Density, Porosity, Or Permeability Patents (Class 73/152.05)
  • Patent number: 11965872
    Abstract: A high pressure core chamber for use in collecting pressurized core samples from a reservoir is equipped with at least two high pressure access valves, allowing the core chamber to also function as a vessel for various high pressure experiments. In some embodiments, the core chamber is also equipped with a heater, allowing high pressure, high temperature experiments, and thus duplicating reservoir conditions. Various assays using the core chamber are also described.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: April 23, 2024
    Assignee: CONOCOPHILLIPS COMPANY
    Inventors: Martin C. Krueger, Shaina A. Kelly, Gerald E. Michael, Thiago B. Simoes Correa
  • Patent number: 11876398
    Abstract: Autonomous wireless sensors in subsurface environments can be charged while present in the subsurface environment to allow the sensors to measure and wirelessly transmit measurements. The sensors rely upon a contrast agent to provide a power flow path to the sensors.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: January 16, 2024
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Board of Regents of the University of Texas System, Wayne State University
    Inventors: Jason E. Heath, Gungor Didem Beskardes, Wallace McAliley, Chester J. Weiss, Mohsen Ahmadian-Tehrani, David T. Chapman, Leela Arava
  • Patent number: 11808137
    Abstract: A method and system for performing a pressure test. The method may include inserting a formation testing tool into a wellbore to a first location within the wellbore based at least in part on a figure of merit. The formation testing tool may include at least one probe, a pump disposed within the formation testing tool and connect to the at least one probe by at least one probe channel and at least one fluid passageway, and at least one stabilizer disposed on the formation testing tool. The method may further include activating the at least one stabilizer, wherein the at least one stabilizer is activated into a surface of the wellbore and performing the pressure test and determining at least one formation property from the pressure test.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 7, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
  • Patent number: 11733122
    Abstract: A system that monitors toilets for leaks using in-toilet monitors with pressure sensors that are placed underwater in toilet tanks. Monitors can be dropped into tanks without additional wiring or installation; they may be battery powered and may transmit data wirelessly. Data may be analyzed by a server that detects leaks or other malfunctions. Pressure data may be filtered to remove the effect of barometric pressure, to measure the height of water in the tank. The system may learn the flush pressure change pattern for each toilet; pressure changes that do not match this pattern may indicate problems such as leaks. Data may indicate the type of leak, such as an open flapper or a leaking valve. Toilet monitors may measure temperature, and the system may generate alerts when freezing appears imminent. The system may keep flush counts for each toilet to support maintenance and water consumption measurement.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: August 22, 2023
    Assignee: ANACOVE, LLC
    Inventors: Ian Amihay Lerner, Alistair Ian Chatwin, Roswell Reid Roberts, III, Carlos Shteremberg
  • Patent number: 11598736
    Abstract: Techniques for determining grain density of a rock sample include identifying an untreated rock sample that includes a solid matrix and a fluid entrained within the solid matrix; measuring, using a gas porosimeter, a grain density of the untreated rock sample; measuring, using nuclear magnetic resonance (NMR), a volume of the fluid entrained within the solid matrix; and determining, based on the measured grain density of the untreated rock sample and the measured volume of the fluid, a grain density of the solid matrix of the untreated rock sample.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: March 7, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Stacey M. Althaus, Jin-Hong Chen, Mohammed Boudjatit
  • Patent number: 11542783
    Abstract: A method to manipulate a well comprising providing an apparatus (60) in a well (14) below a packer (22) or other annular sealing device, the apparatus comprising a container (68) having a volume of gas which is sealed at the surface and nm into the well, such that the pressure in the container (68) is at a lower pressure than the surrounding well. When the apparatus is below the packer, a wireless control signal, is sent to operate a valve assembly (62) to selectively allow fluid to enter the container whereby at least 50 litres of fluid is drawn into the container. In this way, the apparatus can be used independent of perforating guns, to clear perforations or other areas in the well or may be used for a variety of tests such as an interval test, drawdown test or a connectivity test such as a pulse or interference test.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: January 3, 2023
    Assignee: METROL TECHNOLOGY LIMITED
    Inventors: Shaun Compton Ross, Leslie David Jarvis
  • Patent number: 11532092
