Direction (e.g., Compass) Patents (Class 702/92)
  • Patent number: 11079254
    Abstract: A device is provided. The device includes one or more of a radially-wound coil, a hall-effect sensor, a power source, and a control circuit. The radially-wound coil is configured to produce a first magnetic field in response to a periodic current applied to the coil. The hall-effect sensor includes a sensor output that indicates proximity of a magnet to the hall-effect sensor. The magnet provides a second magnetic field and the sensor output indicates proximity in response to a combination of a strength of the first magnetic field and a strength of the second magnetic field exceeds a trip level. The coil is in fixed proximity to the hall-effect sensor, and the current is configured to control a polarity of the first magnetic field to detect the magnet. The power source is coupled to the hall-effect sensor, and is configured to provide power that alternates between on and off voltages to the hall-effect sensor.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 3, 2021
    Inventor: Christopher James Hahn
  • Patent number: 10845503
    Abstract: Disclosed is a three-dimensional directional transient electromagnetic advanced detection device, wherein the CPU and the bus communication end of the transient electromagnetic transmitting module are both connected to the system bus, the signal output end of the transient electromagnetic transmitting module is connected to the transient electromagnetic transmitting coil outside the borehole to be detected, the signal input end of the electromagnetic signal receiving module is connected to the signal output ends of the three-dimensional magnetic field sensor and the one-dimensional Z-directional electric field sensor, the signal output end of the electromagnetic signal receiving module is connected to the electromagnetic signal input end of the SCM, the communication end of the first memory is connected to the data storage end of the SCM, the communication end of the three-dimensional electronic compass is connected to the compass signal communication end of the SCM, the host data communication of the SCM is
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: November 24, 2020
    Inventors: Qiang Wu, Liu Liu, Yifan Zeng, Fengjuan Tao, Chunsheng Liu
  • Patent number: 10838034
    Abstract: A method of calibrating a triaxial sensor such as a magnetometer. The method includes steps (DIS) to calculate a spatial distribution indicator of a set of measurements output by the sensor, and to determine (AJS), using a fitting method, parameters of a parametric surface that can be used to fit said surface to the set of measurements. The fitting method is selected from among several predetermined fitting methods as a function of the spatial distribution indicator. The predetermined fitting methods may include an ellipsoid fitting method, a sphere fitting method, a sphere fitting method and a two-step fitting method consisting of a first fitting to a sphere followed by a second fitting to an ellipsoid, the centre of which is coincident with the centre of the sphere of the first fitting.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 17, 2020
    Inventor: Sylvain Leirens
  • Patent number: 10747236
    Abstract: An unmanned aerial vehicle and process for automatically calibrating the unmanned aerial vehicle having at least one magnetic sensor is described. The calibration process involves receiving an internal or external control command to initiate a take-off process by the unmanned aerial vehicle. A hover mode maintains the unmanned aerial vehicle at hover position, and a calibration rotation sequence rotates the unmanned aerial vehicle. The calibration process further involves receiving measurement data from sensors of the unmanned aerial vehicle during the calibration rotation sequence and calculating calibration parameters using the measurement data. The calibration process may implement corrections using the calibration parameters.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 18, 2020
    Inventor: Michael Peasgood
  • Patent number: 10724863
    Abstract: A method and device for calibration of a three-axis magnetometer that facilitates a more efficient and routine procedure by calibration of hard and soft iron errors of a 3D-magnetometer integrated into a mobile electronic device, and a set of operations for coprocessing measurements of the 3D-magnetometer and inertial sensors (e.g., a 3D-accelerometer and 3D-gyro), which can determine magnetic heading and attitude of the electronic device.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: July 28, 2020
    Assignee: Topcon Positioning Systems, Inc.
