Artificial Intelligence (e.g., Fuzzy Logic) Patents (Class 701/98)
  • Patent number: 10367869
    Abstract: A plurality of data streams are received from a vehicle, at least one of the data streams including multimedia data. A prioritization of the data streams is performed according to one or more factors. At least one of adjusting at least one of the data streams and preventing transmission of at least one of the data streams according to the prioritization is performed.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: July 30, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Michael Robert Tinskey, Donna L. Bell, David McCreadie, Renuka Vikram Gokhale, Ghassan AlRegib, Tariq Alshawi, Mohammed Aabed, Berdinus Bras
  • Patent number: 10308249
    Abstract: A vehicle and an adaptive cruise control system, ACC, is provided. The ACC system includes a control unit configured to control a steering angle of said vehicle in relation to detected road lanes and/or road markings. The ACC system further includes a steering wheel arranged to allow the provision of manual steering input to the steering system of the vehicle and a steering angle sensor. The steering system is configured to identify a steering wheel jerk, performed as a clockwise- and counter-clockwise actuation of the steering wheel within a predetermined time range and to steer the host vehicle from a first, current, road lane to a second road lane based on the identified jerk as indicated by the steering angle sensor.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: June 4, 2019
    Assignee: Volvo Car Corporation
    Inventors: Magnus Brandin, Mohammad Ali
  • Patent number: 8996276
    Abstract: When a stereo image recognition device detects a vehicle ahead, a driving support apparatus extracts the vehicle ahead as a vehicle against which control should be performed, and performs driving support control based upon the information from the stereo image recognition device. When the stereo image recognition device does not detect the vehicle ahead, the driving support apparatus sets either one of the distance from the driving lane on which the vehicle travels and a start point of a curve ahead according to the configuration of the road ahead and a detection limit distance of the information of the vehicle ahead by the stereo image recognition device (front recognition device) as a threshold value IVC_L. When the vehicle ahead is present distant by more than the threshold value IVC_L, the driving support apparatus performs driving support control based upon the information by the inter-vehicle communication from a communication device.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: March 31, 2015
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Atsuyoshi Takazawa, Norimasa Kaneko
  • Patent number: 8892331
    Abstract: A drive assist system includes: wireless communication devices on first and second vehicles. The wireless communication device on the first vehicle includes: a distance calculation device for calculating a satellite positioning distance between the first and second vehicles; and a difference calculation device for calculating a distance difference between the satellite positioning distance and a distance to the second vehicle obtained by a ranging sensor in the first vehicle.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 18, 2014
    Assignee: Denso Corporation
    Inventors: Seigou Kumabe, Takahisa Yamashiro
  • Patent number: 8874334
    Abstract: A shift control system of a hybrid vehicle with an automatic transmission may include a fuzzy function calculator that receives an accel position sensor (APS) signal that may be an input variable, and outputs a severity value by determining a driver's driving severity value through a plurality of fuzzy rules including a fuzzy function for the APS signal, a sporty degree calculator that may be electrically connected with the fuzzy function calculator and determines a sporty degree corresponding to the severity value, and a mode determiner that may be electrically connected with the sporty degree calculator and determines whether an engine operates in accordance with the sporty degree.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: October 28, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Byeongwook Jeon, Heeyong Lee
  • Publication number: 20140297135
    Abstract: The present invention relates to a method for driving a mining and/or construction machine, where said machine is arranged to be controlled by an operator by means of maneuvering means, where said operator, when driving said machine, provides steering commands by means of said maneuvering means for maneuvering said machine. The method comprises, when said machine is being driven in an environment having at least a first obstacle: when said machine is within a first distance from said first obstacle, estimate a first path that has been requested by said operator by means of said steering commands, by means of a control system, determining whether said machine when moving according to said requested first path will be driven within a second distance from said first obstacle, and when it is determined that said machine, when travelling according to said first path, will be driven within said second distance from said first obstacle, retard said machine by means of said control system.
