Hybrid Fiber-coax Network Patents (Class 725/129)
  • Publication number: 20140026177
    Abstract: According to the present invention, in an optical transmission system optically transmitting an optical signal between a first camera adaptor provided to a first video camera, a second camera adaptor provided to a second video camera, and a base station provided at a position remote from the video cameras, the first camera adaptor converts a first electric signal including a video signal component from the first video camera into a first optical signal and transmits the first optical signal to the second camera adaptor. The second camera adaptor receives the first optical signal, converts a second electric signal including a video signal from the second video camera into a second optical signal, and transmits the first and second optical signals to the base station. The base station receives the first and second optical signals, converts the received optical signals into the first and second electric signals, and outputs the electric signals to an external device.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 23, 2014
    Inventor: Kentaro Hashiguchi
  • Patent number: 8634719
    Abstract: Systems and methods for enabling different network nodes of a network access system to share a backhaul communication link are disclosed. In one embodiment, the method includes: connecting a first modem to a first node of the network access system; connecting a second modem to a second node of the network access system; connecting the first modem to a first port of a splitter filter; connecting the second modem to a second port of the splitter filter; and connecting a backhaul communication link to a third port of the splitter filter, which is configured to multiplex signals transmitted by the modems onto the backhaul communication link, wherein the frequency spectrum of the signal transmitted by the first modem does not overlap substantially with the frequency spectrum of the signal transmitted by the second modem.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 21, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Per-Erik Eriksson
  • Patent number: 8631450
    Abstract: A BCN network with BCN modems that enable network wired devices to communicate over a typical home coaxial network that may include passive splitters and different types of coaxial cable.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: January 14, 2014
    Assignee: Entropic Communications, Inc.
    Inventors: Brett Bernath, Anton Monk, Itzhak Gurantz, Ladd El Wardani, Ron Porat, Yusuf Ozturk, Ron Lee, Wee-Peng Goh, Magnus Berggren
  • Publication number: 20140013361
    Abstract: A real time system to both televise and stream sporting events from sports paraphernalia that are ordinarily used by the players on soccer playing fields, ice hockey rinks, tennis courts, baseball playing fields and football playing fields are disclosed. The sports paraphernalia are instrumented with a variety of TV cameras, microphones, and bi-directional communication electronics. Instrumented sports paraphernalia such as ice hockey goals, ice hockey pucks, soccer goals, tennis nets, tennis posts, baseball bases, baseball home plates, baseball pitcher's rubbers and footballs are disclosed. Instrumentation is built into and contained internally within some of the instrumented sports paraphernalia. Instrumentation is mounted and attached onto some of the sports paraphernalia. The instrumented sports paraphernalia can both televise signals to a TV viewing audience, and simultaneously stream onto the internet.
    Type: Application
    Filed: June 4, 2013
    Publication date: January 9, 2014
    Inventors: Lawrence Maxwell Monari, Lawrence Scott Monari
  • Publication number: 20130291044
    Abstract: A handheld leakage detector for finding digital QAM signal leaks in a HFC network, comprises a radio receiver, a leakage receiver, leakage sampler, a correlator, and a display. The radio receiver receives samples of the QAM signal taken from the HFC network, called “reference samples.” The leakage receiver receives a QAM leakage signal, which is related to the QAM signal from the HFC network. The leakage sampler samples the leakage signal to form leakage samples. The correlator performs a coherent cross-correlation of the reference samples and the leakage samples, to produce a correlation peak. A value is determined from the correlation peak and displayed on the display. The value generally becomes more optimized as the detector approaches the leak. The leak is sought by iteratively changing the position of the detector until the displayed value becomes substantially optimized or the leak is found.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: ARCOM DIGITAL, LLC
    Inventor: Victor M. Zinevich
  • Patent number: 8566896
