Fluid Test Patents (Class 73/152.55)
  • Patent number: 10557785
    Abstract: A fracture simulated oil recovery test apparatus includes a sleeve, the sleeve positioned within an oven and an oil saturated matrix positioned within the sleeve. The fracture simulated oil recovery test apparatus further includes a proppant pack positioned within the oil saturated matrix, the proppant pack having an inlet an outlet and a controller, the controller adapted to control the pressure within the oil saturated matrix.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: February 11, 2020
    Assignee: ALCHEMY SCIENCES, INC.
    Inventor: Erick Acosta
  • Patent number: 9964659
    Abstract: Metamaterials are used in well logging measurement tools to provide high directionality galvanic and induction tools having metamaterial focusing. Using metamaterial lenses, currents injected by galvanic tools can be focused in both axial and azimuthal directions. In addition, the focus plane can be shifted away from the tool body into a borehole formation, making measurements more sensitive to zones of interest and less sensitive to boreholes and invaded zones. Another metamaterial lens can bend injected currents toward the head of the tool, adding a look-ahead functionality.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 8, 2018
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Ahmed E. Fouda, Burkay Donderici
  • Patent number: 9815724
    Abstract: A scale suppression apparatus capable of suppressing in a low-priced manner the generation of silica-based scale and calcium-based scale in the influent water containing at least a silica component and a calcium component, a geothermal power generation system using the same, and a scale suppression method are provided. The scale suppression apparatus includes a chelating agent and alkaline agent addition unit injecting liquid containing a chelating agent and an alkaline agent into a pipe arrangement through which influent water such as geothermal water or the like flows, and a controller controlling a pump and a valve of the chelating agent and alkaline agent addition unit. The controller controls the injection of the chelating agent and the alkaline agent and stops of the injection based on the signal output from a scale detection unit for detecting a precipitation state of the scale.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 14, 2017
    Assignee: Fuji Electric Co., Ltd
    Inventors: Kokan Kubota, Yoshitaka Kawahara, Ichiro Myogan, Osamu Kato
  • Patent number: 9745213
    Abstract: A scale suppression apparatus capable of suppressing in a low-priced manner the generation of silica-based scale and calcium-based scale in the influent water, a geothermal power generation system using the same, and a scale suppression method are provided. The apparatus includes a first addition unit configured to add liquid containing a chelating agent and an alkaline agent to influent water flowing through a pipe arrangement to make the influent water higher than pH 7, a second addition unit configured to add an acid substance to the influent water to make the influent water lower than pH 7, and a controller configured to alternatively switch between the operation of the first addition unit and the operation of the second addition unit. The controller controls the switching of the first addition unit and the second addition unit based on the signals output from a scale detection unit and a pH meter.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: August 29, 2017
    Assignee: Fuji Electric Co., Ltd
    Inventors: Kokan Kubota, Yoshitaka Kawahara, Ichiro Myogan, Osamu Kato
  • Patent number: 9542511
    Abstract: The disclosed embodiments include a method, apparatus, and computer program product for determining a synthetic gas-oil-ratio for a gas dominant fluid. For example, one disclosed embodiment includes a system that includes at least one processor, and at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations that include optimizing a gas-oil-ratio database using a genetic algorithm and a multivariate regression simulator and generating a synthetic gas-oil-ratio for a gas dominant fluid.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 10, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David L. Perkins, Christopher Michael Jones, Jing Shen, Michael T. Pelletier, Robert Atkinson
  • Patent number: 9366099
    Abstract: Presented are methods and systems for tracking and assessing drilling fluid flow and performance and, accordingly, detecting drilling mud return depth. The drilling mud is injected with a mineralogical dopant in an amount that does not affect the physical or chemical properties of the drilling mud. The doped drilling mud is injected into a known mud pulse and a detector identifies the mud pulse in which the mineralogical dopant emerges from the borehole, allowing calculation of the drilling mud return depth.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: June 14, 2016
    Assignee: CGG SERVICES SA
    Inventor: Chi Vinh Ly
  • Patent number: 9322259