    Type: Application
    Filed: November 15, 2012
    Publication date: October 2, 2014
    Applicant: Atlas Copco Rock Drills AB
    Inventor: Johan Larsson
  • Patent number: 8818679
    Abstract: A vehicle control device for controlling the driving force and braking force that is applies to a vehicle to maintain a target wheel speed includes: a plurality of determination parts each of which determines the wheel speed of a corresponding one of a plurality of wheels of the vehicle; a calculation part that calculates the wheel speed validity threshold for each wheel based on the determined wheel speeds; a decision part that decides whether the wheel speed validity threshold calculated for each wheel is below a specific threshold speed; a setting part that resets the target wheel speed depending on the result of the decision by the decision part; and an estimation part that estimates the vehicle speed based on the determined wheel speeds.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Gen Inoue, Yasuhito Ishida
  • Patent number: 8744718
    Abstract: A method for controlling a vehicle's speed includes adopting a desired speed vset for the vehicle; determining by means of map data and location data a horizon for the intended itinerary which is made up of route segments with at least one characteristic for each segment; effecting the following during each of a number of simulation cycles (s) each comprising a number N of simulation steps conducted at a predetermined frequency f: making a first prediction of the vehicle's speed vpred—cc along the horizon with conventional cruise control when vset is presented as reference speed, which prediction depends on the characteristics of said segment; comparing the predicted vehicle speed vpred—cc with vmin and vmax, which demarcate a range within which the vehicle's speed is intended to be; making a second prediction of the vehicle's speed vpred—Tnew along the horizon when the vehicle's engine torque T is a value which depends on the result of said comparison in the latest preceding simulation cycle (s?1); determini
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 3, 2014
    Assignee: Scania CV AB
    Inventors: Oskar Johansson, Maria Södergren, Fredrik Roos
  • Patent number: 8744720
    Abstract: The vehicle comprising a rear vehicle speed dependent ideal distance maintaining implementer, a front vehicle speed dependent ideal distance maintaining implementer, an inter-vehicle middle point maintaining implementer, a front vehicle activity notifying implementer, and a past accident occurred spot auto speed decreasing implementer.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 3, 2014
    Inventor: Iwao Fujisaki
  • Patent number: 8688349
    Abstract: When employing an a cruise control system in a commercial or heavy-duty vehicle, an adaptive cruise control (ACC) system (14) is activated upon activation of a vehicle or set-speed cruise control (SSCC) system (16). The ACC (14) remains on, even after SSCC shutoff, to maintain a minimum following distance for a primary vehicle in which the ACC (14) is employed and a forward vehicle. The ACC (14) is deactivated after detection of an ACC shutoff trigger event, which may be driver application of the brakes of the primary vehicle, driver-initiated acceleration for a predefined time period, expiration of a predetermined time period, manual shutoff (e.g., via a switch or button), etc.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 1, 2014
    Inventors: Kenneth A. Grolle, Thomas J. Thomas, William P. Amato, Robert J. Custer, Srikiran Kosanam
  • Patent number: 8682554
    Abstract: A control device for controlling an engagement state of a lock-up clutch is provided. A plurality of target slip ratio maps include a normal slip ratio map having a characteristic line of a target slip ratio defined in accordance with an engine load at a normal vehicle running condition and a modified slip ratio map having a characteristic line of the target slip ratio to become a facing calorific value lower than a facing calorific value corresponding to the slip ratio retrieved from the normal slip ratio map. In the case where an estimate value of the facing temperature continues to exceed first threshold temperature for more than predetermined time when to carry out slip control using the normal slip ratio map, control to switch the target slip ratio map from the normal slip ratio map to the modified slip ratio map is carried out.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaaki Takamatsu, Yutaka Ishikawa, Shinya Abe
  • Patent number: 8577534
    Abstract: A method and a device are described for scanning the surrounding environment of a vehicle. When the vehicle falls below a first boundary speed a timer is triggered whose state is incremented until the vehicle exceeds a boundary speed, a check of the unobstructed view of the scanning device being carried out upon expiration of the time period recorded by the state of the timer and in which the state of the counter is incremented.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: November 5, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Stephan Dorenkamp, Volker Brichzin, Ulrich Schirm, Maria-Eugenia Garcia Bordes