    Inventors: Nikolay Nikolaevich Vasilyuk, Alexandr Vladimirovich Doronin, Sergey Ivanovich Tychinskiy, Anton Vladimirovich Klimenkov
  • Patent number: 10697797
    Abstract: Examples include systems and methods for decomposition of error components between angular, forward, and sideways errors in estimated positions of a computing device. One method includes determining an estimation of a current position of the computing device based on a previous position of the computing device, an estimated speed over an elapsed time, and a direction of travel of the computing device, determining a forward, sideways, and orientation change error component of the estimation of the current position of the computing device, determining a weight to apply to the forward, sideways, and orientation change error components based on average observed movement of the computing device, and using the weighted forward, sideways, and orientation change error components as constraints for determination of an updated estimation of the current position of the computing device.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: June 30, 2020
    Assignee: Google LLC
    Inventors: Etienne Le Grand, Brian Patrick Williams
  • Patent number: 10448831
    Abstract: A wearable health sensor and methods of operating the same are herein described, the wearable health sensor and methods of operation having a variety of clinical and non-clinical uses.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 22, 2019
    Assignee: BraveHeart Wireless Inc.
    Inventors: Stephen A McCalmont, Stuart P MacEachern, Ralph L Beck
  • Patent number: 10029697
    Abstract: A vehicle control system includes a function that relates (i) pairs of lateral and longitudinal acceleration values to (ii) skill values. A skill module: receives both (i) a lateral acceleration of the vehicle and (ii) a longitudinal acceleration of the vehicle; and, using the function, determines a skill value of a driver of the vehicle based on both (i) the lateral acceleration of the vehicle and (ii) the longitudinal acceleration of the vehicle. A skill level module determines a skill level of the driver of the vehicle based on the skill value. An actuator control module, based on the skill level of the driver, selectively actuates a dynamics actuator of the vehicle.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 24, 2018
    Inventors: Alexander J. MacDonald, Christopher J. Barber, Stephen A. Padilla, Michael G. Petrucci
  • Patent number: 9939497
    Abstract: A computing device, system, apparatus, and at least one machine readable medium for dynamically calibrating a magnetic sensor are described herein. The computing device includes a sensor hub and a magnetic sensor communicably coupled to the sensor hub. The magnetic sensor is configured to collect sensor data corresponding to the computing device. The computing device also includes a processor that is configured to execute stored instructions and a storage device that stores instructions. The storage device includes processor executable code that, when executed by the processor, is configured to determine a system state of the computing device and send the determined system state of the computing device to the sensor hub. The sensor hub is configured to dynamically calibrate the magnetic sensor based on the sensor data collected via the magnetic sensor and the determined system state of the computing device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 10, 2018
    Assignee: Intel Corporation
    Inventors: Gary A. Brist, Kevin J. Daniel, Melissa A. Cowan
  • Patent number: 9916004
    Abstract: An information processing apparatus including a communication interface configured to be connected to an external posture detecting device to be worn by a user; a display configured to rotatably display a display image; and circuitry configured to control a rotation angle of the image displayed by the display based on posture information received from the external posture detecting device.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 13, 2018
    Inventors: Makoto Tachibana, Takashi Shiina, Tetsuya Naruse, Yuichi Shirai, Chikashi Yajima, Susumu Takatsuka
  • Patent number: 9897446
    Abstract: A physical quantity data correcting device accurately and rapidly makes corrections of physical quantity data by appropriately controlling an approximate ellipsoid computing unit and/or a correction coefficient computing unit on the basis of a control parameter group. A physical quantity data acquiring unit acquires physical quantity data output from a physical quantity detecting unit that detects physical quantities. A data selecting unit selects the acquired physical quantity data. An approximate ellipsoid computing unit computes an approximate expression of an n-dimensional ellipsoid indicating a distribution shape obtained by distributing the selected physical quantity data in an n-axis coordinate space. A correction coefficient computing unit computes correction coefficients for correcting the computed n-dimensional ellipsoid to an n-dimensional sphere.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: February 20, 2018
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Toru Kitamura, Munehiro Kitaura