    Abstract: A computer method, apparatus and system simulate hydraulic fracturing. The computer system/method models a wellbore of an injection well. The wellbore model includes a hydraulic drill pipe element in a borehole and related fluid flow in the borehole. The borehole workflow is modeled in a subject rock formation. A simulator operatively coupled to the model obtains pressure values from the modeled borehole workflow and modeled wellbore. The simulator automatically converts pore pressure from the modeled borehole into a mechanical pressure load on the subject rock formation. The mechanical pressure as hydrostatic pressure is automatically applied to the surface of the rock formation affected by the borehole and responsively defines one or more pressure induced fractures. A 2D or 3D graphical representation of the pressure induced fractures in the rock formation are displayed on output.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: April 26, 2016
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Sandeep Kulathu, James Christopher Wohlever, Zhen-zhong Du
  • Patent number: 9249659
    Abstract: In some embodiments, an apparatus and a system, as well as a method and an article, may operate to obtain a formation fluid sample from a formation adjacent to a wellbore disposed in a reservoir, determine the sample saturation pressure of the formation fluid sample, repeat obtaining the formation fluid sample and determining the sample saturation pressure over a selected time period or number of samples, and determine a predicted ultimate formation fluid saturation pressure based on multiple determinations of the sample saturation pressure. The sample saturation pressures measured over selected time periods can be used to determine fluid sample contamination. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: February 2, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Michael T. Pelletier
  • Patent number: 9023280
    Abstract: A system and method for determining the asphaltene content of a downhole oil sample are provided. In one example, the method includes obtaining a hydrocarbon sample from a hydrocarbon formation of a reservoir at a given depth using a downhole tool. A liquid phase of the hydrocarbon sample is isolated within the downhole tool and the liquid phase is subjected to downhole analysis within the downhole tool to create a chromatography sample. The downhole analysis is based at least partially on size exclusion chromatography. A first property of the chromatography sample is measured to obtain a measured value, and a second property of the chromatography sample is estimated based on the measured value and known calibration curves.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: May 5, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Carlos Abad, Anthony R. H. Goodwin, Bruno Drochon
  • Patent number: 8959991
    Abstract: A method for estimating properties of a subterranean formation penetrated by a wellbore provides for injecting a fluid with the plurality of tracer agents wherein each tracer agent is an object of submicron scale, into the wellbore and formation, flowing the fluid back from the subterranean formation and determining the properties of the formation. The properties are determined by analyzing changes in the tracers size and type distribution function between the injection fluid and produced fluid.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 24, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Dimitri Vladilenovich Pissarenko, Kreso Kurt Butula, Sergey Sergeevich Safonov, Denis Vladimirovich Rudenko, Oleg Yurievich Dinariev, Oleg Mikhailovich Zozulya
  • Publication number: 20150007652
    Abstract: An apparatus having a transducer configured to generate acoustic energy, a buffer rod with a first end and a second end, the transducer in contact with the first end, a cylinder configured to define a volume, the second end of the buffer rod abutting the cylinder; and a piston within the cylinder.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Anthony R. H. Goodwin, Jason S. Milne
  • Patent number: 8910514
    Abstract: Systems and methods of determining fluid properties are disclosed. An example apparatus to determine a saturation pressure of a fluid includes a housing having a detection chamber and a heater assembly partially positioned within the detection chamber to heat a fluid. The example apparatus also includes a sensor assembly to detect a property of the fluid and a processor to identify a saturation pressure of the fluid using the property of the fluid.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: December 16, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Matthew T. Sullivan, Christopher Harrison, Robert J. Schroeder, Ahmad Latifzai, Elizabeth Smythe, Shunsuke Fukagawa, Douglas W. Grant
  • Patent number: 8912000
    Abstract: Methods and apparatus for obtaining a mass spectrum of a sample and determining a concentration of a component of the sample by utilizing a model of chemical and electron ionization and the obtained mass spectrum.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: December 16, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Pierre J. Daniel, Julian J. Pop, Reza Taherian, Bruno Drochon