  • Patent number: 8548709
    Abstract: A radar sensor detects a traveling state of a host vehicle. An inter-vehicle control ECU gives the amount of operation for the predetermined amount of control of the host vehicle so that the traveling state of the host vehicle detected by the radar sensor becomes a predetermined state. The amount of operation given by the inter-vehicle control ECU is reduced as a kind of restriction when the amount of operation given by the inter-vehicle control ECU becomes equal to or larger than a predetermined value. As a result, it is possible to reduce the dependence of the driver on the device.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: October 1, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Mitsuhiko Morita
  • Publication number: 20130253797
    Abstract: A controller for predicting cruising speeds of a vehicle includes a processor and an extracting unit to extract feature data from segments of a prior trajectory of the vehicle, the feature data including cruising speeds of the vehicle and predictive feature data. The controller also includes a model generator to generate a probabilistic model associating the predictive feature data with the cruising speeds of the vehicle and a predicting unit to predict a cruising speed of the vehicle for a target segment, which is an upcoming cruising segment of the vehicle, by conditioning the probabilistic model on real-time predictive feature data of segments of a current trajectory.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 26, 2013
    Applicant: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC. (TEMA)
    Inventor: John Michael MCNEW
  • Patent number: 8498796
    Abstract: A speed control method of a vehicle including the steps of obtaining a steering angle, a velocity error and a distance error. The velocity and the distance error being determined by mathematical combinations of a GPS position, a required path and speed set points. The steering angle, velocity errors and distance error are applied to fuzzy logic membership functions to produce an output that is applied to a velocity rule base. An output from the velocity rule base is defuzzified to produce a speed signal.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: July 30, 2013
    Assignee: Deere & Company
    Inventors: William Robert Norris, Bernard Edwin Romig, John Franklin Reid
  • Patent number: 8380420
    Abstract: Precise operation of an accelerator operating member (7) is more difficult to perform in a reversing operation of a vehicle (1) as compared with an advancing operation. Therefore, behavior of the vehicle (1) is not smooth and thus tends to be unnatural. In the reversing operation of the vehicle (1), driving force output from an internal combustion engine (2) is limited in accordance with vehicle acceleration (D). At this time, it is possible to regulate the driving force of the vehicle (1) in conformity to the actual operation of the accelerator operating member (7) by the driver. In addition, limitation of the driving force is not executed in the advancing operation of the vehicle (1). At this time, the vehicle (1) can be driven in a state in which the driving force is comparatively small. Therefore, it is possible to prevent the behavior of the vehicle (1) from being unnatural.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: February 19, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masashi Takagi, Motonari Ohbayashi, Yuki Minase, Shinya Kodama, Toshihiro Takagi
  • Patent number: 8374743
    Abstract: A vehicle system for providing an interface for driver control of at least a partially autonomous vehicle. The system includes a driver command processor that receives request signals from a driver interface device of the driver's desire for the vehicle system to take certain actions and sends appropriate signals in response thereto to the proper autonomous vehicle systems. The driver command processor also sends signal to a display device indicating available actions, acknowledgement of the driver request, status of actions being taken or to be taken, etc.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Jeremy A. Salinger
  • Publication number: 20130035837
    Abstract: A module for determining speed set-point values Vref for a vehicle's control system that includes a mode choice unit for setting of a driving mode from among at least two selectable driving modes each comprising a unique set of settings which affect the calculation of Vref; a horizon unit adapted to determining a horizon from location data received and map data for an itinerary made up of route segments and at least one characteristic for each segment; and a processor unit adapted to calculating Vref for the vehicle's control system along the horizon on the basis of settings for chosen driving modes and rules pertaining to categories in which segments within the horizon have been placed, so that Vref is within a range bounded by Vmin and Vmax.