    Abstract: Methods may include creating a fracture set from a collection of intersecting fractures in a borehole image log recorded within a subterranean formation; classifying the fracture set into groups of fully and partially intersecting fractures; calculating one or more of the elongation ratio and the rotation angle of the partially intersecting fractures; determining a probability of full intersection of fractures from the fracture set; and determining a fracture size or a parametric distribution of fracture sizes from the fracture set using the calculated one or more of the elongation ratio and the rotation angle and the determined probability of full intersection of formation fractures within the borehole.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: December 20, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Marie Emeline Cecile LeFranc, Michael David Prange, Laure Pizzella
  • Patent number: 11519879
    Abstract: A method for measuring a fracture permeability and a matrix permeability of a naturally fractured cylindrical rock sample, includes sealing both flat ends of the cylindrical sample; immersing the naturally fractured cylindrical rock sample in a fluid, and attaching an axial and a radial strain sensor to the curved surface of the sample. Furthermore, the method includes attaching a signal generator to one flat end of sample, and a signal receiver to the other flat end of the sample, and generating a harmonic excitation using the signal generator at a plurality of frequencies and recording the excitation at each of the plurality of frequencies. The method includes calculating an elastic wave propagation attribute at each of the plurality of frequencies, and inverting the elastic wave propagation attribute at each of the plurality of frequencies to determine the fracture permeability and the matrix permeability of the naturally fractured cylindrical rock sample.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: December 6, 2022
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Chao Liu, Dung T. Phan, Younane N. Abousleiman
  • Patent number: 11492900
    Abstract: Methods and systems for controlling drilling operations are described. The methods include conveying a drilling tool from the earth surface into a wellbore and operating the drilling tool to drill in a drilling direction, wherein drilling mud is conveyed from the earth surface to the drilling tool and returned to the earth surface, obtaining gas data from the drilling mud that returns to the earth surface, determining a reservoir property from the gas data, and adjusting the drilling direction based on the determined reservoir property.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: November 8, 2022
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Mat Wright, Nicklas Jeremias Ritzmann
  • Patent number: 11480512
    Abstract: A method, system and computer program product for determining soil properties comprising a probe including at least a liquid injection port and a pressure transducer. The probe is pushed into a soil and one or more pumping tests are carried out, wherein during a pumping test infiltration liquid is pumped through the liquid injection port of the probe. The pressure response in the soil resulting from the injection of liquid through the liquid injection port is measured for each of the one or more pumping tests.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: October 25, 2022
    Assignee: Fugro N.V.
    Inventors: Barbara Snacken, Bastiaan Martinus Berbee
  • Patent number: 11435299
    Abstract: Embodiments include systems and methods for determining properties of a formation including disposing a core sample of the formation within a core holder assembly, applying pressures to the core sample, rotating the core sample about a center longitudinal axis of the core holder assembly, obtaining a series of computed tomography images of the core sample at different rotation increments of the core sample, generating, based at least partially on the obtained series of computed tomography images of the core sample, a 3D representation of the core sample utilizing a radon transform, measuring a displacement of at least one characteristic of the core sample due to the applied pressures, and based at least partially on the measured displacement, determining at least one property of the formation as a function of the applied pressures.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: September 6, 2022
    Assignee: Baker Hughes Oilfield Operations LLC
    Inventor: Nicholas Drenzek
  • Patent number: 11402316
    Abstract: Device and method for measuring two-phase relative permeability curve of unconventional oil reservoir are provided, wherein the device comprises: two-dimensional porous seepage microscopic model; injection components connected to inlet end of the two-dimensional porous seepage microscopic model; confining pressure components arranged outside the two-dimensional porous seepage microscopic model; a camera component arranged on one side of the two-dimensional porous seepage microscopic model; back pressure components connected to outlet end of the two-dimensional porous seepage microscopic model; and outlet pressure measuring and recovery components connected to outlet end of the two-dimensional porous seepage microscopic model. Two-phase relative permeability curve of unconventional oil reservoir can be measured accurately through the device.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: August 2, 2022
    Assignee: UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
    Inventors: Weiyao Zhu, Debin Kong, Qinglin Shu, Haien Yang, Kun Huang, Nan Li, Jing Xia
  • Patent number: 11353442