  • Patent number: 9863785
    Abstract: An improved total field calibration system and method is disclosed for reducing the rotational misalignment between magnetic and gravity sensors in a directional sensing system. A method of calibrating a tri-axial directional sensor that includes orthonormal accelerometers and orthonormal magnetometers is disclosed. The method includes measuring Earth's magnetic and gravity fields with said directional sensor in at least 4 sensor orientations; obtaining at least one reference field value of dip drift of Earth's magnetic field from at least one source independent of said directional sensor corresponding to said orientations; and, determining and applying rotational misalignments between said magnetometers and said accelerometers so that measured magnetic dip drifts are substantially equal to said reference values. The calibration process can be performed without monitoring the declination change during the calibration process.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: January 9, 2018
    Assignee: Bench Tree Group, LLC
    Inventors: Jian-Qun Wu, James-Christian F. Ang, Lee Jacobo Jose Roitberg
  • Patent number: 9739635
    Abstract: Methods for calibrating a body-worn magnetic sensor by spinning the magnetic sensor 360 degrees to capture magnetic data; if the spin failed to produce a circle contained in an x-y plane fit a sphere to the captured data; determining offsets based on the center of the sphere; and removing the offsets that are in the z-direction. Computing a magnetic heading reliability of a magnetic sensor by determining an orientation of the sensor at one location; transforming the orientation between two reference frames; measuring a first vector associated with the magnetic field of Earth at the location; processing the first vector to generate a virtual vector when a second location is detected; measuring a second vector associated with the magnetic field of Earth at the second location; and calculating the magnetic heading reliability at the second location based on a comparison of the virtual vector and the second vector.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: August 22, 2017
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin E. Funk, Dan Hakim, John Karvounis, Travis Young, Carole Teolis
  • Patent number: 9677906
    Abstract: A method and device for calibrating a magnetometer device. In an embodiment, the present invention provides a method to automatically calibrate a magnetometer device in the background with only limited movement in each of the three axis (approximately 20 degrees in each direction). A device implementing the present method will never get stuck in a lock-up state. Embodiments of the present invention provide a conservative and accurate magnetometer status indicator that is essential for indoor navigation using inertial sensors. The implemented algorithm is relatively low computationally intensive and is intelligent enough to know when it has the right kind and right amount of magnetic data before it initiates a calibration.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: June 13, 2017
    Assignee: mCube Inc.
    Inventor: Andy Milota
  • Patent number: 9651378
    Abstract: One embodiment includes a nuclear magnetic resonance (NMR) gyroscope system. The system includes a vapor cell that encloses an alkali metal and a gyromagnetic isotope. The system also includes a magnetic field source that generates a magnetic field aligned with a sensitive axis of the NMR gyroscope system and which is provided through the vapor cell to cause the alkali metal and the gyromagnetic isotope to precess. The system also includes a laser that generates an optical beam that polarizes the alkali metal in the vapor cell to facilitate the precession of the alkali metal and the gyromagnetic isotope. The system further includes an angular rotation sensor configured to calculate a rotation angle about the sensitive axis based on a measured characteristic of a detection beam corresponding to the optical beam exiting the vapor cell, the characteristic being associated with the precession of the gyromagnetic isotope.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: May 16, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Michael D. Bulatowicz, Michael S. Larsen
  • Patent number: 9638543
    Abstract: An example includes a method to estimate a bias affecting an inertial sensor. The method can include monitoring a plurality of rate-of-turn samples, from the inertial sensor, in a sequence over time, wherein each of the plurality of rate-of-turn samples includes substantially the same actual bias value that is included in each of the plurality of other rate-of-turn samples. The method can include estimating the bias as a weighted average of the plurality of rate-of-turn samples. The method can include determining an adjusted rate-of-turn sample by subtracting the bias from an instant rate-of-turn sample of the plurality of rate-of-turn samples. The method can include putting out the adjusted rate-of-turn.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 2, 2017
    Assignee: Raven Industries, Inc.
    Inventor: Robert Leonard Nelson, Jr.
