Audio Signal Time Compression Or Expansion (e.g., Run Length Coding) Patents (Class 704/503)
  • Patent number: 10242681
    Abstract: An audio encoder for encoding segments of coefficients, the segments of coefficients representing different time or frequency resolutions of a sampled audio signal, the audio encoder including a processor for deriving a coding context for a currently encoded coefficient of a current segment based on a previously encoded coefficient of a previous segment, the previously encoded coefficient representing a different time or frequency resolution than the currently encoded coefficient. The audio encoder further includes an entropy encoder for entropy encoding the current coefficient based on the coding context to obtain an encoded audio stream.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: March 26, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Markus Multrus, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Nikolaus Rettelbach, Virgilio Bacigalupo
  • Patent number: 10210879
    Abstract: An apparatus for processing an audio signal including a sequence of blocks of spectral values, includes: a processor for calculating an aliasing-affected signal using at least one first modification value for a first block of the sequence of blocks and using at least one different second modification value for a second block of the sequence of blocks and for estimating an aliasing-error signal representing an aliasing-error in the aliasing-affected signal; and a combiner for combining the aliasing-affected signal and the aliasing-error signal such that a processed signal obtained by the combining is an aliasing-reduced or aliasing-free signal.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 19, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der andewandten Forschung e.V.
    Inventors: Sascha Disch, Frederik Nagel, Ralf Geiger, Christian Neukam, Bernd Edler
  • Patent number: 10158962
    Abstract: A method for controlling a three-dimensional multi-layer speaker arrangement having a plurality of speakers arranged in spaced layers. The method includes: providing information for a sound to be played back from a 3D source position assigned to the sound, wherein the source position is defined with respect to a reference point (RP) within the multi-layer speaker arrangement, extracting a 3D source position (SPXY) from the source position and calculating layer specific speaker coefficients using a 2D calculator to position the sound two dimensional source position, and feeding a vertical pan or 3D source position into a multilayer calculator for obtaining a layer gain factor for each layer for obtaining speaker coefficients used as individual gains enabling the speakers to play back the sound.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: December 18, 2018
    Assignee: Barco NV
    Inventor: Martin Dausel
  • Patent number: 9830916
    Abstract: Audio processing methods may involve receiving audio data corresponding to a plurality of audio channels. The audio data may include a frequency domain representation corresponding to filterbank coefficients of an audio encoding or processing system. A decorrelation process may be performed with the same filterbank coefficients used by the audio encoding or processing system. The decorrelation process may be performed without converting coefficients of the frequency domain representation to another frequency domain or time domain representation. The decorrelation process may involve selective or signal-adaptive decorrelation of specific channels and/or specific frequency bands. The decorrelation process may involve applying a decorrelation filter to a portion of the received audio data to produce filtered audio data. The decorrelation process may involve using a non-hierarchal mixer to combine a direct portion of the received audio data with the filtered audio data according to spatial parameters.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: November 28, 2017
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Vinay Melkote, Kuan-Chieh Yen, Grant A. Davidson, Matthew Fellers, Mark S. Vinton, Vivek Kumar
  • Patent number: 9812135
    Abstract: A plurality of candidates of prediction coefficients of a channel signal out of a plurality of channel signals are extracted from a code book storing a plurality of prediction coefficients, each candidate having a predictive error falling within a specific range of predictive error of predictive encoding of two other channel signals, and a prediction coefficient is selected from the extracted candidates as a result of the predictive encoding in accordance with a specific data embedding rule and embedding embed target data into the selected prediction coefficient.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: November 7, 2017
    Assignee: FUJITSU LIMITED
    Inventors: Akira Kamano, Yohei Kishi, Shunsuke Takeuchi, Masanao Suzuki
  • Patent number: 9734833
    Abstract: A decoder for generating an audio output signal having one or more audio output channels from a downmix signal having a plurality of time-domain downmix samples is provided. The downmix signal encodes two or more audio object signals. The decoder has a window-sequence generator for determining a plurality of analysis windows, each having a plurality of time-domain downmix samples of the downmix signal and a window length indicating the number of the time-domain downmix samples. Moreover, the decoder has a t/f-analysis module for transforming the plurality of time-domain downmix samples of each analysis window from a time-domain to a time-frequency domain depending on the window length of said analysis window, to obtain a transformed downmix. Furthermore, the decoder has an un-mixing unit for un-mixing the transformed downmix based on parametric side information on the two or more audio object signals to obtain the audio output signal. Moreover, an encoder is provided.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: August 15, 2017
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Jouni Paulus, Bernd Edler, Oliver Hellmuth, Juergen Herre, Thorsten Kastner
  • Patent number: 9699584