    Abstract: An addressable optical network interface unit includes an optical input and a radio frequency output. The unit also includes an optical-to-electrical conversion circuit that converts optical signals received at the optical input into radio frequency signals, a directional coupler that is coupled to an output of the optical-to-electrical conversion circuit and a radio frequency receiver that is coupled to a first output of the directional coupler. The radio frequency receiver receives radio frequency signals input through the optical input. The unit also includes a controller that is coupled to the radio frequency receiver, and a filter circuit that is coupled to a second output of the directional coupler. The filter circuit includes multiple signal paths that filter out signals in different frequency ranges. Switches are provided that select one of the signal paths through the filter circuit. These switches are controlled in response to data contained in the radio frequency signal.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 22, 2013
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Robert Ryan Riggsby, Neil Phillips, Mark Vogel
  • Patent number: 8565614
    Abstract: A digital data transmission device is provided comprising optical waveguide architecture, a sideband generator, a modulation controller, an optical filter, a data mapping unit, and a phase controller. The optical waveguide architecture is configured to direct an optical signal through the sideband generator and the optical filter. The sideband generator comprises an electrooptic interferometer comprising first and second waveguide arms. The modulation controller is configured to generate an electrical drive signal to drive the sideband generator at a control voltage that is substantially larger than V? to generate optical frequency sidebands about a carrier frequency of the optical signal. The optical filter is configured to discriminate between the optical frequency sidebands and the optical carrier frequency such that optical sidebands of interest can be directed through the optical waveguide architecture as an optical millimeter wave signal.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: October 22, 2013
    Assignee: Battelle Memorial Institute
    Inventor: Richard W. Ridgway
  • Publication number: 20130239165
    Abstract: A media converter is to be coupled to an optical line terminal via an optical link and to a plurality of coax network units via coax links in a cable plant. The media converter includes an optical physical-layer device to receive and transmit optical signals via the optical link and a coax physical-layer device to receive and transmit electrical signals via the coax links. The media converter also includes an implementation of an optical-coax convergence layer to schedule transmissions of electrical signals from the plurality of coax network units by allocating coax resources among the plurality of coax network units in accordance with resource allocation for the optical link.
    Type: Application
    Filed: September 10, 2012
    Publication date: September 12, 2013
    Applicant: Qualcomm Atheros, Inc.
    Inventors: Andrea GARAVAGLIA, Juan MONTOJO, Christian PIETSCH, Stephen J. SHELLHAMMER, Nicola VARANESE
  • Publication number: 20130232537
    Abstract: A media converter is coupled to an optical link terminal and a plurality of coax network units in a cable plant. The media converter receives packets from the optical link terminal via an optical link. The packets include first packets addressed to coax network units on the cable plant and second packets addressed to network units outside of the cable plant. The media converter forwards the first packets to the coax network units on the cable plant via one or more coax links, such that the first packets are forwarded to each coax network unit on the cable plant, and discards the second packets.
    Type: Application
    Filed: September 10, 2012
    Publication date: September 5, 2013
    Applicant: Qualcomm Atheros, Inc.
    Inventors: Juan Montojo, Andrea Garavaglia, Nicola Varanese, Christian Pietsch
  • Patent number: 8510786
    Abstract: System and method to extend the data carrying capacity of a hybrid fiber cable (HFC) network by adding wideband RF signal capability above 1 GHz, and replacing at least some CATV active devices such as amplifiers with a new type of Coax Domain Node (CDN) device that acts to segment the CATV cable portion of the HFC network into a series of smaller domains. The CDN generally filter RF signals from 5-865 MHz, while amplifying and passing RF signals over 1 GHz. Upstream capability is enhanced because the CDN intercept 5-42 MHz upstream signals from each domain and convert to 1 GHz+ signals. Downstream capability is also enhanced because the CDN can take efficiently encoded 1 GHz+ digital data, QAM modulate it, and locally inject into each domain without crosstalk between domains. The system pushes data management and downstream from the head end to the CDN, creating more throughput.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: August 13, 2013
    Inventor: Shlomo Selim Rakib
  • Publication number: 20130198796
    Abstract: Methods and apparatus for the delivery of content in a network via a user premises gateway device in communication with one or more user devices. The gateway device receives content from an optical network (e.g., EPON), processes the content onto one or more communication channels, and delivers it to the user devices. In one variant, the gateway includes switching functionality to receive all available programs, or only a portion thereof, and providing specific ones on an as-needed basis to the user device(s) via the channels. Video on Demand (VOD) and pay-per-view (PPV) as well as other unicast services may also be provided by the gateway apparatus. A DOCSIS or other data channel, as well as a dedicated guide data channel, may be among the provided channels.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Inventors: Paul D. Brooks, Robert Harris