  • Patent number: 9584768
    Abstract: An information processing apparatus includes an image obtaining unit that obtains an image captured by an image capturing apparatus. An index detection unit detects index information from the image. A measurement value obtaining unit obtains a measurement value measured by a sensor. A determination unit determines a suitability of calibration data for the sensor, which includes the index information and the measurement value, based on the index information and the measurement value. A presentation unit presents the suitability.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: February 28, 2017
    Inventors: Shinichi Aratani, Kazuki Takemoto
  • Patent number: 9453743
    Abstract: Disclosed herein is a distance measuring apparatus. The distance measuring apparatus includes a light-emitting unit configured to radiate light in a pulse form of a specific width, a light-receiving unit configured to include a plurality of cells for receiving reflected light radiated by the light-emitting unit and reflected by an object, and a processor configured to perform one or more of an operation for calculating a first distance of the object using a first method based on the locations of one or more cells which belong to the plurality of cells and on which the reflected light is focused and an operation for calculating a second distance of the object using a second method based on the time when the reflected light is reached and to correct the first distance calculated using the first method based on the second distance calculated using the second method.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: September 27, 2016
    Inventors: Wansoo Lee, Euncheol Lee, Taeksoo Lee
  • Patent number: 9430609
    Abstract: A scanner obtains point-cloud data of adjoining parts of a product. A computing device reads two point-clouds from the point-cloud data, fits two or more lines according to the two point-clouds, selects two lines that have the same ascending direction from the two or more lines, and creates a two-dimensional coordinates system base on the two selected lines. The computing device determines a highest point in each of the two point-clouds based on distances from each point in either of the point-clouds to a corresponding selected line, and determines two nearest points in the two point-clouds. A difference between Y coordinates of the two highest points is determined as a gap-height of two adjoining parts of the product, and a difference between X coordinates of the two nearest points is determined as a gap-width between two adjoining parts.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: August 30, 2016
    Assignee: Zijilai Innovative Services Co., Ltd.
    Inventors: Chih-Kuang Chang, Zhong-Kui Yuan, Li Jiang, Dong-Hai Li, Xiao-Guang Xue
  • Patent number: 9423281
    Abstract: A rotary encoder includes a single read-head and a circular scale. The encoder is self-calibrated by acquiring calibration samples with the read-head for rotational angles of the circular scale, and estimating spatial frequency and spatial distortion parameters of the encoder from the calibration samples.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 23, 2016
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Amit Agrawal, Jay Thornton
  • Patent number: 9366533
    Abstract: Control section (160) is configured to measure the azimuth of electronic device (100) on the basis of the result detected by geomagnetic sensor (120) for detecting geomagnetism, and on the basis of the result detected by motion sensor (130) for detecting movement of electronic device (100), and is configured, while motion sensor (130) is detecting that electronic device (100) is stationary, to measure the azimuth of electronic device (100) only on the basis of the result detected by motion sensor (130), and the azimuth measured by control section (160) is displayed by display section (170).
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 14, 2016
    Inventor: Takeshi Ashida
  • Patent number: 9250300
    Abstract: A mobile device includes a magnetometer. The mobile device is calibrated during application usage by sampling magnetic information received from the magnetometer, recognizing an initial controller orientation signal derived from a first sample of a plurality of samples of the magnetic information and from directional offset data, calculating updated directional offset data based on the plurality of samples of the magnetic information and on the directional offset data, and deriving a calibrated controller orientation signal from a second sample of the plurality of samples of the magnetic information and the updated directional offset data.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: February 2, 2016
    Inventor: David Russo
  • Patent number: 9217757
    Abstract: Systems and methods for calibrating the alignment of 3-axis accelerometers in accordance embodiments of the invention are disclosed. In one embodiment of the invention, a telematics system includes a global positioning system (GPS) receiver. an accelerometer, and a processor, wherein the GPS receiver is configured to determine velocity information, wherein the accelerometer is configured to determine accelerometer acceleration information along one or more accelerometer axes, and wherein the processor is configured to receive a velocity information sample using the GPS receiver, determine GPS acceleration information along one or more vehicle axes using the velocity information sample, receive accelerometer acceleration information samples using the accelerometer, and calibrate one of the vehicle axes to an accelerometer axis in the one or more accelerometer axes using the GPS acceleration information sample and the accelerometer acceleration information sample.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: December 22, 2015
    Assignee: CalAmp Corp.