    Abstract: An apparatus for generating one or more audio output channels is provided. The apparatus includes a parameter processor for calculating output channel mixing information and a downmix processor for generating the one or more audio output channels. The downmix processor is configured to receive an audio transport signal including one or more audio transport channels, wherein two or more audio object signals are mixed within the audio transport signal, and wherein the number of the one or more audio transport channels is smaller than the number of the two or more audio object signals. The audio transport signal depends on a first mixing rule and on a second mixing rule. The first mixing rule indicates how to mix the two or more audio object signals to obtain a plurality of premixed channels. Moreover, the second mixing rule indicates how to mix the plurality of premixed channels.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: July 4, 2017
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Harald Fuchs, Oliver Hellmuth, Juergen Herre, Adrian Murtaza, Jouni Paulus, Falko Ridderbusch, Leon Terentiv
  • Patent number: 9697838
    Abstract: An apparatus for generating a representation of a bandwidth-extended signal on the basis of an input signal representation includes a phase vocoder configured to obtain values of a spectral domain representation of a first patch of the bandwidth-extended signal on the basis of the input signal representation. The apparatus also includes a value copier configured to copy a set of values of the spectral domain representation of the first patch, which values are provided by the phase vocoder, to obtain a set of values of a spectral domain representation of a second patch, wherein the second patch is associated with higher frequencies than the first patch. The apparatus is configured to obtain the representation of the bandwidth-extended signal using the values of the spectral domain representation of the first patch and the values of the spectral domain representation of the second patch.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 4, 2017
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frederik Nagel, Max Neuendorf, Nikolaus Rettelbach, Jeremie Lecomte, Markus Multrus, Bernhard Grill, Sascha Disch
  • Patent number: 9674631
    Abstract: A method for controlling a three-dimensional multi-layer speaker arrangement having a plurality of speakers arranged in spaced layers. The method includes: providing information for a sound to be played back from a 3D source position assigned to the sound, wherein the source position is defined with respect to a reference point (RP) within the multi-layer speaker arrangement, extracting a 2D source position (SPXY) from the source position and calculating layer specific speaker coefficients using a 2D calculator to position the sound two dimensional source position, and feeding a vertical pan or 3D source position into a multilayer calculator for obtaining a layer gain factor for each layer for obtaining speaker coefficients used as individual gains enabling the speakers to play back the sound.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: June 6, 2017
    Assignee: Barco NV
    Inventor: Martin Dausel
  • Patent number: 9666233
    Abstract: A browser efficiently extracts media from a video presented through a web application having a different domain from a media server providing the web application while complying with cross-origin resource restrictions. A video portion is selected, and a header portion of the video is identified. A truncated video portion, which includes the selected video portion and a video portion contiguous to the selected video portion, is loaded into memory. A truncated video file is generated including the truncated video portion and a truncated video header. The truncated video file is encoded as a video tag included in the web application, and the media corresponding to the selected video portion is extracted by transcoding the truncated video file in the video tag. A server may also extract the media by loading the truncated video portion, generating the truncated video file, and transcoding the truncated video file to obtain the media.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: May 30, 2017
    Assignee: GoPro, Inc.
    Inventors: Kevin Woods, Jane Sternbach, Joshua Edward Bodinet
  • Patent number: 9584944
    Abstract: A stereo decoding method and apparatus are disclosed. The method includes: restoring a monophonic signal from a received code stream through decoding; restoring an interchannel level difference, a group delay, and a group phase from the received code stream through decoding; and processing the monophonic signal according to the interchannel level difference, group delay, and group phase to obtain a first channel signal and a second channel signal. According to the stereo decoding method and apparatus provided in embodiments of the present invention, the first and second channel signals are obtained according to the monophonic signal, ILD, group delay, and group phase by referring to not only the ILD but also the group delay and group phase, thereby yielding favorable stereo sound field effect for the obtained first and second channel signals.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: February 28, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wenhai Wu, Lei Miao, Yue Lang, Qi Zhang
  • Patent number: 9451043
    Abstract: The present invention includes various embodiments of a mobile app remote virtualization system and process that enables users of remote client devices to control mobile apps running in a host server environment. The resulting user experience is practically equivalent to running native mobile apps, even when such mobile apps require access to local client device resources, as well as when native versions of such mobile apps do not exist for the user's client device. The functionality afforded by the mobile app remote virtualization system and process of the present invention enables a variety of novel scenarios and “use cases” that have not previously been available to mobile device users.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: September 20, 2016
    Assignee: EVIE LABS, INC.