    Abstract: The invention provides a physical simulation experimental device and method for water invasion and drainage gas recovery in gas reservoir, and the experimental device includes: a heterogeneous reservoir model having a first core holder, a second core holder, a third core holder and a fourth core holder, wherein the third core holder is connected between the first core holder and the second core holder, and the fourth core holder is connected between an outlet end of the first core holder and an outlet end of the second core holder; a gas injection mechanism having a gas injection bottle and a gas injection cylinder; a water body simulation mechanism having a water storage tank and a water injection pump. The invention can simulate and reveal different drainage gas recovery modes, timings, scales and their influences on the recovery ratio of the gas reservoir.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 7, 2022
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xuan Xu, Xizhe Li, Yong Hu, Yongxin Han, Yunsheng Wei, Yujin Wan, Chunyan Jiao, Zhenhua Guo, Haifa Tang, Weigang Huang, Guangzhen Chu, Yunhe Su
  • Patent number: 11249211
    Abstract: A method for characterizing a sand-pack or gravel-pack in a subsurface formation includes inducing a pressure change to induce tube waves in fluid in a well drilled through the subsurface formation. At a location proximate to a wellhead at least one of pressure and a time derivative of pressure in the well is measured for a selected length of time. At least one of a physical parameter and a change in the physical parameter with respect to time, of the sand-pack or gravel-pack, is determined using the measured pressure and/or the time derivative of pressure.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: February 15, 2022
    Assignee: Seismos Inc.
    Inventors: Jakub Felkl, Richard Coates, Junwei Zhang, Panagiotis Adamopoulos, Kaitlyn C. Mascher-Mace
  • Patent number: 11230924
    Abstract: Apparatus and methods for obtaining initial settings of station-specific parameters descriptive of wellbore/formation properties specific to downhole pressure test stations, and obtaining initial settings of station-shared parameters descriptive of petrophysical properties of petrophysically unique formation zones. A pressure transient model of the zones is obtained by regression utilizing the pressure data of each station and the initial settings of the station-specific and station-shared parameters. The regression analytically determines a model value of at least one of the station-specific parameters and the station-shared parameters.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: January 25, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Julian Pop, Cosan Ayan, Adriaan Gisolf, Juan Miguel La Rotta Marin, Hua Yu, Lei Jiang, Youxiang Zuo
  • Patent number: 10584582
    Abstract: An apparatus for testing lost circulation materials (“LCMs”) for use in a formation is disclosed. The apparatus may comprise a LCM cell that contains at least one formation simulation component. A pressurized tank may be in fluid communication with the LCM cell, and may force a sample LCM slurry into the LCM cell. An LCM receiver may also be in fluid communication with the LCM cell, and may receive the LCM slurry that flows through the LCM cell.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: March 10, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert J. Murphy, Dale E. Jamison, Matthew L. Miller
  • Patent number: 10557783
    Abstract: The method for determining equilibrium wettability of an interface between a void space and a solid phase of a rock sample comprises obtaining a three-dimensional image of the internal structure of the sample. On the obtained image of the internal structure of the sample, a void space and a solid phase are differentiated. An interface between the void space and the solid phase of the sample and distribution of minerals on this surface are determined. Wettability of the solid phase at each point of the interface between the void space and the solid phase of the rock sample is determined. A process of oil migration to the void space filled with stratum water at the initial stage of formation of an oil and gas field is numerically simulated, and finally, the equilibrium wettability of the interface between the void space and the solid phase of the rock sample is determined.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: February 11, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Evgeny Nikolaevich Dyshlyuk, Oleg Yurievich Dinariev, Ivan Victorovich Yakimchuk, Nikolay Vyacheslavovich Evseev
  • Patent number: 10400592
    Abstract: A non-transitory computer-readable medium includes computer-executable instructions for presenting dumpflood data to a user by implementing steps on a computer. The steps include: receiving first data describing a first subsurface volume; receiving second data describing a second subsurface volume that is deeper than the first subsurface volume; calculating pressures required for a fluid to flow in a borehole from the first volume to the second volume as a function of vertical height of the first volume (h1), permeability of the first volume (k1), vertical height of the second volume (h2), permeability of the second volume (k2), a first damage factor (S1) representing damage to the first volume, and a second damage factor (S2) representing damage to the second volume; and displaying on a computer display a graphical representation of the calculated pressures and inputs used to calculate the pressures.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: September 3, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventor: Gonzalo A. Garcia