  • Publication number: 20140360259
    Abstract: A system includes a downhole formation fluid sampling tool. The system also includes an optical spectrometer of the downhole formation fluid sampling tool and a processor. The optical spectrometer is able to measure an optical characteristic of a formation fluid flowing through the downhole formation fluid sampling tool over a plurality of wavelengths. The optical spectrometer is designed to generate optical spectra data indicative of the optical characteristic. The processor is able to receive the optical spectra data generated by the optical spectrometer, to predict a parameter corresponding to one component of multiple components of the formation fluid based on the optical spectra data, and to calculate an uncertainty in the predicted parameter based on the optical spectra data.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Kentaro Indo, Kai Hsu, Julian Pop
  • Patent number: 8899107
    Abstract: A system and method for determining the asphaltene content of a downhole oil sample are provided. In one example, the method includes obtaining a hydrocarbon sample from a hydrocarbon formation of a reservoir at a given depth using a downhole tool. A liquid phase of the hydrocarbon sample is isolated within the downhole tool and the liquid phase is subjected to downhole analysis within the downhole tool to create a chromatography sample. The downhole analysis is based at least partially on size exclusion chromatography. A first property of the chromatography sample is measured to obtain a measured value, and a second property of the chromatography sample is estimated based on the measured value and known calibration curves.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 2, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Carlos Abad, Anthony R. H. Goodwin, Bruno Drochon
  • Patent number: 8883508
    Abstract: In some embodiments, apparatus and systems, as well as methods, may operate to draw a formation fluid sample into a sampling port included in a down hole tool, to vaporize some part of the fluid sample to substantially fill an injection port with a gas phase, to differentiate gas components in the gas phase to provide differentiated gas components along a concentration gradient, to detect the differentiated gas components, and to determine a fingerprint of the differentiated gas components. Other apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: November 11, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher M. Jones, Michael T. Pelletier
  • Publication number: 20140298900
    Abstract: The present disclosure provides systems, tools, and methods for enhancing a measurement of a property of a solid body or fluid. The systems, tools, and methods may involve an electromagnetic measurement tool that includes a transmitter configured to transmit electromagnetic energy, a receiver configured to receive the electromagnetic energy, and a metamaterial element comprising a negative refractive index. The metamaterial element may focus the electromagnetic energy. The electromagnetic tool may be placed adjacent the solid body or fluid, electromagnetic energy may be transmitted via the transmitter, and the electromagnetic energy may be received with the receiver to measure a property of the solid body or fluid.
    Type: Application
    Filed: November 13, 2012
    Publication date: October 9, 2014
    Inventor: Andrew Clarke
  • Publication number: 20140290941
    Abstract: A method for determining formation fluid sample quality includes analyzing sample capture data to identify distinguishing features indicative of whether a successful sample capture has occurred within a downhole tool. The method further includes prioritizing, based on the analysis, the sample capture data for transmission to a surface system.
    Type: Application
    Filed: August 31, 2012
    Publication date: October 2, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Steven Villareal, Julian Pop, Shahid A. Haq
  • Patent number: 8849582
    Abstract: A method and apparatus is provided for off-line concentration determination of components liquid hydrocarbon mixtures such as crude or heavy oil. A sampling unit continuously delivers a sample volume to a fluid flow path while a temperature control module maintains the sample at a predetermined setpoint temperature. A homogenization module helps prevent sample stratification while a flow control module maintain a constant sample flow rate. A spectrometer is communicably coupled to an optical transmission cell to transmit and receive radiation. The transmission cell includes collection optics to capture and aggregate non-collimated radiation emerging from the cell, for transmission to the spectrometer. The spectrometer measures sample spectra at a predetermined rate of flow of the sample volume through the transmission cell. A processor is configured to capture and use the spectra in combination with a model of spectra for the hydrocarbon mixture.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 30, 2014
    Assignee: Invensys Systems, Inc.