    Inventors: David Zhao, Yu Qing Cheng, Russ D'Sa, David Schwartz
  • Patent number: 9443524
    Abstract: A stereo decoding method and apparatus are disclosed. The method includes: restoring a monophonic signal from a received code stream through decoding; restoring an interchannel level difference, a group delay, and a group phase from the received code stream through decoding; and processing the monophonic signal according to the interchannel level difference, group delay, and group phase to obtain a first channel signal and a second channel signal. According to the stereo decoding method and apparatus provided in embodiments of the present invention, the first and second channel signals are obtained according to the monophonic signal, ILD, group delay, and group phase by referring to not only the ILD but also the group delay and group phase, thereby yielding favorable stereo sound field effect for the obtained first and second channel signals.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: September 13, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wenhai Wu, Lei Miao, Yue Lang, Qi Zhang
  • Patent number: 9264838
    Abstract: Various embodiments relate to a system and method for decorrelating an audio signal with a hybrid filter. The hybrid filter is generated by first generating a decorrelation filter. A frequency-dependent warping is applied to the decorrelation filter. The warped decorrelation filter is then mixed with a carrier filter to generate the hybrid filter. The carrier filter may include filters for spatial processing of an audio signal, filters for upmixing an audio signal, and/or filters for downmixing an audio signal.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: February 16, 2016
    Assignee: DTS, Inc.
    Inventors: Edward Stein, Martin Walsh
  • Patent number: 9064488
    Abstract: A stereo encoding method, a stereo encoding device, and an encoder are provided. The stereo encoding method includes: obtaining a left channel energy relation coefficient and a right channel energy relation coefficient; obtaining a left energy sum and a right energy sum respectively; performing cross correlation between sub-bands of a first monophonic signal at a wave trough and sub-bands of the left channel signal according to the left channel energy relation coefficient, and performing cross correlation between sub-bands of the first monophonic signal at the wave trough and sub-bands of the right channel signal according to the right channel energy relation coefficient; obtaining a scaling factor by using the left energy sum, the right energy sum, and cross correlation results; and encoding the stereo left and right channel signals according to the scaling factor.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: June 23, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yue Lang, Wenhai Wu, Lei Miao, Zexin Liu, Chen Hu, Qing Zhang
  • Patent number: 9042558
    Abstract: A decoding apparatus (10) is disclosed which includes: a storing means (11) for storing encoded audio signals including multi-channel audio signals; a transforming means (40) for transforming the encoded audio signals to generate transform block-based audio signals in a time domain; a window processing means (41) for multiplying the transform block-based audio signals by a product of a mixture ratio of the audio signals and a first window function, the product being a second window function; a synthesizing means (43) for overlapping the multiplied transform block-based audio signals to synthesize audio signals of respective channels; and a mixing means (14) for mixing audio signals of the respective channels between the channels to generate a downmixed audio signal. Furthermore, an encoding apparatus is also disclosed which downmixes the multi-channel audio signals, encodes the downmixed audio signals, and generates the encoded, downmixed audio signals.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: May 26, 2015
    Assignee: GVBB Holdings S.A.R.L.