  • Patent number: 10324220
    Abstract: Techniques involve obtaining dielectric measurements measured from a dielectric logging tool investigating a borehole at a one or more frequencies in a first frequency range, obtaining inductive measurements measured from an inductive tool investigating the borehole at one or more frequencies in a second frequency range, where the second frequency range is higher than the first frequency range, estimating an estimated resistivity anisotropy by conducting an inversion on the dielectric measurements, computing a measured resistivity anisotropy by conducting an inversion on the inductive measurements, and determining a characteristic related to reservoir fluids in the borehole, based on a comparison of the estimated resistivity anisotropy and the measured resistivity anisotropy.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: June 18, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jean-Marc Donadille, Ollivier Faivre
  • Patent number: 10267941
    Abstract: Various embodiments include apparatus and methods to estimate formation mobility from Stoneley waveforms. An objective function can be generated that represents misfit between measured Stoneley pressure values and synthetic pressure values. A minimization process can be applied to the objective function to estimate formation mobility and intrinsic attenuation. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: April 23, 2019
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Mark V. Collins, Arthur Cheng
  • Patent number: 10253620
    Abstract: The disclosure provides a kick detection system for use during a drilling operation where wellbore kick warnings are provided based on indications of standoff conditions in a compensated instrument system. The system provides a warning of a potential kick condition by analyzing a current instrument compensation against a time series of past compensations, in order to monitor whether conditions within the standoff region of the wellbore are unexpectedly changing. The system comprises a source, a short-spaced detector, and a long-spaced detector, and a processor receives the short-spaced signal and the long-spaced signal, compensates the long-spaced signal, and generates standoff data reflecting the corrections applied to the long-range signal. The processor determines and maintains the standoff data as a time series and periodically compares a recent data point to a moving average in order to evaluate indications of a potential well kick.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: April 9, 2019
    Inventors: Kelly K. Rose, Brian C. Tost, Fred Aminzadeh
  • Patent number: 10180063
    Abstract: An apparatus for testing lost circulation materials (“LCMs”) for use in a formation is disclosed. The apparatus may comprise a LCM cell that contains at least one formation simulation component. A pressurized tank may be in fluid communication with the LCM cell, and may force a sample LCM slurry into the LCM cell. An LCM receiver may also be in fluid communication with the LCM cell, and may receive the LCM slurry that flows through the LCM cell.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 15, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert J. Murphy, Dale E. Jamison, Matthew L. Miller
  • Patent number: 10161242
    Abstract: System and method for monitoring frac fluid flow through a column bed includes preparing a vessel (112, 440) with a column including a filtering member (120, 420), a column bed (114, 414) simulating a downhole environment, and a frac fluid (116, 416). Frac fluid (116, 416) is flowed through the column bed (114, 414) at an acceleration exceeding gravity for a predetermined period of time. The amount of liquid that flows through the column bed (114, 414) and that is recovered after the predetermined period of time is then determined.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 25, 2018
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jody Marie Burks, Denise Nicole Benoit, Chandra Sekhar Palla-Venkata
  • Patent number: 9752431
    Abstract: In one aspect, a method of obtaining a fluid from a formation is disclosed that in one embodiment may include: pumping fluid received by a first probe from the formation into the wellbore; pumping fluid received by a second probe from the formation into the wellbore; determining when the fluid received by one of the first and second probes is clean; and pumping the fluid received by the first probe into a sample chamber while collecting the formation fluid received by the second probe from the formation into a storage chamber having an internal pressure less than the pressure of the formation.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: September 5, 2017
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Wade Bullock, James T. Cernosek
  • Patent number: 9658093
    Abstract: There is provided a water exchange meter being capable of automatically and continuously measuring the water exchange at the surface water/sediment interface in which a saturated vertical hydraulic conductivity of the sediment from the hydraulic head difference between a chamber and a storage pipe at a measurement location is measured, and after the measurement of the saturated vertical hydraulic conductivity, while the measurement device used in the measurement of the vertical hydraulic conductivity is maintained, a vertical hydraulic gradient between upper and lower portions of a chamber is continuously measured in situ.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: May 23, 2017