  • Publication number: 20130191877
    Abstract: A method of converting legacy HFC CATV cable systems, which transmit data over the optical fiber portion of the system using the optical counterpart of analog RF waveforms, such as RF QAM waveforms transduced to corresponding optical QAM waveforms, to improved HFC CATV systems that transmit data over the optical fiber using optical fiber optimized protocols, such as Ethernet frames and other optical fiber optimized digital transport protocols. According to the method, most aspects of the legacy HFC CATV system may be retained, however at the CATV head end, the optical fiber transmitter system is replaced by an improved system that extracts the underlying symbols from legacy waveforms, packages these symbols into optical fiber optimized packets, and transmits downstream. The legacy optical fiber nodes are replaced with improved nodes capable of receiving the packets and remodulating the symbols into RF waveforms suitable for injection into the system's CATV cable.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 25, 2013
    Inventor: Shlomo Selim Rakib
  • Patent number: 8488966
    Abstract: An optical access network (OAN) system is provided. In the system, a remote radio unit (RRU) receives and sends a wireless signal and implement conversion between the wireless signal and a first frequency signal; an optical network device receives and sends the wireless signal, and implement conversion between the wireless signal and the first frequency signal and conversion between the first frequency signal and a fiber transmission signal; an optical distribution network (ODN) connected to the optical network device transmits the fiber transmission signal; an optical line terminal (OLT) device receives and sends the fiber transmission signal, and implements conversion between the fiber transmission signal and a second frequency signal, conversion between the second frequency signal and a base band signal, and conversion between the base band signal and a signal of another standard protocol.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Patent number: 8479239
    Abstract: A user may utilize a “home video on demand (HVOD)” service to distribute a video recorded using, e.g., a conventional camcorder, to desired viewers who have access to a broadband communications network, e.g., a cable TV network. The inventive system providing the HVOD service may receive from the user the video recording via email, postal mail, the Internet, computer transfer, etc. The inventive system converts the received video recording from its original video format to a uniform format, e.g., an MPEG-2 format. The converted video recording is stored in storage and made available to authorized viewers through the cable TV network.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: July 2, 2013
    Assignee: Time Warner Cable Enterprises LLC
    Inventor: Brian E. Kelly
  • Publication number: 20130160070
    Abstract: Methods and apparatus for logging, analysis, and reporting of events such as reboots in a client device (e.g., consumer premises equipment in a cable network) using applications. In one aspect, an improved event logging and monitoring system is provided within the device with which the application(s) can interface to record event or error data. In one exemplary embodiment, the client device comprises a digital set-top box having Java-enabled middleware adapted to implement the various functional aspects of the event logging system, which registers to receive event notifications (including resource exhaustion data) from other applications running on the device. The network operator can also optionally control the operation of the logging system remotely via a network agent. Improved client device and network configurations, as well as methods of operating these systems, are also disclosed.
    Type: Application
    Filed: November 26, 2012
    Publication date: June 20, 2013
    Applicant: Time Warner Cable Inc.
    Inventor: Time Warner Cable Inc.
  • Patent number: 8467686
    Abstract: A device for routing an upstream signal from a two-way digital output to an existing hybrid fiber coax network. A first path includes an input for receiving downstream optical signals associated with data and a two-way digital port for communicating the data of the downstream optical signals to a subscriber. A second path includes a hybrid fiber coax input and a two-way hybrid fiber coax port for communicating with the subscriber. A filter is disposed in the first path for routing an upstream signal from the subscriber at the two-way digital port to the second path for forwarding upstream via the hybrid fiber coax input.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: June 18, 2013
    Assignee: Cox Communications, Inc.