    Inventors: W. Marcus Trygstad, Bruce Keen, Russell Jackson
  • Publication number: 20140251600
    Abstract: In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Eddie Elmer Scott, Roger D. Aines, Christopher M. Spadaccini
  • Publication number: 20140208842
    Abstract: A monitoring tool, including an obstructor portion operatively arranged to impede fluid flow past the monitoring tool when the obstructor is engaged with a corresponding seat member. A disintegrable portion is included formed from a material operatively arranged to disintegrate upon exposure to a selected fluid. A gauge is coupled with the obstructor portion and the disintegrable portion. The gauge is operatively arranged to monitor one or more parameters and released from the obstructor portion when the disintegrable portion is disintegrated by the selected fluid. A method of monitoring one or more parameters is also included.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Baker Hughes Incorporated
    Inventors: James Miller, Jason Mailand, Daniel Matthews
  • Patent number: 8776878
    Abstract: A system and method for determining a downhole parameter includes a downhole tool having a sensor. The sensor includes a pad having insulation, and return(s) positionable in the insulation. The return(s) are adapted to exchange a current with a power source, and a portion of the return(s) may be in a fluid zone. The sensor includes a mud button positionable within the fluid zone and in the insulation a distance from the return(s). The mud button are suitable for exchanging current with the return(s). The mud button and the fluid zone are positioned a distance from the formation such that a majority of the current passing between the return(s) and the mud button passes through the downhole fluid. The current exchanged with the mud button generates a measurement of the downhole fluid.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: July 15, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Richard Bloemenkamp, Andrew Hayman
  • Patent number: 8744774
    Abstract: Cleanup monitoring and prediction in real time targeting estimation of pumpout volume versus final contamination, including detecting breakthrough of formation fluid to a sampling tool and detecting transition of cleanup regime from a predominantly circumferential cleanup regime to a predominantly vertical cleanup regime. Similar workflow can be employed for estimating contamination at the end of cleanup production for a given pumpout volume.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 3, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Alexander Zazovsky
  • Patent number: 8683848
    Abstract: An improved hydrotest testing system comprises a safety stop which prevents the testing tools from being blown out of the top of the tubing string. The safety stop is made up into the upward facing box of the tubing joint to be tested, where the stop is positioned between the tool assembly placed within the tubing joint and the no-go head assembly which is located at the surface during the testing operation. Once the safety stop has been made up into upward facing box, the tool assembly is set within the joint to be tested and the joint pressure tested. The safety stop has a generally cylindrical body which has a bore extending through its length, where the bore has a reduced diameter throat which is sized smaller than portions of the downhole testing tool.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 1, 2014
    Assignee: C&H Testing Service, LLC
    Inventors: Don Taft, Don Hoover, Don Siewell
  • Patent number: 8635907
    Abstract: A method for monitoring fluid flow through a downhole device, comprises a) providing an acoustic tube wave in fluid in the device; b) measuring the acoustic tube wave after it has passed through the fluid in the device; and c) assessing the permeability of the device by measuring the attenuation of the acoustic signal. Changes in velocity of the acoustic signal may also be measured. The device may be a permeable downhole device such as a sand screen the measurements in step b) are made using a plurality of sensors deployed in the hole. The method may further including the step of cross-correlating a signal received at a first receiver with signals received at additional sensors so as to obtain an effective response as if the signal had been emitted from a source at the position of said first receiver.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 28, 2014
    Assignee: Shell Oil Company
    Inventor: Andrey Victorovich Bakulin
  • Publication number: 20140020462
    Abstract: A method is presented for analyzing a multiphase fluid flowing through a tubular. A sample fluid flow of multiphase fluid (a mixture of some combination of gas, liquid and solid) is separated from a primary tubular, such as with a probe which traverses the tubular. At least one property of the multiphase fluid is determined using at least one multivariate optical element (MOE) calculating device. Measured properties include the presence, proportional amount, mass or volumetric flow rate, and other data related to a constituent of the fluid, such as CO2, H2S, water, inorganic and organic gases and liquids, or group of constituents of the fluid, such as SARA, C1-C4 hydrocarbons, etc. The multiphase fluid is preferably mixed prior to analysis. Additional data can be gathered and used to calculate derivative information, such as mass and volumetric flow rates of constituents in the tubular, etc.
    Type: Application
    Filed: April 25, 2013
    Publication date: January 23, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Cyrus Aspi Irani, Cidar Mansilla Arce, Hendrik Kool
  • Publication number: 20130340518
    Abstract: The present invention relates to a method of detecting synthetic mud filtrate in a downhole fluid including placing a downhole tool into a wellbore, introducing a downhole fluid sample into the downhole tool, analyzing the downhole fluid sample in the downhole tool, producing at least two filtrate markers from the analyzing of the downhole fluid sample and converting the at least two filtrate markers by vector rotation to a sufficiently orthogonal signal. The first pumped fluid sample giving initial plateau readings can be a proxy for 100% drilling fluid having an initial orthogonal signal and subsequent samples can be converted to orthogonal signals that are referenced to the first pumped fluid signal to give a calculation of percent contamination of the formation fluid.