    Inventors: Peter Hergesheimer, Todd Sprague, Alexandre Dlagnekov
  • Patent number: 9062971
    Abstract: An electronic circuit includes an electronic compass having e-compass sensors mounted on different axes and operable to supply e-compass sensor data, memory circuitry, and an electronic processor coupled to said e-compass sensors and to said memory circuitry, said electronic processor operable to execute an electronic ellipse-fitting procedure responsive to the e-compass sensor data to generate at least one signal related to an ellipse tilt angle, and store the at least one signal in said memory circuitry as a tilt calibration parameter for the e-compass. Processes for calibrating an e-compass, as well as electronic circuits and processes for correcting measured heading, and processes of manufacture are also disclosed.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: June 23, 2015
    Inventor: Goutam Dutta
  • Patent number: 9008987
    Abstract: An electronic device is provided with an inclination sensor for computing inclination, a control unit which conducts predetermined control based on a value computed by the inclination sensor, a case which has the inclination sensor and the control unit therein, and a suspension portion for suspending the case, and the control unit controls correction of the reference value of the inclination sensor based on a state where the case is suspended by the suspension portion and still.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: April 14, 2015
    Assignee: Kyocera Corporation
    Inventors: Shigeki Tanabe, Junya Yano, Yuuya Hirose
  • Patent number: 8977512
    Abstract: Techniques and architecture are disclosed for performing alignment harmonization of a collection of electro-optical and/or gimbaled componentry that is to operate within a common coordinate frame. In some cases, the techniques and architecture can provide a cost- and time-efficient approach to achieving alignment harmonization that is compatible, for example, with field-test and/or operational environments. In some instances, the techniques and architecture can be used in concert with error calibration techniques to further improve the accuracy of the alignment harmonization. The techniques and architecture can be utilized with a wide range of components (e.g., sensors, armaments, targeting systems, weapons systems, countermeasure systems, navigational systems, surveillance systems, etc.) on a wide variety of platforms. Numerous configurations and variations will be apparent in light of this disclosure.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: March 10, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Almond J. Coté, Kirby A. Smith
  • Patent number: 8965684
    Abstract: The present invention pertains to a mobile terminal having an autonomous navigation function, said mobile terminal comprising: a map application which performs map matching on the current position of the mobile terminal on a route to a destination; a measurement unit which detects the movement of the mobile terminal, and which provides sensor information representing the number of steps and travel direction; a position calculation unit which determines the current position of the mobile terminal; a travel direction correction unit which, when it has been estimated that a user is walking straight by determining whether the amount of change of the user's travel direction is within a prescribed range in a prescribed period, corrects the user's travel direction according to the orientation of the straight parts when the user is walking straight on the route; and a current position correction unit which, on the basis of the corrected travel direction and the starting time and starting point when walking straight,
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 24, 2015
    Assignee: NTT DOCOMO, INC.
    Inventor: Makoto Takahashi
  • Patent number: 8952682
    Abstract: A method and system are provided for calibrating a magnetometer of a mobile device. The method comprises displaying a visual indication of a gestural path on a display of the portable electronic device, monitoring for changes in orientation of the portable electronic device, changing the visual indication in response to the monitored changes in the orientation of the portable electronic device, measuring a magnetic field with the magnetometer, and calibrating the magnetometer in accordance with measurements of the magnetic field acquired at different points along the gestural path.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: February 10, 2015
    Assignee: BlackBerry Limited
    Inventors: Laura Mahan, Jeffrey Charles Bos, Przemyslaw Abratowski, Christopher Harris Snow, Steve Robert Grenier, Nazih Almalki
  • Publication number: 20150032399
    Abstract: A heading calibration method, adapted for a compass sensor is provided. The heading calibration method includes the following steps. R data segments are sequentially generated by rotating the compass sensor by a predetermined angle, wherein the data segments includes a plurality of magnetic data respectively. A partial calibration process is executed to calibrate a reference point coordinate according to the magnetic data in rth data segment and a initial value of the reference point coordinate, wherein r is between 1 and the R. Parts of the magnetic data in the rth data segment is extracted as whole data, and a whole calibration process is executed according to the whole data to update an initial value of the reference point coordinate. The partial calibration process is executed according to the updated initial value of the reference point coordinate and the magnetic data in a (r+1)th data segment.
    Type: Application
    Filed: January 16, 2014
    Publication date: January 29, 2015
    Applicant: ITE TECH. INC.