    Inventor: Yousuke Takada
  • Patent number: 9043216
    Abstract: An audio signal decoder has a time warp contour calculator, a time warp contour data rescaler and a warp decoder. The time warp contour calculator is configured to generate time warp contour data repeatedly restarting from a predetermined time warp contour start value, based on time warp contour evolution information describing a temporal evolution of the time warp contour. The time warp contour data rescaler is configured to rescale at least a portion of the time warp contour data such that a discontinuity at a restart is avoided, reduced or eliminated in a rescaled version of the time warp contour. The warp decoder is configured to provide the decoded audio signal representation, based on an encoded audio signal representation and using the rescaled version of the time warp contour.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: May 26, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Stefan Bayer, Sascha Disch, Ralf Geiger, Guillaume Fuchs, Max Neuendorf, Gerald Schuller, Bernd Edler
  • Patent number: 9043201
    Abstract: A method (700, 800) and apparatus (100, 200) processes audio frames to transition between different codecs. The method can include producing (720), using a first coding method, a first frame of coded output audio samples by coding a first audio frame in a sequence of frames. The method can include forming (730) an overlap-add portion of the first frame using the first coding method. The method can include generating (740) a combination first frame of coded audio samples based on combining the first frame of coded output audio samples with the overlap-add portion of the first frame. The method can include initializing (760) a state of a second coding method based on the combination first frame of coded audio samples. The method can include constructing (770) an output signal based on the initialized state of the second coding method.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: May 26, 2015
    Assignee: GOOGLE TECHNOLOGY HOLDINGS LLC
    Inventors: Udar Mittal, James P. Ashley
  • Publication number: 20150142456
    Abstract: Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may provide cross-fade between AAC/Enhanced AAC Plus (EAACPIus) information streams or between MP3 information streams or even between information streams of unmatched formats (e.g. AAC to MP3 or MP3 to AAC). Furthermore, these systems are distinguished by the fact that cross-fade is directly applied to the compressed bitstreams so that a single decode operation may be performed on the resulting bitstream. Moreover, using the described methods, similar cross fade in the compressed domain between information streams utilizing other formats of compression, such as, for example, MP2, AC-3, PAC, etc. can also be advantageously implemented.
    Type: Application
    Filed: April 17, 2013
    Publication date: May 21, 2015
    Inventors: Raymond Lowe, Mark Kalman, Deepen Sinha, Christopher Ward
  • Patent number: 9026438
    Abstract: A method for detecting barge-in in a speech dialog system comprising determining whether a speech prompt is output by the speech dialog system, and detecting whether speech activity is present in an input signal based on a time-varying sensitivity threshold of a speech activity detector and/or based on speaker information, where the sensitivity threshold is increased if output of a speech prompt is determined and decreased if no output of a speech prompt is determined. If speech activity is detected in the input signal, the speech prompt may be interrupted or faded out. A speech dialog system configured to detect barge-in is also disclosed.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 5, 2015
    Assignee: Nuance Communications, Inc.
    Inventors: Markus Buck, Franz Gerl, Tim Haulick, Tobias Herbig, Gerhard Uwe Schmidt, Matthias Schulz
  • Patent number: 9025777
    Abstract: An audio signal decoder for providing a decoded multi-channel audio signal representation on the basis of an encoded multi-channel audio signal representation has a time warp decoder configured to selectively use individual audio channel specific time warp contours or a joint multi-channel time warp contour for a reconstruction of a plurality of audio channels represented by the encoded multi-channel audio signal representation.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: May 5, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Stefan Bayer, Sascha Disch, Ralf Geiger, Guillaume Fuchs, Max Neuendorf, Gerald Schuller, Bernd Edler
  • Patent number: 9009032
    Abstract: A method and system for performing sample rate conversion is provided. The method may include configuring a system to convert a sample rate of a first audio channel of a plurality of audio channels to produce a first audio stream of samples. The system may be dynamically reconfigured to convert a sample rate of a second of the plurality of audio channels to produce a second audio stream of samples, wherein the first and second audio streams are output from the system at the same time. The method may further include arbitrating between request for additional data from the first and second audio stream of samples, where processing of the first channel is suspended when the request corresponds to a second channel that is of higher priority.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: April 14, 2015
    Assignee: Broadcom Corporation
    Inventors: David Wu, Keith Klinger
  • Patent number: 8996362
    Abstract: For a bandwidth extension of an audio signal, in a signal spreader the audio signal is temporally spread by a spread factor greater than 1. The temporally spread audio signal is then supplied to a demicator to decimate the temporally spread version by a decimation factor matched to the spread factor. The band generated by this decimation operation is extracted and distorted, and finally combined with the audio signal to obtain a bandwidth extended audio signal. A phase vocoder in the filterbank implementation or transformation implementation may be used for signal spreading.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 31, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frederik Nagel, Sascha Disch, Max Neuendorf
  • Patent number: 8996389
    Abstract: Various techniques are disclosed for reducing artifacts generated by time compression. by adapting the time compression based on the state of the received audio. The amount of time compression may be bounded based on audio characteristics. Another feature provides a way of determining the most correlated portions of segments of audio. Voiced speech may be distinguished from unvoiced speech. Another feature provides a way of distinguishing between silence, voiced speech, and unvoiced speech. Time compression may be adapted during periods of lengthy silence. Another feature allows for reducing time compression during sensitive portions of the received audio. One or more of these features may be present in different embodiments.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: March 31, 2015
    Assignee: Polycom, Inc.