    Type: Application
    Filed: January 6, 2011
    Publication date: December 26, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC
    Inventors: Christopher Michael Jones, Robert E. Engelman, Michael T. Pelletier, Mark A. Proett, Thurairajasingam Rajasingam
  • Publication number: 20130327522
    Abstract: Fluid distribution determination and optimization using real time temperature measurements. A method of determining fluid or flow rate distribution along a wellbore includes the steps of: monitoring a temperature distribution along the wellbore in real time; and determining in real time the fluid or flow rate distribution along the wellbore using the temperature distribution. A method of optimizing fluid or flow rate distribution includes the steps of: predicting in real time the fluid or flow rate distribution along the wellbore; comparing the predicted fluid or flow rate distribution to a desired fluid or flow rate distribution; and modifying aspects of a wellbore operation in real time as needed to minimize any deviations between the predicted and desired fluid or flow rate distributions.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 12, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Gerard GLASBERGEN, David O. JOHNSON, Diederik vanBATENBURG, Jose SIERRA, Mary VAN DOMELEN, John WARREN
  • Patent number: 8528396
    Abstract: Example methods and apparatus to detect phase separation in downhole fluid sampling operations are disclosed. An example method to detect a phase separation condition of a fluid from a subterranean involves obtaining a sample of the fluid, measuring a first characteristic value of the sample, measuring a second characteristic value of the sample and comparing the first characteristic value to a first reference value associated with a single-phase condition of the fluid to generate a corresponding first comparison result. The example method then compares the second characteristic value to a second reference value associated with the single-phase condition of the fluid to generate a corresponding second comparison result and detects the phase separation condition of the fluid based on the first and second comparison results.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 10, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Xu Wu, Tsutomu Yamate, Toru Terabayashi, Ricardo Vasques, Chengli Dong, Peter S. Hegeman
  • Patent number: 8511379
    Abstract: A method and system for determining a property of a sample of fluid in a borehole. A fluid sample is collected in a downhole tool. While collecting, X-rays are transmitted proximate the fluid from an X-ray source in the tool and an X-ray flux that is a function of a property of the fluid is detected. The detected X-ray flux data is processed to determine the property of the fluid.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: August 20, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ronald L. Spross, Jerome Allen Truax, Paul F. Rodney, Daniel David Gleitman
  • Patent number: 8492152
    Abstract: Apparatus and systems, as well as methods, may operate to draw a formation fluid sample into a sampling port included in a down hole tool or tool body, to vaporize some part of the fluid sample to substantially fill an injection port with a gas phase, to differentiate gas components in the gas phase to provide differentiated gas components along a concentration gradient in a receiving section, to detect the differentiated gas components with a detector, and to determine a fingerprint of the differentiated gas components. A reaction section and a vacuum section may be used for waste consumption and/or absorption.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: July 23, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher M. Jones, Michael T. Pelletier
  • Patent number: 8398301
    Abstract: Apparatus for determining downhole fluid temperatures are described. An example apparatus for measuring a temperature of a downhole fluid includes a sensing element for measuring a physical or chemical property of the downhole fluid, and a plurality of electrical connections to enable the sensing element to measure the chemical or physical property and provide an output signal representative of the chemical or physical property, wherein at least one of the electrical connections is configured to function as a thermocouple to sense a temperature of the downhole fluid.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 19, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Raghu Madhavan, Michael Stangeland
  • Patent number: 8367413
    Abstract: Apparatus and systems, as well as methods, may operate to draw a formation fluid sample into a sampling port included in a down hole tool or tool body, to vaporize some part of the fluid sample to substantially fill an injection port with a gas phase, to differentiate gas components in the gas phase to provide differentiated gas components along a concentration gradient in a receiving section, to detect the differentiated gas components with a detector, and to determine a fingerprint of the differentiated gas components. The receiving section may comprise a diffusion section. A reaction section and a vacuum section may be used for waste consumption and/or absorption.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: February 5, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher M. Jones, Michael T. Pelletier
  • Publication number: 20130025359
    Abstract: A method for measuring viscosity in a borehole includes: pumping downhole fluid through at least one tube disposed in a carrier configured to be disposed in a borehole in an earth formation; taking at least one differential pressure measurement of the fluid in the at least one tube via a pressure transducer; and estimating a viscosity of the fluid based on the differential pressure measurement.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 31, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Ansgar CARTELLIERI, Stefan SROKA
  • Publication number: 20130019673