    Inventors: Sheng-Yang Peng, Tzu-Yi Wu
  • Patent number: 8929658
    Abstract: A method of providing magnetic deviation corresponding to positions in a wireless communication system includes receiving a request wirelessly for a magnetic deviation corresponding to a position of an access terminal, the request including the position of the access terminal; retrieving the magnetic deviation corresponding to the position of the access terminal from a repository; and transmitting wirelessly the magnetic deviation corresponding to the position of the access terminal to the access terminal.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: January 6, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Slawomir K. Grzechnik, Serafin Diaz Spindola
  • Patent number: 8930163
    Abstract: A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 6, 2015
    Assignee: TRX Systems, Inc.
    Inventors: Kamiar Kordari, Benjamin Funk, Jared Napora, Ruchika Verma, Carole Teolis, Travis Young
  • Publication number: 20140365154
    Abstract: A method that performs a series of interactive operations to calibrate a compass in a mobile device. The method requires a user to move the device to a variety of different orientations. In order to ensure that the device moves to a sufficient number and variety of orientations, the method instructs the user to rotate the device in a series of interactive operations. The interactive operations provide feedback to inform the user how well the user is performing the interactive operations. In some embodiments, the feedback is tactile (e.g., a vibration). In some embodiments the feedback is audible (e.g., a beep or buzz). In some embodiments, the feedback is visual (e.g., an image or images on a video display of the device). The feedback in some embodiments is continuous (e.g., a changing visual display) and in some embodiments is discrete (e.g., the device beeps after taking a good reading).
    Type: Application
    Filed: October 15, 2013
    Publication date: December 11, 2014
    Applicant: Apple Inc.
    Inventors: Christopher D. Moore, Sarah G. Barbour, Joshua C. Weinberg, Alessandro F. Sabatelli, Brian Schmitt
  • Patent number: 8880373
    Abstract: Methods and apparatus are described herein for calibration and correction of non-constant sensor errors, and in particular non-constant compass errors, that are based in part on changing software and hardware modes of a host device. The non-constant errors induced in the sensor by each mode and combination of modes is determined in a calibration that may be determined during pre-production testing of one or more host devices. The calibration results can be incorporated into software and/or hardware of the host device. During normal operation, a sensor correction can be applied to sensor measurements based in part on the active mode or combination of modes.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 4, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Victor Kulik, Christopher Brunner
  • Patent number: 8862419
    Abstract: Methods and apparatus are provided for calibrating and initializing/aligning an attitude and heading reference system of a crane jib. Magnetometer measurements are generated using a magnetometer that is attached to the crane jib, while crane jib maneuvers are performed including crane jib slewing. The magnetometer measurements are supplied to a processor that is configured to generate magnetometer calibration parameters using the magnetometer measurements and to initialize and align a plurality of filters.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: October 14, 2014
    Assignee: Honeywell International Inc.
    Inventors: Vibhor L. Bageshwar, Michael Ray Elgersma, Balaji Mahadev, Brian E. Fly, Steven P. Cienciwa
  • Patent number: 8862418
    Abstract: In a magnetic data processing device, a magnetic data input part sequentially receives magnetic data output from a three-dimensional (3D) magnetic sensor. A storage part stores a plurality of the magnetic data as a data set of statistical population. An acceleration data input part receives acceleration data output from a 3D acceleration sensor. A reliability determination part derives a reliability index that is a function of an angular difference between a direction of a line perpendicular to an approximate plane representing a distribution of the data set of the statistical population and a direction of acceleration represented by the acceleration data.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: October 14, 2014
    Assignee: Yamaha Corporation
    Inventor: Ibuki Handa
  • Patent number: 8838403
    Abstract: A multi-magnetometer device comprises at least two z-axis aligned and physically rotated magnetometer triads utilized for measuring corresponding earth's magnetic field. The magnetic field measurements are utilized to measure rotation measurements of a single orthogonal axis along the 360 degrees of the complete circle without user's assistance and/or magnetometer movement for magnetometer calibration. The multi-magnetometer device may compute its magnetic heading utilizing the magnetic field measurements if no magnetic perturbations are detected. When magnetic perturbations are detected, a perturbation mitigation process may be performed. The rotation measurements may be generated by selectively combining the magnetic field measurements. Hard-iron components are determined utilizing the rotation measurements, and are removed from the magnetic field measurements.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 16, 2014
    Assignee: Broadcom Corporation
    Inventors: Manuel del Castillo, Steve Malkos
  • Patent number: 8825425
    Abstract: A mobile device has a geomagnetic sensor, a position detection device, such as an acceleration sensor, for detecting a position of the mobile device, or a direction of a mobile device and a form of the mobile device, and a controller operable to control the geomagnetic sensor and the position detection device. When the position detection device detects a predetermined position change, the controller starts a correction process of the geomagnetic sensor based upon the detection.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: September 2, 2014
    Assignee: NEC Corporation
    Inventor: Junichi Kadokura
  • Patent number: 8788231