    Inventor: Robert S. Lonn
  • Patent number: 8458753
    Abstract: Methods and apparatus for determining and selecting digital coding and/or decoding technology, delivery bitrates, and resolution parameters for programming and data delivery over, e.g., a content-based network. In one embodiment, the network comprises an HFC cable or satellite network that includes a server process interfacing with a plurality of customer premises equipment (CPE), and/or associated client devices, each having different display resolution, bitrate, and/or decoding capabilities profiles. The server determines the one or more capabilities possessed by the CPE or client device, and evaluates one or more program or content choices for possible delivery to that CPE or device based on its profile. The selection process may also take into consideration network and/or CPE operational considerations, such as conservation of downstream bandwidth, CPE uprating capability, client device power consumption, and the like.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: June 4, 2013
    Assignee: Time Warner Cable Enterprises LLC
    Inventors: Charles A. Hasek, Jeffrey P. Markley
  • Patent number: 8452178
    Abstract: The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: May 28, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yinghu Dong
  • Publication number: 20130125194
    Abstract: Systems, method, and computer program products for provisioning video and data services using a deep modulation Converged Cable Access Platform (CCAP) architecture in a traditional Hybrid Fiber Coaxial (HFC) network are described. The deep-modulation CCAP architecture includes a remote conversion unit (e.g., that includes one or more modulators and demodulators to perform signal modulation and demodulation) connected to a CCAP core through a digital optical medium (e.g., an optical fiber) to achieve higher network capacity as well as cost and power consumption reduction.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Inventors: Jeff Finkelstein, Boris Brun, Adi Bonen, Gil Katz
  • Patent number: 8351792
    Abstract: A system and communication method for the system interconnecting the optical network with the radio communication network is provided. The solution mainly applies to an optical access network employing fiber for transmission and the radio communication network connected to the optical access network, wherein a base station of the radio communication network is connected to the optical access network and communicates to an entity in the optical access network to achieve interconnection between the optical network and the radio communication network. After the interconnection is established, a user equipment can enjoy communication services through the interconnected radio communication network and the optical network.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: January 8, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Publication number: 20120304241
    Abstract: One embodiment provides an EPON for transporting RF signals. The system includes a reference clock, an ONU, and an OLT. The ONU includes a mechanism for receiving a frequency and phase-reference signal from the OLT, a mechanism for receiving an RF signal, an ADC for converting the RF signal into a digital signal using a sampling signal associated with the frequency and phase-reference signal, a mechanism for assembling at least a portion of the digital signal into a packet, a mechanism configured to timestamp the packet, and an optical transceiver. The OLT includes a mechanism for receiving the packet, a buffer, a delay mechanism configured to delay reading the received packet from the buffer for a predetermined amount of time, and a DAC for converting the digital signal included in the packet back to RF domain using a clock signal associated with the frequency and phase-reference signal.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: Broadcom Corporation
    Inventors: Edward W. Boyd, Weidong Rick Li
  • Patent number: 8311412
    Abstract: Distributed CMTS device for a HFC CATV network serving multiple neighborhoods by multiple individual cables, in which the QAM modulators that provide data for the individual cables are divided between QAM modulators located at the cable plant, and remote QAM modulators ideally located at the fiber nodes. A basic set of CATV QAM data waveforms may be transmitted to the nodes using a first fiber, and a second set of IP/on-demand data may be transmitted to the nodes using an alternate fiber or alternate fiber frequency, and optionally other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into unused QAM channels, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for this system is also disclosed. The system has high backward compatibility, and can be configured to mimic a conventional cable plant CMTS.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 13, 2012
    Inventor: Selim Shlomo Rakib
  • Patent number: 8306200
    Abstract: A method and apparatus for automatic processing of toll free call service alarms are disclosed. For example, the method receives a trouble ticket by a service provider for a toll free call service alarm, and retrieves a calling to number and a calling from number from the trouble ticket. The method determines if the service provider is a responsible organization for the toll free call service for the calling to number, and determines if a customer network for the toll free call service is active if the service provider is the responsible organization for the toll free call service. The method notifies a work center if the customer network is not active.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: November 6, 2012
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paritosh Bajpay, Mojgan Dardashti, Zhiqiang Qian, Michael John Zinnikas
  • Publication number: 20120198510
    Abstract: Described herein are devices and methods for facilitating the transmission of an upstream data signal from at least one subscriber in a communications network. The device is operable to receive a radio frequency (RF) signal from one or more subscribers. The RF signal includes at least one upstream data signal. The RF signal is demodulated into the upstream data signal by a RF demodulator in the device, which is then converted into an optical signal by an optical transducer in the device for transmission over a fiber optic link in the network.