    Abstract: An apparatus for estimating a viscosity or density of a fluid downhole includes a carrier configured to be conveyed through a borehole penetrating the earth. A pump is disposed at the carrier and configured to pump the fluid. A flow restriction element is configured to receive a flow of the fluid pumped by the pump and to reduce pressure of the fluid flowing through the flow restriction element. A sensor is configured to measure a differential pressure across the flow restriction element and to provide an output that is used to estimate the viscosity or density.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 24, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Stefan SROKA, Thomas KRUSPE, Peter SCHAEFER
  • Publication number: 20130024122
    Abstract: A method for downhole fluid analysis comprising: receiving fluid property data for two fluids from a device in a borehole; the fluid property data including temperature data of the fluids and resistivity data of the fluids; in real time with receiving the fluid property data, deriving correlation between the temperature data and the resistivity data for each fluid; and evaluating the correlation of the fluids.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Peihu Wang, Ju Chen, Yao Liu
  • Patent number: 8335650
    Abstract: Example methods and apparatus to determine phase-change pressures are disclosed. A disclosed example method includes capturing a fluid in a chamber, pressurizing the fluid at a plurality of pressures, measuring a plurality of transmittances of a signal through the fluid at respective ones of the plurality of pressures, computing a first magnitude of a first subset of the plurality of transmittances, computing a second magnitude of a second subset of the plurality of transmittances, comparing the first and second magnitudes to determine a phase-change pressure for the fluid.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: December 18, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Kai Hsu, Kentaro Indo, Peter S. Hegeman, Carsten Sonne
  • Publication number: 20120304758
    Abstract: Disclosed is an apparatus for estimating a property of a fluid downhole. The apparatus includes a carrier configured to be conveyed through a borehole penetrating the earth. A cantilever is disposed at the carrier and configured to move in the fluid upon receiving a stimulus. An actuator is disposed at the cantilever and configured to provide the stimulus at a frequency less than a lowest resonant frequency of the cantilever. A sensor is disposed at the cantilever and configured to sense a strain imposed on the cantilever due to movement of the cantilever in the fluid in order to estimate the property.
    Type: Application
    Filed: May 8, 2012
    Publication date: December 6, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Sunil Kumar
  • Publication number: 20120227483
    Abstract: An apparatus for estimating a property of a downhole fluid includes: a flexural mechanical resonator having at least one magnetic permeable element traversing a pressure-retaining wall with a portion of the magnetic permeable element protruding into the fluid, the portion of the magnetic permeable element protruding into the fluid being configured to oscillate; and a monitor for receiving a response of the flexural mechanical resonator to estimate the property.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 13, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Thomas Kruspe, Stefan Sroka
  • Patent number: 8261819
    Abstract: A method of determining a fluid level in a well space without substantial venting of gas to the atmosphere or injecting a gas at high pressure. Gas being produced by the well is used to create a pressure differential between two spaces. A wave is induced in the well space by causing the two spaces to come into gaseous communication for a selected time internal. Pressure changes are measured as the induced wave travels through the gas in the well space from the measurement system to a fluid surface and back to the measurement system to determine a round trip travel time of the wave. The fluid level is calculated from the round-trip travel time and a speed of the wave as one-half of the product of the wave speed and the round-trip time.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: September 11, 2012
    Inventors: Sam Gavin Gibbs, Kenneth Bernard Nolen
  • Patent number: 8244473
    Abstract: System and method for automatic analysis and determination of a parameter. Measurement data are obtained from one or more sensors deployed to measure a desired parameter, the data being associated to identified locations. The measured data are processed to parse out the data obtained with at least one sensor configured to provide a measurement of a selected subsurface parameter and examined to automatically output a value determined to be the most accurate value for the selected parameter from the obtained measurement data.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 14, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Richard J. Radtke, Robert Perchonok, Matthew McCoy
  • Patent number: 8230916
    Abstract: Apparatus and methods to analyze downhole fluids are described herein. A disclosed example method involves obtaining a sample of a downhole fluid. Additionally the example method involves ionizing at least a portion of the sample to decompose molecules having a relatively high molar mass into molecules having a relatively lower molar mass. Further, the example method involves analyzing the ionized portion of the sample to determine a parameter of the downhole fluid sample.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: July 31, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Ernest N. Sumrall, Anthony Goodwin, Erik Quam, Chengli Dong, Oliver C. Mullins
  • Patent number: 8146655