    Abstract: A method for detecting a rotation and a direction of a rotation of a rotor, on which at least one damping element is positioned, wherein two sensors are arranged. The sensors are damped depending on a position of the damping element. After a standardization has been performed, the measurements are taken by observing consecutive rotational angle positions and then standardization rules are applied to the measured decay times of the sensors. Then a vector, which is entered into a coordinate system, is formed from the values. The present vector angle is determined and compared to the value of a suitable prior vector angle. From the result of the comparison, it is determined whether the rotor has performed a rotation and whether the rotation was forward or backward. By repeating the measurements in the rhythm of the scanning frequency, the rotational motions of the rotor can be detected with high accuracy.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: July 22, 2014
    Assignee: Sensus Spectrum LLC
    Inventor: Joachim Baumann
  • Patent number: 8788201
    Abstract: A relative positioning system enabling a user to return to a starting position or some other point on the user's path. The system may include an array of accelerometers. The output from the accelerometers may be integrated to quantify movement of the array. The various movements of the array may be reconstructed to determine a net two or three dimensional translation. The current location of the array may be compared to a reference point to derive at trajectory directing the user to the reference point, such as an originating point. The trajectory may be continuously or periodically updated. Applications may include various displays presenting images, numbers, pointers, paths, vectors, or data by digital screens, watch faces, or other devices integrated with or remote from the processor calculating the vector back to the point of origin.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 22, 2014
    Inventor: Phillip M. Adams
  • Patent number: 8781774
    Abstract: The invention relates according to a first aspect to a hybridization device (1) comprising a virtual platform (2), a bank (3) of Kalman filters each estimating a correction vector (dX0-dXn) comprising a plurality of components, said device formulating a hybrid output (SH) corresponding to inertial measurements (PPVI) calculated by the virtual platform (2) and corrected by a stabilization vector (dC) exhibiting one and the same plurality of components, characterized in that it comprises a correction formulation module (4) configured so as to formulate each of the components (dC[state]) of the stabilization vector (dC) as a function of all the corresponding components (dX0[state]-dXn[state]) of the correction vectors (dX0-dXn).
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: July 15, 2014
    Assignee: Sagem Defense Securite
    Inventors: Sébastien Vourc'h, Stanislas Szelewa, Thibault Lartigue
  • Patent number: 8768649
    Abstract: It is possible to rapidly or highly accurately estimate a highly reliable offset according to situations and improve further the reliability of the estimated offset even if a measurement data is not obtained in a space in which the magnitude of a vector physical quantity to be measured is uniform. The offset included in the obtained vector physical quantity data are statistically estimated based on a predetermined evaluation formula using difference vectors. In the estimation of the offset, reliability information on a reference point is calculated based on at least one of the vector physical quantity data, the difference vectors and a plurality of estimated reference points according to a calculation parameter for calculating the reliability information on the reference point, whether or not the reference point is reliable is determined by comparing the reliability information with a determination threshold value.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: July 1, 2014
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Touru Kitamura, Norihiko Mikoshiba
  • Patent number: 8761997
    Abstract: A method for controlling at least one component of a motor vehicle provided with energy storage means. The method comprises the steps of determination of an energy reserve value of the vehicle; evaluation of at least one critical energy autonomy threshold; and comparison of the energy reserve value with at least one critical autonomy threshold so as to deduce therefrom a setpoint signal for controlling the component.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: June 24, 2014
    Assignee: Valeo Vision
    Inventors: Martin Grimm, Pierre Albou
  • Patent number: 8761970
    Abstract: A method, apparatus, and computer program product for identifying air data for an aircraft. The lift for the aircraft is identified. The number of surface positions for the aircraft is identified. The angle of attack during flight of the aircraft is identified. A synthetic dynamic pressure is computed from the lift, the number of surface positions, and the angle of attack.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: June 24, 2014
    Assignee: The Boeing Company
    Inventors: Melville Duncan Walter McIntyre, Andrew William Houck, Russell Tanner Bridgewater, Robert E. Freeman, Paul Salo, Douglas L. Wilson, Jonathan K. Moore
  • Publication number: 20140130361
    Abstract: A method of indicating an interference magnetic field at an electronic device includes: displaying a first arrow indicating a direction of magnetic north on a display of the electronic device, the direction of the first arrow corrected to remove interference caused by an interference magnetic field; and displaying a second arrow indicating a direction of a source of the interference magnetic field on a display of the electronic device.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Inventors: Robert George OLIVER, Adam Louis PARCO, Christopher James GRANT
  • Patent number: 8725072
    Abstract: A compass output in a first portable electronic device is monitored as the first device and a second electronic device come closer to each other. It is determined, by a process running in the first device, whether a magnetic field signature that is based on the monitored compass output is associated with a previously defined type of electronic device with which a network device discovery process is to be conducted. Other embodiments are also described and claimed.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 13, 2014
    Assignee: Apple Inc.