    Type: Application
    Filed: December 28, 2006
    Publication date: August 2, 2012
    Applicant: GENERAL INSTRUMENT CORPORATION
    Inventors: Dean A. Stoneback, Steven F. Frederick, Gary A. Picard
  • Patent number: 8214871
    Abstract: A method, device and network for compressing cable modem data signals and conserving bandwidth within the network. Cable modems transmit upstream data signals to a fiber node which compresses the data signals and transmits the compressed signals upstream to a headend which decompresses the data signals. The fiber node compression may be by a shaping filter or a fast Fourier transform (FFT) function. The headend decompression may be by an inverse shaping filter or an inverse FFT function.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 3, 2012
    Assignee: Intel Corporation
    Inventors: Ofir Shalvi, Mordechai Segal
  • Patent number: 8189471
    Abstract: A method for mapping a service flow to a service transmission channel includes: configuring determined configuration parameters for a message characteristic into an Optical Network Terminal (ONT); the ONT ensures that the received service flow matches the configured message characteristic; mapping the service flow to a specified service transmission channel. A system and an ONT for mapping the service flow to the service transmission channel are also provided, and the system sets a general service flow mapping module in the ONT. Service flows may be mapped to different service transmission channels based on any predetermined message characteristic by the method, system, and ONT of this invention and it meets the demand of the subdivision service QoS.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: May 29, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wei Wu, Hai Gao, Lehong Niu, Weilong Ouyang
  • Patent number: 8175459
    Abstract: A radio-over-fiber (RoF) hybrid wired/wireless transponder is disclosed that is configured to provide both wireless and wired communication between a hybrid head-end and one or more client devices. The hybrid transponder includes optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion capability and is configured to frequency multiplex/demultiplex electrical “wired” signals and electrical “wireless” signals. The electrical wireless signals are wirelessly communicated to the client device(s) via a multiple-input/multiple-output (MIMO) antenna system within a cellular coverage area. The electrical wired signals are communicated to the client device(s) via a wireline cable that plugs into a wireline cable port on the transponder. The hybrid RoF system includes a hybrid head-end capable of transmitting and receiving wired and wireless optical signals, and an optical fiber cable that is optically coupled to the hybrid head-end and to at least one hybrid transponder.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: May 8, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Dean Michael Thelen, Jacob George, Luis Alberto Zenteno, Michael Sauer, Martyn N. Easton
  • Patent number: 8130651
    Abstract: A system and method for providing a hybrid fiber network (HFN) means to identify a fiber node by a unique address. An addressing module is installed in proximity to, or collocated with, a fiber node. The addressing module comprises an addressing module identifier that associates the addressing module with a particular fiber node. Network parameter values are received from the fiber node by the addressing module and reported to a reporting station.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: March 6, 2012
    Assignee: Time Warner Cable, Inc.