    Type: Application
    Filed: March 30, 2011
    Publication date: February 7, 2013
    Inventors: Oskar Johansson, Jörgen Hansson, Maria Södergren, Henrik Pettersson
  • Patent number: 8346456
    Abstract: In a method for controlling the driving speed of a vehicle that has a speed control device into which a set speed can be entered as driver command, a reference variable of the speed control device is varied within a specified or specifiable speed range of the set speed, based on an evaluation of a section of the road ahead of the driver and maintaining a minimum fuel usage in a first operating mode of the speed control device.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: January 1, 2013
    Assignee: Daimler AG
    Inventors: Mario Aleksic, Mike Benowitz, Bernd Martin, Joseph Michalek, Thomas Passegger
  • Publication number: 20120245775
    Abstract: A vehicle powertrain controller includes a fuzzy logic-based adaptive algorithm with a learning capability that estimates a driver's long term driving preferences. An adaptive algorithm arbitrates competing requirements for good fuel economy, avoidance of intrusiveness and vehicle drivability. A driver's acceptance or rejection of advisory information may be used to adapt subsequent advisory information to the driving style. Vehicle performance is maintained in accordance with a driver's driving style.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 27, 2012
    Applicant: Ford Global Technologies, LLC
    Inventors: Fazal Urrahman Syed, Dimitar Petrov Filev, Fling Tseng
  • Patent number: 8260484
    Abstract: To perform updating of maximum values and minimum values of measurement data with a simple procedure without incurring an increase in the computational load of an arithmetic processing element such as a microcomputer. When processing is started, a most recent maximum value stored in a nonvolatile storage element is written to a maximum value-use variable Xmax and a positive maximum value is written to a minimum value-use variable Xmin. Each time temperature data is acquired, a value of acquired data Xk and a most recent minimum value Xmin are compared and the smaller value is set as a new minimum value Xmin. Each time updating of this minimum value is repeated a predetermined number of times of processing Ns, the minimum value Xmin at that point in time and the maximum value Xmax are compared and the larger value is set as a new maximum value Xmax.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: September 4, 2012
    Assignee: Bosch Corporation
    Inventor: Hiroshi Yoshikawa
  • Patent number: 8237386
    Abstract: Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: August 7, 2012
    Assignee: Apple Inc.
    Inventors: Michael Culbert, Keith Alan Cox, Brian Howard, Josh de Cesare, Richard Charles Williams, Dave Robbins Falkenburg, Daisie Iris Huang, Dave Radcliffe
  • Patent number: 8229643
    Abstract: An acceleration control system stores a target acceleration calculation equation acquired by transforming an equation that expresses that a product of the differentiation of the square power of the speed and the environmental factor ?env represents a sensed value ? of acceleration. A surrounding environment monitor device detects surrounding bodies present in the forward periphery of the vehicle, and an environmental factor calculation unit calculates the environmental factor ?env by using the detected positions of the surrounding bodies. A target acceleration setting unit successively sets target accelerations aref in compliance with the target acceleration calculation equation by using the environmental factor ?env. The acceleration is executed to match the driver's feeling.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: July 24, 2012
    Assignee: Denso Corporation
    Inventors: Hiroshi Inou, Minoru Okada, Takehito Fujii, Seiji Totsuka
  • Patent number: 8036803
    Abstract: Adaptive cruise control (ACC) system for motor vehicles is provided, the ACC system having a sensor system for acquiring data concerning a target object and the own (host) vehicle, an actuator system for controlling the longitudinal movement of the vehicle, and a controller that intervenes in the actuator system within certain intervention limits in order to maintain a defined, controlled target distance from the target object, and an output device for issuing a take-over request to the driver if the controlled target distance cannot be maintained. The ACC system further includes a prediction system for predicting a conflict situation in which the controlled target distance cannot be maintained, in which case the take-over request is initiated before the conflict situation actually occurs.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: October 11, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Harald Michi, Goetz Braeuchle, Holger Hofmann
  • Patent number: 7987034
    Abstract: The invention concerns a method for controlling automatic transmission (3) of a vehicle comprising an engine (2) driving the transmission (3) which consists in: detecting a downhill situation of the vehicle, and selecting a transmission ratio so that the engine absorbs energy, storing a longitudinal speed of downhill start (Vmin) when the vehicle starts going downhill, and while the vehicle is running downhill, comparing the current speed (V) of the vehicle with the downhill start speed (Vmin) such that the current speed (V) exceeds the downhill start speed (Vmin) by a predetermined difference (VS), then controlling the transmission to trigger downshifting.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: July 26, 2011
    Assignee: Renault S.A.S.