    Inventors: Patrick S. Piemonte, Ronald K. Huang, Parin Patel
  • Patent number: 8712069
    Abstract: An audio processing system processes an audio signal that may come from one or more microphones. The audio processing system may use information from one or more non-acoustic sensors to improve a variety of system characteristics, including responsiveness and quality. Especially those audio processing systems that use spatial information, for example to separate multiple audio sources, are undesirably susceptible to changes in the relative position of any audio sources, the audio processing system itself, or any combination thereof. Using the non-acoustic sensor information may decrease this susceptibility advantageously in an audio processing system.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 29, 2014
    Assignee: Audience, Inc.
    Inventors: Carlo Murgia, Michael M. Goodwin, Peter Santos, Dana Massie
  • Patent number: 8712623
    Abstract: In an apparatus for controlling an autonomous operating vehicle having a prime mover and operating machine, it is configured to have a geomagnetic sensor responsive to magnets embedded in the area, detect angular velocity generated about z-axis in center of gravity of the vehicle, detect a wheel speed of the driven wheel, store map information including magnet embedded positions, detect a primary reference direction, detect a vehicle position relative to the magnet, and detect a vehicle position in the area, calculate a traveling direction and traveled distance of the vehicle, and control the operation performed through the operating machine in the area in accordance with a preset operation program based on the detected direction, the detected position of the vehicle in the area, the calculated traveling direction and the calculated traveled distance.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: April 29, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuhisa Sato, Makoto Yamamura, Yoshinori Masubuchi
  • Publication number: 20140107860
    Abstract: A compass system configured to compensate for electromagnetic interference in a vehicle is provided that includes an electronic device that is sensitive to electromagnetic interference (EMI), wherein the electronic device is positioned in a vehicle such that the electronic device receives EMI from another accessory in the vehicle, and wherein the electronic device is configured to compensate for the EMI, such that the EMI field caused by the accessory can be detected and added to existing calibration point while the accessory is powered on.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: Gentex Corporation
    Inventors: Mark D. Bugno, Jonh C. Peterson
  • Patent number: 8694051
    Abstract: A mobile device configured to be used in a wireless communication network includes: an image capture device; at least one sensor configured to measure a first orientation of the mobile device; and a processor communicatively coupled to the image capture device and the at least one sensor and configured to: identify an object in an image captured by the image capture device; use a position of the mobile device to determine an actual location of the object relative to the mobile device; and use the actual location of the object relative to the mobile device and the image to determine a correction for the sensor.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 8, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Victor Kulik
  • Patent number: 8683850
    Abstract: A bias value associated with a sensor, e.g., a time-varying, non-zero value which is output from a sensor when it is motionless, is estimated using at least two, different bias estimating techniques. A resultant combined or selected bias estimate may then be used to compensate the biased output of the sensor in, e.g., a 3D pointing device.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 1, 2014
    Assignee: Hillcrest Laboratories, Inc.
    Inventors: Hua Sheng, Matthew G. Liberty, Christopher D. Roller, Charles W. K. Gritton