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Bong Joo Lee, Ji-Hoon Lee, Heesung Yoon, Eunhee Lee
  • Patent number: 9658147
    Abstract: A apparatus for measuring saturated hydraulic conductivity of unsaturated porous media in an unsaturated zone of the earth. The measuring apparatus includes a cylinder member inserted into the porous media in a position in which the upper and lower ends of the cylinder member are open, a means for supplying a constant flow rate of water to the cylinder member, and a pressure measuring means for measuring the hydraulic head in response to water flowing into the cylinder member. The measuring apparatus can easily measure the vertical hydraulic conductivity of a foundation based on Darcy's Law in the field. It is possible to accurately measure the hydraulic conductivity of a sedimentary layer in the natural state and easily determine geological characteristics of the soil. It is possible to obtain very accurate information regarding the process of dispersion and movement of contaminants.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: May 23, 2017
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Bong-Joo Lee, Ji-Hoon Lee
  • Patent number: 9500060
    Abstract: A remotely operated lifting top drive cement head is provided having a high tensile strength, as well as the ability to swivel or rotate about a central vertical axis. The cement head permits selective launching of darts, setting plugs, balls or other objects which can be held in place within the cement head without being damaged or washed away by slurry flow, but which can be beneficially launched into said slurry flow at desired point(s) during the cementing process. The internal components of the cement head can be easily accessed using interrupted thread connections that can be quickly and easy connected and disconnected in the field without requiring specialized equipment. The cement head can be rigged up and remotely operated without requiring the lifting of personnel off the rig floor to actuate the tool or observe tool status.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: November 22, 2016
    Assignee: Blackhawk Specialty Tools, LLC
    Inventors: Ron D. Robichaux, James F. Giebeler, Juan Carlos E. Mondelli
  • Patent number: 9435169
    Abstract: A mud sensing hole finder comprising: a front steering wheel assembly, a rear wheel assembly, a sensor package, a corrosion package, a ported housing, and a tapered spring joint; wherein the mud sensing hole finder is capable of attachment to a wireline logging tool-string.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: September 6, 2016
    Inventors: Guy Wheater, Stuart Huyton
  • Patent number: 9341739
    Abstract: A method of estimating a geology of an earth formation includes: receiving gravity measurements from each of a plurality of gravity sensors nsj arrayed along a length of a borehole in an earth formation, each of the sensors nsj generating a gravity measurement gj associated with a location zsj, each of the plurality of sensors separated by a distance h; generating a model of the earth formation that includes approximate geological boundaries Nm having an approximate depth zmk, the geological boundaries defining a number of geologic layers therebetween; assuming that each geological boundary is represented by a minimum density change and each of the geologic layers has a thickness that encompasses two or more of the plurality of sensors nsj; and estimating a location and a density change ?? of a geologic boundary z between locations zsj and zsj+1 based on the gravity measurements gj and the distance h.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: May 17, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Gleb Dyatlov, Sophia Ilyina, Dashevsky Yuliy Aleksandrovich
  • Patent number: 9228401
    Abstract: Borehole conditions can be determined using distributed measurement data. Real time data measurements can be taken from sensors distributed along the length of a drill string to assess various conditions or properties of the borehole. In particular, the distributed data can be used for example, to track the progress of a chemical pill or also track the location of different types of borehole fluids, and also to determine the hole size or volume of the borehole.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: January 5, 2016
    Assignees: BP Corporation North America Inc., BP Exploration Operating Company Limited
    Inventors: Stephen T. Edwards, Christopher J. Coley, Michael L. Edwards, Donald F. Shafer, Mark W. Alberty
  • Publication number: 20150135814
    Abstract: A method and apparatus for performing water based mud-filtrate contamination monitoring in real time through evaluation of downhole water sampling.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 21, 2015
    Applicant: Schlumberger Technology Corporation
    Inventors: Youxiang Zuo, Adriaan Gisolf, Julian Pop, Oliver Mullins, Chetankumar Desai
  • Publication number: 20150101404
    Abstract: In some embodiments, an apparatus and a system, as well as a method and an article, may operate to receive a vibration signal having a frequency and a characteristic (e.g., voltage) proportional to the vibration amplitude of a tube in a vibrating tube density sensor. Further activity may include transmitting the density of a fluid flowing through the tube based on the frequency and an elastic modulus of the tube determined by the value of the characteristic. Additional apparatus, systems, and methods are described.