    Inventor: Eric David Elias
  • Patent number: 8984024
    Abstract: Example systems and methods concern a sub-block parser that is configured with a variable sized window whose size varies as a function of the actual or expected entropy of data to be parsed by the sub-block parser. Example systems and methods also concern a sub-block parser configured to compress a data sequence to be parsed before parsing the data sequence. One example method facilitates either actually changing the window size or effectively changing the window size by manipulating the data before it is parsed. The example method includes selectively reconfiguring a data set to be parsed by a data-dependent parser based, at least in part, on the entropy level of the data set, selectively reconfiguring the data-dependent parser, based, at least in part, on the entropy level of the data set, and parsing the data set.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 17, 2015
    Inventor: Andrew Leppard
  • Patent number: 8977557
    Abstract: A method, medium, and apparatus encoding and/or decoding a multichannel audio signal. The method includes detecting the type of spatial extension data included in an encoding result of an audio signal, if the spatial extension data is data indicating a core audio object type related to a technique of encoding core audio data, detecting the core audio object type; decoding core audio data by using a decoding technique according to the detected core audio object type, if the spatial extension data is residual coding data, decoding the residual coding data by using the decoding technique according to the core audio object type, and up-mixing the decoded core audio data by using the decoded residual coding data. According to the method, the core audio data and residual coding data may be decoded by using an identical decoding technique, thereby reducing complexity at the decoding end.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hoe Kim, Eun-mi Oh
  • Patent number: 8972984
    Abstract: The present disclosure is directed towards methods and systems for virtualizing audio hardware for one or more virtual machines. A control virtual machine (VM) may translate a first stream of audio functions calls from a first VM hosted by a hypervisor. The translated first stream of audio function calls may be destined for a sound card of the computing device executing the hypervisor. The control VM may detect a second stream of audio functions calls from a second VM hosted by the hypervisor. The control VM may translate the second stream of audio functions calls from the second VM. The control VM may further merge the translated first stream of audio function calls and the translated second stream of the audio function calls in response to the detected second stream. The control VM may transmit the merged stream of audio function calls to the sound card.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: March 3, 2015
    Assignee: Citrix Systems, Inc.
    Inventors: Steven Meisner, Jean Guyader, Ian Pratt
  • Patent number: 8965773
    Abstract: A method is provided for hierarchical coding of a digital audio signal comprising, for a current frame of the input signal: a core coding, delivering a scalar quantization index for each sample of the current frame and at least one enhancement coding delivering indices of scalar quantization for each coded sample of an enhancement signal. The enhancement coding comprises a step of obtaining a filter for shaping the coding noise used to determine a target signal and in that the indices of scalar quantization of said enhancement signal are determined by minimizing the error between a set of possible values of scalar quantization and said target signal. The coding method can also comprise a shaping of the coding noise for the core bitrate coding. A coder implementing the coding method is also provided.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: February 24, 2015
    Assignee: Orange
    Inventors: Balazs Kovesi, Stéphane Ragot, Alain Le Guyader
  • Patent number: 8935160
    Abstract: Systems (1600) and methods (1500) for frame synchronization. The methods involve: extracting bit sequences S0 and S1 from a Bit Stream (“BS”) of a Data Burst (“DB”); decoding S0 and S1 to obtain decoded bit sequences S?0 and S?1; using S?0 and S?1 to determine Bit Error Rate (“BER”) estimates (516, 518); combining the BER estimates to obtain a combined BER estimate; modifying S0 and S1 so that each includes at least one bit of BS which is not included in its current set of bits and so that it is absent of at least one of the bits in the current set of bits; iteratively repeating the decoding, using, combining and modifying steps to obtain more combined BER estimates; analyzing the combined BER estimates to identify a minimum combined BER estimate; and using the minimum combined BER estimate to determine a location of a vocoder voice frame within DB.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: January 13, 2015
    Assignee: Harris Corporation
    Inventors: Sujit Nair, Sree B. Amirapu, Eugene H. Peterson
  • Patent number: 8930197
    Abstract: A method comprising receiving at a user equipment encrypted content. The content is stored in said user equipment in an encrypted form. At least one key for decryption of said stored encrypted content is stored in the user equipment.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: January 6, 2015
    Assignee: Nokia Corporation
    Inventors: Anssi Ramo, Mikko Tammi, Adriana Vasilache, Lasse Laaksonen
  • Patent number: 8930200