    Inventor: Christian Taffin
  • Patent number: 7895135
    Abstract: A human perception model for a speed control method obtains a steering angle, a velocity error and a distance error. The steering angle and a measure of operator aggressiveness are applied to the model. The output is defuzzified. The steering angle, the velocity error and the distance error are applied to fuzzy logic membership functions to produce an output that is applied to a velocity rule base. The measure of operator aggressiveness is input to the velocity rule base. The output from the velocity rule base is defuzzified to produce a speed signal.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: February 22, 2011
    Assignee: Deere & Company
    Inventors: William Robert Norris, Bernard Edwin Rornig, John Franklin Reid, Brian Joseph Gilmore
  • Publication number: 20100318273
    Abstract: In a method for controlling the driving speed of a vehicle that has a speed control device into which a set speed can be entered as driver command, a reference variable of the speed control device is varied within a specified or specifiable speed range of the set speed, based on an evaluation of a section of the road ahead of the driver and maintaining a minimum fuel usage in a first operating mode of the speed control device.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Applicant: Daimler AG
    Inventors: Mario Aleksic, Mike Benowitz, Bernd Martin, Joseph Michalek, Thomas Passegger
  • Patent number: 7853390
    Abstract: An acceleration control system stores a target acceleration calculation equation acquired by transforming an equation that expresses that a product of the differentiation of the square power of the speed and the environmental factor ?env represents a sensed value ? of acceleration. A surrounding environment monitor device detects surrounding bodies present in the forward periphery of the vehicle, and an environmental factor calculation unit calculates the environmental factor ?env by using the detected positions of the surrounding bodies. A target acceleration setting unit successively sets target accelerations aref in compliance with the target acceleration calculation equation by using the environmental factor ?env. The acceleration is executed to match the driver's feeling.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: December 14, 2010
    Assignee: Denso Corporation
    Inventors: Hiroshi Inou, Minoru Okada, Takehito Fujii, Seiji Totsuka
  • Patent number: 7848884
    Abstract: A collision prediction ECU of a collision prediction apparatus estimates a state of presence of a detected front obstacle. At this time, the collision prediction ECU estimates the state of presence on the basis of road shape data supplied from a navigation ECU of a navigation apparatus. Further, the collision prediction ECU checks and corrects the calculated road gradient value. At this time, the collision prediction ECU corrects the gradient value on the basis of road gradient data supplied from the navigation ECU. Further, the collision prediction ECU changes a collision avoidance time on the basis of travel environment data supplied from the navigation ECU. Moreover, the collision prediction ECU obtains an ETC gate pass-through signal from the navigation ECU and determines whether the vehicle is passing through the gate. The collision prediction apparatus performs collation prediction on the basis of the corrected values.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomoya Kawasaki
  • Patent number: 7689342
    Abstract: The compaction vehicle having a speed adjustment member, a displacement detector, and a drive source controller further includes a calculation device between the displacement detector and the drive source controller, receiving the displacement S, and outputting a signal I calculated to the controller; a running speed setting switch for the operator operating ON at a desired running speed; a control signal memory device provided inside the calculation device and memorizing a signal I1 to the controller, wherein in a normal operation the calculation device outputs the signal I to the controller so that a running speed increases or decreases according to the displacement S, and wherein when the switch is operated to ON, the calculation device maintains the ON state, and the displacement S is not less than a predetermined value, the calculation device outputs the signal I1 memorized in the memory device so as to run the vehicle at a constant speed.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: March 30, 2010
    Assignee: Sakai Heavy Industries Ltd.