    Inventors: Christopher Pierce Williams, Kenneth Gould
  • Patent number: 8098990
    Abstract: A network system and method include a wireless base station integrated at a central office of a service provider. The wireless base station is configured to provide portable and fixed services to customers. A passive optical network is coupled to the wireless base station at the central office to provide a link to extend an antenna for wireless operations of the wireless base station to a remote site such that a wireless signal from the wireless base station is transmitted in parallel with a passive fiber network signal through the link.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: January 17, 2012
    Assignees: NEC Laboratories America, Inc., NEC Corporation
    Inventors: Junqiang Hu, Ting Wang, Dayou Qian, Yuanqiu Luo, Yoshihiko Suemura, Makoto Shibutani
  • Patent number: 8090261
    Abstract: A general object of the present invention is to provide an optical communication system in which an optical transmission power of an optical communication apparatus is controlled to be a required minimum power that apparatuses of all subscribers in the optical communication system meet a prescribed error rate. An optical line terminating apparatus (OLT) transmits data to multiple optical network apparatuses (ONUs) at an optical intensity calculated based on information acquired from the multiple ONUs, which is related to optical intensities of signals that the multiple ONUs receive from the OLT, the optical intensity being calculated so that a minimum optical intensity of the optical intensities of the signals is greater than a predetermined value.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 3, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Toshiki Sugawara, Hiroki Ikeda, Yusuke Yajima, Tohru Kazawa
  • Patent number: 8073329
    Abstract: The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: December 6, 2011
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yinghua Dong
  • Patent number: 8064763
    Abstract: An optical system with a first and second network tiers. The first network tier includes a plurality of major nodes optically interconnected by at least one transmission path. The second network tier includes a plurality of minor nodes disposed along the transmission path and the minor nodes are connected to at least one of the major nodes. The minor node is configured to transmit all traffic to an adjacent major node, and the major nodes are configured to transmit to and receive information from other major nodes and minor nodes on transmission paths connected to the major node.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: November 22, 2011
    Assignee: Level 3 Communications, LLC
    Inventor: David F. Smith
  • Patent number: 8050562
    Abstract: Provided is an apparatus for implementing an electro-optical cable distribution network in which a coaxial cable is replaced with an optical cable in order to provide a service integrating broadcast data and communication data by solving a frequency constraint problem in a cable television (CATV) network employing a conventional hybrid-fiber coaxial (HFC) network architecture. The apparatus includes an optical network unit (ONU) which converts a downstream signal received from a system operator (SO) into an optical signal and transmits the optical signal to an optical cable; and an optical cable modem which receives the optical downstream signal from the ONU and converts the received signal into an electrical signal. In addition, the ONU and the optical cable modem control signal quality of an optical path.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 1, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Heyung Sub Lee, Jae Hoon Yu, Dong-Beom Shin, Hong Soon Nam, Young Sun Kim
  • Patent number: 8041222
    Abstract: A radio over fiber link apparatus for transmitting/receiving radio frequency up/downlink signals in a TDD mobile communication system. The radio over fiber link apparatus includes a center site for receiving radio frequency signals from an access point of the mobile communication system. The center site has a first electro-optic converter for converting the radio frequency signals into optical signals, bias control of the first electro-optic converter being performed based on the switching of TDD signals; and a remote for transmitting the radio frequency signals to a mobile communication terminal through an antenna. The remote site has a first photoelectric converter for converting the optical signals transmitted through an optical fiber from the center site into radio frequency signals.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Lim Lee, Hoon Kim, Seong-Taek Hwang
  • Patent number: 8032016
    Abstract: An arrangement is provided for transporting information from a central information distribution center (CIDC) to locations where such information is intended. Upon receiving a request for narrowcast information to be delivered to a node associated with a head end, the CIDC selects the requested information, generates an optical signal encoded with the requested information using information channels dedicated to narrowcast information transport for the node, and sends the optical signal to the head end via an optical fiber. When the head end receives the optical signal, the narrowcast information transport channels dedicated to the node are translated into subcarriers acceptable to the node before the requested narrowcast information is forwarded to the node.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: October 4, 2011
    Assignee: ARRIS Group, Inc.