    Abstract: A vector joint encoding/decoding method and a vector joint encoder/decoder are provided, more than two vectors are jointly encoded, and an encoding index of at least one vector is split and then combined between different vectors, so that encoding idle spaces of different vectors can be recombined, thereby facilitating saving of encoding bits, and because an encoding index of a vector is split and then shorter split indexes are recombined, thereby facilitating reduction of requirements for the bit width of operating parts in encoding/decoding calculation.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: January 6, 2015
    Assignee: Huawei Technologies Co., Ltd
    Inventors: Fuwei Ma, Dejun Zhang, Lei Miao, Fengyan Qi
  • Patent number: 8924200
    Abstract: A method for decoding an audio signal in a decoder having a CELP-based decoder element including a fixed codebook component, at least one pitch period value, and a first decoder output, wherein a bandwidth of the audio signal extends beyond a bandwidth of the CELP-based decoder element. The method includes obtaining an up-sampled fixed codebook signal by up-sampling the fixed codebook component to a higher sample rate, obtaining an up-sampled excitation signal based on the up-sampled fixed codebook signal and an up-sampled pitch period value, and obtaining a composite output signal based on the up-sampled excitation signal and an output signal of the CELP-based decoder element, wherein the composite output signal includes a bandwidth portion that extends beyond a bandwidth of the CELP-based decoder element.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: December 30, 2014
    Assignee: Motorola Mobility LLC
    Inventors: Jonathan A. Gibbs, James P. Ashley, Udar Mittal
  • Patent number: 8918324
    Abstract: A method for coding and decoding an audio signal or speech signal and an apparatus adopting the method are provided.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: December 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki Hyun Choo, Jung-Hoe Kim, Eun Mi Oh, Ho Sang Sung
  • Patent number: 8914296
    Abstract: An audio decoder includes an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically encoded representation thereof, and a frequency-domain-to-time-domain converter for providing a time-domain audio representation. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code representing a spectral value, or a most significant bit-plane thereof, in a decoded form, in dependence on a context state described by a numeric current context value. The arithmetic decoder determines the numeric current context value in dependence on a plurality of previously decoded spectral values. It evaluates a hash table, entries of which define both significant state values amongst the numeric context values and boundaries of intervals of numeric context values, in order to select the mapping rule, wherein the hash table ari_hash_m is defined as given in FIGS. 22(1), 22(2), 22(3) and 22(4).
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 16, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Vignesh Subbaraman, Markus Multrus, Nikolaus Rettelbach, Matthias Hildenbrand, Oliver Weiss, Arthur Tritthart, Patrick Warmbold
  • Patent number: 8909517
    Abstract: A voice-coded in-band communication device monitors a voice-coded channel to detect data to present to a user. During operation, the communication device can detect a data-encoding signal from the voice-coded channel, such that the voice-coded channel can carry an audio signal that includes a voice signal and the data-encoding signal. The device decodes the data-encoding signal to detect a data element. The data element can include information that is to be presented to a local user, a request from a remote device for information about the local user, or information that the system can use to establish a peer-to-peer connection with the remote device over a separate data channel. The device can also generate a filtered audio signal to present to the user by removing the detected data-encoding signal from the voice-coded channel, and then reproduces the filtered audio signal for the user.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 9, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Marc E. Mosko, Simon E. M. Barber
  • Patent number: 8903729
    Abstract: Many portable playback devices cannot decode and playback encoded audio content having wide bandwidth and wide dynamic range with consistent loudness and intelligibility unless the encoded audio content has been prepared specially for these devices. This problem can be overcome by including with the encoded content some metadata that specifies a suitable dynamic range compression profile by either absolute values or differential values relative to another known compression profile. A playback device may also adaptively apply gain and limiting to the playback audio. Implementations in encoders, in transcoders and in decoders are disclosed.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: December 2, 2014
    Assignees: Dolby Laboratories Licensing Corporation, Dolby International AB
    Inventors: Jeffrey Charles Riedmiller, Harald Helge Mundt, Michael Schug, Martin Wolters
  • Patent number: 8903730
    Abstract: A time-domain system and method of modifying the time scale of digital audio signals includes a pre-processor. The pre-processor forms a synthesized signal for processing with minimum computation and that has optional features to give preference to certain audio channels and/or frequency bands, a mechanism of adaptively characterizing the temporal features of the synthesized signal by its normalized power and zero-crossing count, and a mechanism of identifying a segment of the synthesized signal where the time scale can be modified without introducing artifacts or losing content.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: December 2, 2014
    Assignee: STMicroelectronics Asia Pacific Pte Ltd
    Inventors: Wenbo Zong, Yuan Wu, Sapna George
  • Patent number: 8892450