    Inventors: Sadayoshi Suzuki, Isamu Miyamoto, Shinnosuke Tanaka
  • Patent number: 7663637
    Abstract: Embodiments of the invention provide techniques for overriding layer display properties in computer-aided design (CAD) viewports. A method of generating a display representation of a CAD drawing includes identifying one or more layers of the CAD drawing to include in the display representation. Each of the one or more layers may be associated with a set of drawing elements and a set of layer display properties. The method also includes identifying a viewport display property for a first layer of the one or more layers and generating the display representation. The display representation may include the drawing elements associated with the one or more layers, and the appearance of the drawing elements associated with the first layer is based on the viewport display property.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: February 16, 2010
    Assignee: AUTODESK, Inc.
    Inventors: Karen Elaine Mason, Qun Lu, Thomas Allen Stoeckel, Jr., Stewart A. Sabadell, Jose Madeira de Freitas Garcia, John G. Ford, III
  • Patent number: 7664589
    Abstract: An apparatus and method for controlling a vehicle to follow a preceding vehicle. A stop-holding device maintains a stopped state automatically when the vehicle is stopped, and the stop-holding device is in an enabled state or a disabled state. A control state for following the preceding vehicle is changed, at least in part, according to a set state of the stop-holding device.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: February 16, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Nariaki Etori, Takashi Sugano
  • Publication number: 20090069997
    Abstract: A vehicle control device for controlling the driving force and braking force that is applies to a vehicle to maintain a target wheel speed includes: a plurality of determination parts each of which determines the wheel speed of a corresponding one of a plurality of wheels of the vehicle; a calculation part that calculates the wheel speed validity threshold for each wheel based on the determined wheel speeds; a decision part that decides whether the wheel speed validity threshold calculated for each wheel is below a specific threshold speed; a setting part that resets the target wheel speed depending on the result of the decision by the decision part; and an estimation part that estimates the vehicle speed based on the determined wheel speeds.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 12, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Gen Inoue, Yasuhito Ishida
  • Publication number: 20090030574
    Abstract: To provide a vehicle motion control system capable of defining clear guidelines on more specific control timing associated with accelerating, steering, and braking operations, and conducting motion control based on the defined guidelines. An ideal motion control unit 42 within a central controller 40 uses longitudinal jerk information of a vehicle to control the steering of the vehicle. Information for determining the initiation timing of steering is presented from a human-vehicle interface (HVI) 55 to a driver. In accordance with the information presented from the HVI 55, the driver controls the initiation timing of steering.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 29, 2009
    Applicant: Hitachi, Ltd.
    Inventors: Makoto Yamakado, Atsushi Yokoyama, Masato Abe
  • Publication number: 20080300766
    Abstract: In a cruise control system for a vehicle, a cruise ECU calculates a cornering resistance applied to the vehicle based upon a steering angle, when a vehicle turns. The cruise ECU calculates a speed reduction amount as a correction vehicle speed based upon the cornering resistance. The cruise ECU subtracts the correction vehicle speed from a set vehicle speed to set a target vehicle speed so that the vehicle speed becomes lower as the cornering resistance is larger. The cruise ECU controls the vehicle speed to be within a permissible speed range of the target vehicle speed.
    Type: Application
    Filed: May 27, 2008
    Publication date: December 4, 2008
    Applicants: DENSO CORPORATION, Advics Co., Ltd.
