force and a lateral force of each of a front and rear axle of a vehicle is estimated. A coefficient of friction representative of a surface is estimated. Lateral momenta of the front and rear axles based on the coefficient of friction and the normal and lateral forces is calculated. Whether a surplus momentum is present, is determined. If the surplus momentum is present, a yaw rate of the vehicle is integrated respect to time to obtain a vehicle rotation estimation.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations, LLC
    Inventor: Daniel S. Maitlen
  • Patent number: 8401720
    Abstract: A route defect detection system for a powered system, the route defect detection system including a control system connected to the powered system for application of tractive effort, and a processor to determine an unplanned change in the application of tractive effort and/or otherwise associated with the tractive effort of the powered system. Based on the unplanned change, the processor determines a type of defect encountered along a mission route. A method and computer software code stored on a computer readable media and executable with a processor are also disclosed for a powered system to detect a defect along a mission route.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventors: Wolfgang Daum, Ajith Kuttannair Kumar, Glenn Robert Shaffer, Christopher McNally
  • Patent number: 8398180
    Abstract: A method of braking a vehicle which includes ground engaging wheels, and a braking system with ABS capability and including an operator actuated brake control, the ABS becoming operative in response to the operator actuating the brake control, and upon the braking system sensing the slippage or impending slippage of at least one of the ground wheels relative to the ground, to vary the braking force applied to the at least one of the wheels between, in alternative periods, an applied state in which the braking force is applied, and a released state in which the braking force is released, and characterised in that the method includes applying torque to assist acceleration of the wheel at least during periods in which the braking force is released by the ABS.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: March 19, 2013
    Assignee: JCB Landpower Limited
    Inventors: Gregory Peter Fitton, Andrew Robert Williams
  • Publication number: 20130060442
    Abstract: Systems and methods for detecting unintended acceleration of a vehicle. One system includes a first sensor that provides information on a brake booster vacuum. The vacuum is provided by the vehicle's engine and the brake booster multiplies a braking force initiated by a driver. A second sensor provides information on the vehicle's speed, and a third sensor provides information on the braking force initiated by the driver. The system also includes a controller configured to receive the information from the first sensor, second sensor, and third sensor and initiate corrective action if the brake booster vacuum is less than a predetermined threshold, the vehicle's speed is greater than a predetermined threshold, and the braking force initiated by the driver is greater than a predetermined threshold.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Robert M. Kaster, Francis Henry Kasperski, III, Carlos H. Atoche, Hideo Takada
  • Patent number: 8392089
    Abstract: A method of estimating the available grip margin of a tire of a vehicle rolling on a ground involves: estimating a quantity Rslip ca, i.e., the ratio of the slip contact area and the total contact area of the tire on the ground; determining, in a signal processing unit, the grip potential used P?,used and/or the available grip margin of the tire P?,avail from the quantity and pre-established data corresponding to the type of the tire, where P?,avail=1?P?,used; and recording in a memory the grip potential used and/or the available grip margin of the tire.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: March 5, 2013
    Assignee: Michelin Recherche et Technique S.A.
    Inventor: Frederic Spetler