    Abstract: The application describes a method and an apparatus to prevent clipping of an audio signal when protection against signal clipping by received audio metadata is not guaranteed. The method may be used to prevent clipping for the case of downmixing a multichannel signal to a stereo audio signal. According to the method, it is determined whether first gain values (4) based on received audio metadata are sufficient for protection against clipping of the audio signal. The audio metadata is embedded in a first audio stream (1). In case a first gain value (4) is not sufficient for protection, the respective first gain value (4) is replaced with a gain value sufficient for protection against clipping of the audio signal. Preferably, in case no metadata related to dynamic range control is present in the first audio stream (1), the method may add gain values sufficient for protection against signal clipping.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: November 18, 2014
    Assignee: Dolby International AB
    Inventors: Wolfgang A. Schildbach, Alexander Groeschel
  • Patent number: 8886548
    Abstract: Provided is an encoding device (1) including: a pitch contour analysis unit (101) which detects information, a dynamic time-warping unit (102) which generates, based on the information, pitch change ratios (Tw_ratio in FIG. 18) within a range (86) including a range (86a) of the pitch change ratios corresponding to absolute pitch differences of 42 cents or larger; a first lossless coding unit (103) which codes the generated pitch parameters (102x); a time-warping unit (104) which shifts a pitch of a signal according to the information; and a second encoding unit which codes a signal (104x) obtained by the shifting.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: November 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomokazu Ishikawa, Takeshi Norimatsu, Kok Seng Chong, Huan Zhou, Haishan Zhong
  • Patent number: 8880415
    Abstract: A computing device identifies a first codeword in a first codebook to represent short-timescale information of frames in a time-based data item segmented at intervals and identifies a second codeword in a second codebook to represent long-timescale information of the frames. The computing device generates a third codebook based on the first codeword and the second codeword for the frames to add long-timescale information context to the short-timescale information of the frames.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: November 4, 2014
    Assignee: Google Inc.
    Inventors: Douglas Eck, Jay Yagnik
  • Patent number: 8880414
    Abstract: The present invention relates to improvements of predictive encoding/decoding operations performed on a signal which is transmitted over a packet switched network. The signal is encoded on a block by block basis in such way that a block A-B is predictive encoded independently of any preceding blocks. A start state 715 located somewhere between the end boundaries A and B of the block is encoded using any applicable coding method. Both block parts surrounding the start state is then predictive encoded based on the start state and in opposite directions with respect to each other, thereby resulting in a full encoded representation 745 of the block A-B. At the decoding end, corresponding decoding operations are performed.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 4, 2014
    Assignee: Google Inc.
    Inventors: Soren Vang Andersen, Roar Hagen, Bastiaan Kleijn
  • Patent number: 8880107
    Abstract: In one embodiment, a method provides for monitoring and analyzing communications of a monitored user on behalf of a monitoring user, to determine whether the communication includes a violation. For example, SMS messages, MMS messages, IMs, e-mails, social network site postings or voice mails of a child may be monitored on behalf of a parent. In one embodiment, an algorithm is used to analyze a normalized version of the communication, which algorithm is retrained using results of past analysis, to determine a probability of a communication including a violation.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 4, 2014
    Assignee: Protext Mobility, Inc.
    Inventors: Edward Movsesyan, Igor Slavinsky
  • Patent number: 8874449
    Abstract: Downmixing multi-channel audio signals to target channels by pre-downmixing frequency coefficients that are encoded using a most frequently used block type in stereo channels in the frequency domain, thereby reducing an amount of calculations and an amount of power required to downmix the multi-channel audio signals.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-joon Lee
  • Patent number: 8874437
    Abstract: Adaptive Gain Control (AGC) is performed directly in a coded domain. A Coded Domain Adaptive Gain Control (CD-AGC) system modifies at least one parameter of a first encoded signal, resulting in corresponding modified parameter(s). The CD-VQE system replaces the parameter(s) of the first encoded signal with the modified parameter(s), resulting in a second encoded signal. In a decoded state, the second encoded signal approximates a target signal that is a function of two signals, including the first encoded signal and a third encoded signal, in at least a partially decoded states. Thus, the first encoded signal does not have to go through intermediate decode/re-encode processes, which can degrade overall speech quality. Computational resources required for a complete re-encoding are not needed. Overall delay of the system is minimized. The CD-AGC system can be used in any network in which signals are communicated in a coded domain, such as a Third Generation (3G) wireless network.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: October 28, 2014
    Assignee: Tellabs Operations, Inc.