    Type: Application
    Filed: August 28, 2012
    Publication date: April 16, 2015
    Inventors: Dingding Chen, Li Gao, Michael T. Pelletier, Nestor Javier Rodriguez
  • Publication number: 20140373617
    Abstract: A method including positioning a formation testing tool within a wellbore formed within a subsurface reservoir, wherein the tool has a focused opening to enable fluid communication with the reservoir, and the tool has a horizontally-displaced observation probe configured to obtain pressure data; determining one of horizontal permeability and horizontal mobility of the reservoir based on measuring a flow response of the subsurface reservoir one of at and adjacent to the observation probe; and determining orthogonal components of one of the horizontal permeability and horizontal mobility based on the measured flow response.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 25, 2014
    Inventors: Peter Hegeman, Cosan Ayan, Adriaan Gisolf
  • Publication number: 20140366621
    Abstract: Systems and methods for gas sorption analysis, or analogous practices, of samples from unconventional reservoirs are described. The described analysis of samples is used to determine various properties of unconventional reservoirs, which are used in evaluating their worth and producibility.
    Type: Application
    Filed: September 2, 2014
    Publication date: December 18, 2014
    Inventors: John J. Valenza, Nicholas J. Drenzek, Flora Marques, Hendrik Grotheer, Dean M. Willberg
  • Publication number: 20140332207
    Abstract: A method for determining a characteristic of an underground formation with a fluid is described. The method includes providing a sample material of the underground formation; measuring the permeability and the porosity of the sample material; performing a drainage test on the sample material using the fluid; estimating the threshold pressure of the sample material from the drainage test, the permeability and the porosity measurements; and determining the receding contact angle of the fluid on the sample material from the threshold pressure. The sample material can be disaggregated material.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Jerald J. Hinkel, Dean Willberg, Markus Pagels
  • Patent number: 8884623
    Abstract: A method for determining the frequency-dependent dielectric permittivity spectrum of a rock sample, comprising:—defining a series of electromagnetic measurement data comprising at least a first measurement at a frequency from which a substantially frequency-independent value of dielectric permittivity ??, can be obtained; and at least second and third measurements at different frequencies from which values for frequency-dependent dielectric permittivity ?rock (f) can be obtained; and—using the first, second and third measurements to determine the frequency-dependent spectrum of the sample.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 11, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Barbara Anderson, Thomas D. Barber, Emmanuel Legendre, Martin G. Luling, Pabitra N. Sen, Reza Taherian
  • Publication number: 20140318232
    Abstract: Methods for deriving relative permeability from resistivity measurements in the laboratory and from downhole resistivity measurements are described. Further, systems and methods for determining relative permeability from borehole resistivity measurements made during a water flooding event such as drilling with water-based mud, water injection and/or water invasion are described.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: FABRICE PAIROYS
  • Patent number: 8849582
    Abstract: A method and apparatus is provided for off-line concentration determination of components liquid hydrocarbon mixtures such as crude or heavy oil. A sampling unit continuously delivers a sample volume to a fluid flow path while a temperature control module maintains the sample at a predetermined setpoint temperature. A homogenization module helps prevent sample stratification while a flow control module maintain a constant sample flow rate. A spectrometer is communicably coupled to an optical transmission cell to transmit and receive radiation. The transmission cell includes collection optics to capture and aggregate non-collimated radiation emerging from the cell, for transmission to the spectrometer. The spectrometer measures sample spectra at a predetermined rate of flow of the sample volume through the transmission cell. A processor is configured to capture and use the spectra in combination with a model of spectra for the hydrocarbon mixture.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 30, 2014
    Assignee: Invensys Systems, Inc.