    Inventors: Hajime Kumabe, Yasuhiro Nakai, Satoshi Niwa, Shotaro Fukuda, Masayoshi Takeda, Hiroyuki Kodama
  • Publication number: 20080262693
    Abstract: A method for controlling the desired speed in overrun condition for a vehicle comprising a retarder is proposed, such that the desired speed is controlled by a continuously adjustable retarder braking and/or engine braking control system.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 23, 2008
    Applicant: ZF Friedrichschafen AG
    Inventors: Hugo BURKHART, Bernd Aumann
  • Publication number: 20080195293
    Abstract: A speed control method of a vehicle including the steps of obtaining a steering angle, a velocity error and a distance error. The velocity and the distance error being determined by mathematical combinations of a GPS position, a required path and speed set points. The steering angle, velocity errors and distance error are applied to fuzzy logic membership functions to produce an output that is applied to a velocity rule base. An output from the velocity rule base is defuzzified to produce a speed signal.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Inventors: William Robert Norris, Bernard Edwin Romig, John Franklin Reid
  • Publication number: 20080195569
    Abstract: A human perception model for a speed control method including the steps of obtaining a steering angle, a velocity error and a distance error. The method further includes the steps of applying the steering angle, inputting a measure of operator aggressiveness and defuzzifying an output. The applying step includes applying the steering angle, the velocity error and the distance error to fuzzy logic membership functions to produce an output that is applied to a velocity rule base. The inputting step inputs a measure of operator aggressiveness to the velocity rule base. The defuzzifying step defuzzifies an output from the velocity rule base to produce a speed signal.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Inventors: William Robert Norris, Bernard Edwin Rornig, John Franklin Reid, Brian Joseph Gilmore
  • Patent number: 7359770
    Abstract: The present invention is directed to a system and method for optimizing the dynamics and energy usage of long vehicles such as freight trains by determining their operating conditions and calculating an optimal sequence of power and braking control actions. The sequence calculated provides for optimal vehicle dynamic behaviour with minimum energy usage in accordance with the train type, track topography and train operation rules and policies. The method and system serves as a management tool for the driver and reference signals for a train cruise control or autopilot system.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: April 15, 2008
    Assignees: Central Queensland University, Queensland Railways
    Inventor: Colin Cole
  • Patent number: 7178819
    Abstract: A speed regulator for motor vehicles, including a standard mode in which the speed is regulated to a desired speed set by the driver, and at least one exception mode in which the speed is regulated to a setpoint speed that may deviate from the desired speed, and a display device for displaying the desired speed. An auxiliary display is also provided that indicates that an exception mode is active.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: February 20, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Michael Scherl, Werner Uhler
  • Patent number: 7110988
    Abstract: A method of aligning a new goal of an entity ensures that the new goal is a child goal of a parent goal. The method also ensures that a group is linked to the parent goal, and ensures that the entity is subordinate to the group. In one embodiment, selection lists constrain the available values for the group and/or the parent goal. In another aspect, a method of facilitating contextual alignment of a new goal recognizes an organizational role for an entity and customizes content of a user interface, based on the organizational role of the entity. The user interface with the customized content provides goal creation guidance according to the organizational role. In one embodiment, the customized content includes specialized instructions and sample content for characteristics of the new goal, such as a goal-objective characteristic, a goal-measure characteristic, and a goal-activity characteristic.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: September 19, 2006
    Assignee: Trilogy Development Group, Inc.
    Inventors: Andrew W. Allemann, Shad W. Reynolds, Adam R. Hunter, Justin B. Petro
  • Patent number: 7103466
    Abstract: A method and an apparatus for predicting intake manifold pressure are presented, to compensate for a large lag or a large time delay without producing an overshot or discontinuous behaviors of a predicted value. The method comprises the step of obtaining a difference of values of a variable to be predicted and a difference of values of another variable ahead of the variable to be predicted. The method further comprises the step of filtering the differences with adaptive filters. The method further comprises the step of obtaining a predicted difference of values of the variable to be predicted, through algorithm of estimation with fuzzy reasoning. The method further comprises the step of adding the predicted difference of values of the variable to be predicted, to a current value of the variable to be predicted, to obtain a predicted value of the variable to be predicted.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: September 5, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuji Yasui, Akihiro Shinjo, Michihiko Matsumoto