    Inventors: Rafid A. Sukkar, Richard C. Younce, Peng Zhang
  • Patent number: 8868432
    Abstract: A method for decoding an audio signal having a bandwidth that extends beyond a bandwidth of a CELP excitation signal in an audio decoder including a CELP-based decoder element. The method includes obtaining a second excitation signal having an audio bandwidth extending beyond the audio bandwidth of the CELP excitation signal, obtaining a set of signals by filtering the second excitation signal with a set of bandpass filters, scaling the set of signals using a set of energy-based parameters, and obtaining a composite output signal by combining the scaled set of signals with a signal based on the audio signal decoded by the CELP-based decoder element.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: October 21, 2014
    Assignee: Motorola Mobility LLC
    Inventors: Jonathan A. Gibbs, James P. Ashley, Udar Mittal
  • Patent number: 8856012
    Abstract: A method of encoding an audio signal, where signals including two or more channel signals are downmixed to a mono signal, the mono signal is divided into a low-frequency signal and a high-frequency signal, the low-frequency signal is encoded through algebraic code excited linear prediction (ACELP) or transform coded excitation (TCX), and the high-frequency signal is encoded using the low-frequency signal. A method of decoding of an audio signal, a low-frequency signal encoded through ACELP or TCX is decoded, a high-frequency signal is decoded using the low-frequency signal, the low-frequency signal and the high-frequency signal are combined to generate a mono signal, and the mono signal is upmixed by decoding spatial parameters regarding signals including two or more channel signals.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: October 7, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Ho-sang Sung, Eun-mi Oh, Jung-hoe Kim, Ki-hyun Choo, Mi-young Kim
  • Patent number: 8849678
    Abstract: A method, medium, and apparatus encoding and/or decoding a multichannel audio signal. The method includes detecting the type of spatial extension data included in an encoding result of an audio signal, if the spatial extension data is data indicating a core audio object type related to a technique of encoding core audio data, detecting the core audio object type; decoding core audio data by using a decoding technique according to the detected core audio object type, if the spatial extension data is residual coding data, decoding the residual coding data by using the decoding technique according to the core audio object type, and up-mixing the decoded core audio data by using the decoded residual coding data. According to the method, the core audio data and residual coding data may be decoded by using an identical decoding technique, thereby reducing complexity at the decoding end.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hoe Kim, Eun-mi Oh
  • Patent number: 8849654
    Abstract: A method, a device and a system for voice encoding/decoding are disclosed in the present invention. The method includes: assembling an input pulse code modulation signal into one signal according to a designated time slot and assembly manner; and encoding the assembled signal according to a designated encoding manner to output an encoded voice signal. In the present invention, because a process of assembling or splitting the signal may be implemented through software, in the case that hardware in a current network does not need to be replaced, an effect of encoding/decoding voice with a 7 K spectrum may be achieved in the current network.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: September 30, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xiaoshuang Li, Xingguo Gao
  • Patent number: 8849677
    Abstract: A coding apparatus includes a generation unit configured to generate first coding information used for first coding of a first audio signal and second coding information used for second coding of a second audio signal, and generate third coding information used for the first coding of the second audio signal and fourth coding information used for the second coding of a third audio signal; a first coding unit configured to generate first data and second data; a second coding unit configured to generate third data and fourth data by performing the second coding on the third audio signal; and a multiplexing unit configured to generate a stream of the first audio signal and a stream of the second audio signal. The third data is decoded in place of the second data in a case where a loss or an error has occurred in the stream of the second audio signal.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: September 30, 2014
    Assignee: Sony Corporation
    Inventors: Shiro Suzuki, Yuuki Matsumura
  • Patent number: 8843380
    Abstract: Encoding and decoding of residual signals are provided. In a method of encoding a residual signal of an audio signal, the residual signal is divided into a plurality of sections having different sizes, based on a change of the residual signal. Then, section division information representing information about the divided sections and section-by-section residual signal information representing characteristics of the sections of the residual signal are acquired. Thereafter, the residual signal is encoded based on the section division information and the section-by-section residual signal information.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: September 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul-woo Lee, Geon-hyoung Lee, Jong-hoon Jeong, Nam-suk Lee, Han-gil Moon