    Inventors: W. Marcus Trygstad, Bruce Keen, Russell Jackson
  • Publication number: 20140250998
    Abstract: A method for detection of permeability anisotropy, having steps of positioning a formation testing tool, conducting a series of three flow tests with the testing tool wherein a first test is a four drain flow test, a second test is a pair of opposite drains flowing on diametrically opposite sides of the formation testing tool and a third test is a second pair of opposite drains flowing on opposite drains different than the second test; determining one of horizontal permeability and horizontal mobility, determining one of orthogonal components of horizontal permeability and horizontal mobility based on the measured flow response and determining a direction of the orthogonal components of the horizontal permeability or horizontal mobility with respect to the orientation of the formation testing tool based on a measured flow response.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Schlumberger Technology Corporation
    Inventors: Adriaan Gisolf, Peter Hegeman
  • Patent number: 8826977
    Abstract: A bottomhole assembly is provided with a cathode. The cathode produces a static field in the earth formation and by the electroosmotic effect, inhibits the invasion of the formation by borehole fluids and reduces formation damage. The cathode also results in improved estimates of formation permeability using flow tests. A cathode on a wireline string may be used to reduce water saturation in an invaded zone near a borehole.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: September 9, 2014
    Assignee: Baker Hughes Incorporated
    Inventor: David C. Herrick
  • Patent number: 8794061
    Abstract: An apparatus and method used to determine the density and other properties of a corrosive liquid, such as drilling mud. The apparatus uses at least two sensor elements with ceramic facings spaced a known vertical distance apart and inserted into the fluid. The differential pressure measurement provided by these sensors is used to calculate the density of the liquid. This density measurement is then reported in real-time to an operator.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 5, 2014
    Assignee: Ultra Analytical Group, LLC
    Inventor: Robert Eugene Sickels, Jr.
  • Patent number: 8717029
    Abstract: An apparatus for measuring permittivity of a sample. The apparatus includes: a sample chamber including a sealed space portion in which a sample to be measured is put; a pressure adjusting unit for varying pressure by applying water pressure to the space portion of the sample chamber; a permittivity sensor for measuring permittivity of the sample and disposed outside the sample chamber; measurement conducting wires including conductors, installed to contact the sample and connected to the permittivity sensor by using electric wires; and a data logger for storing data relating to permittivity that is measured by the permittivity sensor.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 6, 2014
    Assignee: Korea Institute of Geoscience and Mineral Resources (KIGAM)
    Inventors: Byung-Gon Chae, Jung-Hae Choi, Yong-Je Kim
  • Publication number: 20140102188
    Abstract: According to aspects of the present disclosure, an apparatus for testing lost circulation materials (LCMs) within a permeability plugging apparatus (PPA) is described. The apparatus may include a PPA cell cap and an elongated LCM receiver. At least one tubular member may provide fluid communication between the PPA cell cap and the elongated LCM receiver. The at least one tubular member may be sized to accommodate large particulate LCM testing within the PPA. The apparatus may also include a backpressure inlet through the elongated LCM receiver. Providing back pressure within the LCM receiver may extend the temperature and pressure ranges under which the large particulate LCMs may be tested.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: Halliburton Energy Services, Inc,
    Inventors: Robert J. Murphy, Matthew L. Miller
  • Patent number: 8683858
    Abstract: An apparatus and method for simulating production conditions in hydrocarbon-bearing reservoirs, as an example, by flooding of core samples from such reservoirs, are described. Full recirculation flow measurements permit several fluids (for example, crude oil, brine, and gas) to be simultaneously injected into core samples having varying dimensions. Accurate and stable back pressures are maintained at total flow rates of as high as 200 cc/min., for a large range of fluid viscosities. Accurate and stable net overburden pressures relative to pore pressure are also maintained, thereby simulating the formations at depth. Core samples from formations may also be investigated using the apparatus and method hereof, for carbon dioxide sequestration potential, as another example.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: April 1, 2014
    Assignee: University of Wyoming
    Inventor: Mohammad Piri
  • Publication number: 20140069183