    Inventors: Irl N. Duling, Sandeep T. Vohra, Paul J. Matthews
  • Patent number: 7995920
    Abstract: Optical network terminal (ONT) power failure management. A system for permitting a customer of a telecommunication company, for whom fiber to the premises (FTTP) has been installed, to control operating features associated with operation of a battery backup unit (BBU) which is used, during power failure, for powering the ONT associated with the FTTP installation and the customer's telephone(s). The controlling of these features includes utilization of signal-controlled switches, which are manually over-rideable by the customer, thereby providing the desired operating feature control.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: August 9, 2011
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: Stanley J. Wynman
  • Publication number: 20110182583
    Abstract: Distributed CMTS device for a HFC CATV network serving multiple neighborhoods by multiple individual cables, in which the QAM modulators that provide data for the individual cables are divided between QAM modulators located at the cable plant, and remote QAM modulators ideally located at the fiber nodes. A basic set of CATV QAM data waveforms may be transmitted to the nodes using a first fiber, and a second set of IP/on-demand data may be transmitted to the nodes using an alternate fiber or alternate fiber frequency, and optionally other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into unused QAM channels, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for this system is also disclosed. The system has high backward compatibility, and can be configured to mimic a conventional cable plant CMTS.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 28, 2011
    Inventor: Selim Shlomo Rakib
  • Patent number: 7957318
    Abstract: A cable modem termination system that connects to cable modems includes a scheduler and a system manager. The scheduler schedules transmission opportunities for the cable modems and operates in multiple fragmentation modes. The scheduling of transmission opportunities by the scheduler differs among the fragmentation modes. The system manager compares one or more processing parameters associated with the cable modem termination system to one or more thresholds and causes the scheduler to transition among the fragmentation modes based on a result of the comparison.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: June 7, 2011
    Assignee: Juniper Networks, Inc.
    Inventor: Victor Hou
  • Patent number: 7945166
    Abstract: A network interface apparatus comprises a bidirectional optical signal port, an optical diplexer connected to the bidirectional optical signal port, a first RF signal port (bidirectional), a second RF signal port, a first RF diplexer, and an RF splitter. The RF diplexer transmits a first received RF input signal from the first RF signal port to the optical diplexer to modulate an optical output signal transmitted by the optical diplexer to the optical signal port. The RF splitter receives from the optical diplexer an RF signal derived from an RF-modulated optical input signal received from the bidirectional optical signal port, transmits a first portion of the derived RF signal as a first RF output signal to the first RF signal port through the first RF diplexer, and transmits a second portion of the derived RF signal as a second RF output signal to the second RF signal port.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: May 17, 2011
    Assignee: HOYA Corporation USA
    Inventor: Henry A. Blauvelt
  • Patent number: 7933288
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: April 26, 2011
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7924883
    Abstract: The present system uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router. The intelligent network elements can be co-located with or replace the standard network elements to take advantage of existing network configurations. A tree-and-branch network architecture is therefore established in which each intelligent network element is assigned a routing ID employed in the point-to-point transmissions while leaving legacy analog signals unimpeded. In this manner, the data links are made over relatively short runs of coax cable, which can provide greater bandwidth than the typical end-to-end feeder/distribution connection between a home and the headend or optical network unit.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: April 12, 2011
    Assignee: Ciena Corporation
    Inventors: Subrahmanyam Dravida, Dey V. Gupta, Frederick Peralta, Kiran M. Rege, Manas Tandon
  • Publication number: 20110078755
    Abstract: An apparatus comprising a wavelength division multiplexer (WDM), an optical network unit (ONU) coupled to the WDM, a passive optical network (PON) data over cable service interface specification (DOCSIS) upstream proxy (PDUP) coupled to the ONU and configured to couple to a coaxial cable, and a downstream (DS) optical/electrical (O/E) converter coupled to the WDM and configured to couple to the coaxial cable. An apparatus comprising a WDM, an optical line terminal (OLT) coupled to the WDM, a cable model termination system (CMTS) coupled to the OLT via an upstream external physical (PHY) interface (UEPI), and a DOCSIS and a Quadrature Amplitude Modulation (QAM) unit coupled to the WDM and the CMTS.