  • Patent number: 6904357
    Abstract: A method and an arrangement control the output quantity (NMOTACT) of a drive unit (1) of a vehicle. The method and arrangement make possible a time-optimal control strategy especially during a shift operation of the vehicle. The output quantity (NMOTACT) is adjusted with the aid of an adjusting quantity (MDES) and tracks an input value (NMOTDES). In at least one pregiven operating state of the vehicle, the actuating quantity (NMOTDES) is brought to a pregiven limit value (MO, MU) when a pregiven control deviation (dnv) of the output quantity (NMOTACT) is exceeded.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: June 7, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Hartmann, Holger Jessen, Mathieu Courtes
  • Patent number: 6836719
    Abstract: A method and system for controlling a vehicle includes receiving vehicle position information from a positioning system and combining the position information with information from a map database and a driver behavior model to control the vehicle's speed and braking for not only the current roadway the vehicle is operating on but also on upcoming road sections.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: December 28, 2004
    Assignee: Ford Motor Company
    Inventors: Hans Andersson, Martin Apelryd
  • Patent number: 6772055
    Abstract: The invention concerns a system for generating basis for decisions concerning the behavior of a vehicle and/or of a driver of a vehicle. The system comprises a supervising unit (10) which comprises at least one storage member (12). In the storage member (12) there is a set of rules (14) of a particular kind for how the driver of the vehicle and/or the vehicle shall behave in different situations. The system also comprises a user interface (16) and adaptation means (13) arranged to adapt said set of rules such that at least some of the rules (14) with conclusions (24) belonging thereto are suited to form the basis for decisions concerning the behavior of a vehicle and/or of a driver of a vehicle. The invention also concerns a vehicle and a method of generating basis for decisions concerning the behavior of a vehicle and/or of a driver of a vehicle.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: August 3, 2004
    Assignee: Saab AB
    Inventor: Hans-Ove Hagelin
  • Patent number: 6721680
    Abstract: A method is provided for promoting compliance by a vehicle operator with a payload standard for a vehicle. The payload weight of the vehicle is determined. The payload weight is compared with the payload standard to determine if the payload weight is compliant with the payload standard. The operation of the vehicle is then limited if the payload weight is not in compliance.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: April 13, 2004
    Assignee: Caterpillar Inc
    Inventors: Giles Kent Sorrells, Dennis A. Barney
  • Patent number: 6668218
    Abstract: The present inventions comprise a method of estimating a minimum range for a target with respect to a first point of interest, independent of actual, range to the target, comprising obtaining three bearing data points; using the three bearing data points to determine a speed contribution Vos of a first point of interest to a distance from a relative velocity vector over a time frame comprising t0 to t0′; determining an angle &thgr;&bgr; as defined by the bearing relative to ownship's heading at the point in time of closest approach to a second point of interest; and calculating a minimum range using a predetermined formula.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: December 23, 2003
    Assignee: Lockheed Martin Corporation
    Inventors: Jeffrey Alan Bulow, Douglas Martin Peters
  • Patent number: 6546327
    Abstract: A running control apparatus and method control the state of running of a vehicle based on a relative positional relationship between the vehicle and a preceeding vehicle. In a case where a brake is actuated if the deceleration deviation obtained by subtracting an actual deceleration from a target deceleration is at least a third threshold &Dgr;&agr;s3, the brake is actuated provided that an object body detected by a laser radar device is a preceeding vehicle and that the same-lane probability that the preceeding vehicle is running in the same lane as the vehicle is at least a set probability. Thus, the brake is actuated when there is a high probability that braking is needed. Therefore, erroneous operation of the brake can be reduced.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: April 8, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Hattori, Nobuyuki Furui, Hironori Miyakoshi
  • Patent number: 6487500
    Abstract: GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: November 26, 2002
    Inventors: Jerome H. Lemelson, Robert D. Pedersen
  • Patent number: RE42546
    Abstract: The present inventions comprise a A method of estimating a minimum range for a target with respect to a first point of interest, independent of actual, range to the target, comprising obtaining three bearing data points; using the three bearing data points to determine a speed contribution Vos cos (??) of a first point of interest to a distance from a relative velocity vector over a time frame comprising t0 to t0?; determining an angle ?? as defined by the bearing relative to ownship's heading at the point in time of closest approach to a second point of interest; and calculating a minimum range using a predetermined formula.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: July 12, 2011
    Assignee: Nevada Asset Liquidators, LLC
    Inventors: Jeffrey Bulow, Douglas M. Peters