    Abstract: Disclosed is a method of reducing uncertainty, which exactly finds the hydraulic conductivity and the specific storativity of a rock sample in pressure pulse-decay measurement. Axial and confining pressures are applied to the rock sample, and upstream and downstream reservoirs are connected to the rock sample. Coordinate values representing minimum values of a contour of a graph of an objective function, in which the hydraulic conductivity and the specific storativity obtained through the pressure pulse-decay measurement scheme to apply pressure pulses from the outside are expressed in horizontal and vertical axes are found from the graph. The coordinate values are set as the hydraulic conductivity and the specific storativity of the rock sample. Graphs of objective functions obtained by repeating the pressure pulse-decay measurement while changing boundary conditions are shown in overlapped, thereby reducing the uncertainty of the hydraulic conductivity and the specific storativity of the rock sample.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 13, 2014
    Applicant: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: In-Sun SONG, Jeong-Chan KIM
  • Publication number: 20140033815
    Abstract: Systems and methods that provide relaxivity-insensitive permeability logs. At least some logging system embodiments include a logging tool assembly that measures spin-spin relaxation time distributions of formation fluid nuclei at different positions along a borehole. A processor operates on the measurements to provide a permeability log that is relatively insensitive to relaxivity coefficient changes and hence insensitive to changes in formation fluids. Thus, permeability logs will be relatively unaffected by invasion of the borehole fluids into the formation, even if surfactants in the borehole fluid cause large changes in formation wettability. For each position logged within a borehole, the processor may process the measured relaxation time distribution to determine a Swanson parameter value; adjust the Swanson parameter value to reduce dependence on relaxivity; and convert the adjusted value to a permeability measurement.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 6, 2014
    Applicant: HALLIBURTON ENERGY SERVICE, INC.
    Inventor: Moustafa E. Oraby
  • Patent number: 8635907
    Abstract: A method for monitoring fluid flow through a downhole device, comprises a) providing an acoustic tube wave in fluid in the device; b) measuring the acoustic tube wave after it has passed through the fluid in the device; and c) assessing the permeability of the device by measuring the attenuation of the acoustic signal. Changes in velocity of the acoustic signal may also be measured. The device may be a permeable downhole device such as a sand screen the measurements in step b) are made using a plurality of sensors deployed in the hole. The method may further including the step of cross-correlating a signal received at a first receiver with signals received at additional sensors so as to obtain an effective response as if the signal had been emitted from a source at the position of said first receiver.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 28, 2014
    Assignee: Shell Oil Company
    Inventor: Andrey Victorovich Bakulin
  • Publication number: 20130340517
    Abstract: A permeameter probe, configured for performing hydraulic conductivity measurements of soil, includes a standpipe having a top section, a transitional section, and a bottom section. The transitional section provides a gradual change in diameter between the larger diameter bottom section and the smaller diameter top section. The standpipe also includes a lower lip for forming a pressure fitting between the standpipe and a casing placed in a borehole.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 26, 2013
    Inventors: Brock Brown, Ron Hager, Grant J. Williams
  • Patent number: 8607628
    Abstract: A method for determining properties of a formation is described herein. The method includes disposing a well-logging tool in a borehole. The well-logging tool includes a device for varying temperature of the formation and two acoustic logging probes located symmetrically along the well-logging tool length relative to the device for varying temperature of the formation. During the logging tool movement in the borehole, continuous varying of the formation temperature, continuous acoustic logging, and continuous measurement of formation temperature are performed. Dependencies of the measured velocity and attenuation of the Stoneley waves as functions of the measured temperature of the formation are obtained. Based on the obtained dependencies, properties of the formation are determined.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Marwan Charara, Anton Vladimirovich Parshin, Evgeny Nikolaevich Dyshlyuk, Oleg Mikhailovich Zozulya, Sergey Sergeevich Safonov
  • Patent number: 8606521
    Abstract: A wellbore fluid pressure measurement system includes a densometer adapted to measure a fluid density of a fluid flowing in a tubing system; and a monitoring unit communicably coupled to the densometer. The monitoring unit is adapted to receive a plurality of values representative of the fluid density from the densometer and includes a memory adapted to store the plurality of values representative of the fluid density; and one or more processors operable to execute a fluid pressure measurement module. The module is operable when executed to determine a fluid pressure of the fluid based on at least a portion of the values representative of the fluid density.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 10, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Joseph A. Beisel, Stanley V. Stephenson