    Type: Application
    Filed: August 13, 2010
    Publication date: March 31, 2011
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventor: Yuxin Dai
  • Patent number: 7917931
    Abstract: An apparatus and method are presented to allow the extension of a DOCSIS cable modem service over a wireless link. According to the invention a wireless hub transceiver is connected to a distribution coax cable of a DOCSIS based system. The downstream data are transferred over a wireless link to a remote subscriber radio frequency (RF) unit connected to a cable modem that provides the downstream data to the subscriber. Similarly, upstream data are sent from the subscriber cable modem over the wireless link to the wireless hub transceiver where such data are inserted back to the distribution coax cable.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 29, 2011
    Assignee: Arcowv Wireless LLC
    Inventors: James Bertonis, Terrence R. Nash, Alfred F. Melzig
  • Publication number: 20110061088
    Abstract: A system and method for dynamically configuring a switched digital video (SDV) system. An SDV server is configured to generate logs, including logs of program information, stream information and client information. A listener is configured to monitor the logs generated by the SDV server, generate state data indicative of a desired state of the SDV system, and generate state data indicative of an actual state of the SDV system. The listener compares the desired state data to the actual state data and determines whether the actual state data in view of the desired state data are indicative of an aberrant state of the SDV system. When the actual state data are indicative of an aberrant state of the SDV system, the listener determines a remedial action to change the operation of the SDV system and configures the SDV server to implement the remedial action.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 10, 2011
    Inventors: Remi Rieger, Thomas L. Gonder
  • Patent number: 7904550
    Abstract: An apparatus including a section acquiring the information as to the information processor of the delivery destination in the second network, a section alternatively providing service to an access from the first network by using the acquired information, a section receiving and delivering the information from the first network by using the alternatively supplied service, a section changing the information processor of the delivery destination in the second network to the service providing state, when the apparatus receives the information including the contents from the first network and the information processor of the delivery destination in the second network is not in the service providing state, it is possible to change the information processor of the delivery destination to the service providing state and deliver information including the contents to the information processor of the delivery destination.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 8, 2011
    Assignee: Fujitsu Limited
    Inventors: Takuya Sakamoto, Toru Kamiwada
  • Patent number: 7877013
    Abstract: A wavelength division multiplexing based passive optical network is disclosed. The network includes an optical line terminal; a power optical splitter connecting to the optical line terminal by an optical fiber; and several optical network units. Each of the optical network units connects to the power optical splitter by each of other optical fibers by a random process.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: January 25, 2011
    Assignee: Futurewei Technologies, Inc.
    Inventor: Frank J. Effenberger
  • Patent number: 7860393
    Abstract: A system and method for simultaneous delivery of a plurality of independent blocks of 500 MHz digital broadcast television services, stacking a plurality of RF blocks on a plurality of spectrally sliced WDM optical bands.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 28, 2010
    Assignee: AT&T Intellectual Property I, LP
    Inventors: Martin Birk, Patrick P. Iannone, Kenneth C. Reichmann, Nicholas J. Frigo, Cedric F. Lam
  • Patent number: 7835379
    Abstract: The present system uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bidirectional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router. The intelligent network elements are co-located with or replace the standard network elements to take advantage of existing network configurations. The standard network elements are selectively replaced by the intelligent network elements in an incremental approach. A tree-and-branch network architecture is established in which each intelligent network element is assigned a routing ID employed in the point-to-point transmissions while leaving legacy analog signals unimpeded.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: November 16, 2010
    Assignee: Ciena Corporation
    Inventors: Subrahmanyam Dravida, Dev V. Gupta, Frederick Peralta, Kiran M. Rege, Manas Tandon
  • Patent number: 7831147
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 9, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7831145
    Abstract: The present disclosure provides a passive optical network (PON) system and a method for protecting the service of the system for service recovery and fault locating in case of a failure of the network, wherein the PON system comprises an optical line terminal (OLT), an optical distribution network (ODN) and an optical network terminal (ONT) equipment protection group comprising a plurality of ONT equipment groups, each of which is connected to at least one of other ONT equipment groups within the ONT equipment protection group for the mutual protection relationship. The PON system of the present disclosure does not require equipment and link redundancy for backup, contributes to reduced cost and improved utilization of resources, and provides a means for diagnosing any faults of the links and equipment in the network.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: November 9, 2010
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Gang Zheng