    Abstract: A method (and corresponding apparatus) for downhole fluid analysis of petroleum formation fluids. The method includes capturing in a chamber of a downhole tool at least two immiscible formation fluids in a generally segregated state (the fluids including petroleum), activating a fluid mixing means to mix the fluids in the chamber to create an emulsion therefrom, and allowing the emulsified fluids to segregate while measuring light transmittance through the segregating fluids in order to calculate a transition time period based on the light transmittance through the fluids in the chamber. The transition time period is preferably bounded by the time required for the light transmittance values measured by the light detector to reach a baseline light transmittance. The transition time period characterizes the stability of an emulsion formed by the captured fluids. The methods and apparatus can also be used for other fluid testing applications beyond downhole formation fluid testing.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: April 3, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Kentaro Indo, Kai Hsu
  • Patent number: 8146657
    Abstract: A method of inferring gas production utilizing a conduit having an outlet controlled by a valve in communication with a space within a well through which a gas volume is being produced. A selected number of measurements are taken during a selected period of time, with each measurement including closing the outlet valve to allow gas pressure within the conduit to change, sampling the gas pressure within the conduit over a sampling time period, calculating a rate of pressure change from samples taken over the sampling time period, and calculating a rate of gas production in the conduit from the calculated rate of change of pressure, the gas volume, well characteristics and gas properties. The calculated rates of gas production for the selected number of measurements are summed to determine an inferred rate of gas production through the conduit during the selected period of time.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: April 3, 2012
    Assignee: Sam Gavin Gibbs
    Inventors: Sam Gibbs, Bernard Nolen
  • Publication number: 20120048008
    Abstract: Disclosed is a fluid testing device which utilizes a small, cross-section fluid interface to separate a test fluid chamber from a drive and measuring chamber. The test fluid chamber contains the test fluid and a paddle-type fluid test assembly. The drive and measuring chamber contains a second fluid and assemblies for moving the paddle and for determining the resistance movement. The two chambers are connected together by a narrow cross-section passageway allowing for continuous testing while test fluids are flowed through the test chamber and for successive testing of different samples without breaking down the device between tests. A pair of coaxial shafts extends between the test fluid chamber and the drive and measuring chamber. The shafts are connected together by a spring located in the drive chamber whereby the resistance to movement is determined by measuring the deflection in the spring. The shafts are magnetically coupled to a motor to rotate the shafts.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Inventors: Sairam K.S. Pindiprolu, Dennis Willie Gray, Christopher Lynn Gordon, Balasundaram Balaraman
  • Publication number: 20120036924
    Abstract: A sensor system for sensing a process variable of fluid at a first location including a variable resonator disposed at the first location having a resonant frequency which varies in response to the process variable of the fluid and responsively provides a resonant acoustic signal at the resonant frequency indicative of the process variable. An acoustic sensor disposed at a second location which is spaced apart from the variable resonator is configured to receive the resonant acoustic signal transmitted from the variable resonator. Measurement circuitry coupled to the acoustic sensor configured to provide a process variable output related to the process variable of the fluid in response to the received resonant acoustic signal.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Inventors: Robert C. Hedtke, Liangju Lu
  • Patent number: 8104338
    Abstract: In a particular embodiment, a method and system are disclosed for measuring ion concentrations for a fluid and determining a degree of sample cleanup during sampling of a fluid downhole. The method includes but is not limited to deploying an ion selective sensor downhole, exposing the fluid to the ion selective sensor downhole, measuring ion concentrations of the fluid over time during sampling and estimating a degree of sample clean up from the ion concentration measurements. The system includes but is not limited to a tool deployed in a wellbore, an ion selective sensor in the tool, a processor in communication with the ion selective sensor and a memory for storing an output from the ion selective sensor.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: January 31, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Rocco DiFoggio
  • Patent number: 8099241
    Abstract: The present invention is a method and apparatus for determining oil based mud contamination of a hydrocarbon fluid obtained from a wellbore during a formation testing. The invention includes receiving a model for simulating the contamination and receiving an empirical equation for computing the contamination. At a given pumping time, a simulated contamination is generated based on the model and an empirically computed contamination is generated based on the first empirical equation. The simulated contamination and empirically computed contamination are compared and a determination as to which is more reliable is made. Revision of the first model or first empirical equation based is then performed.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: January 17, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: YuQiang Niu, Robert North, Chen Lin
  • Publication number: 20110290012
    Abstract: The present disclosure is directed to a filter element for simulating a fracture in subterranean formations comprising a non-porous filter element configured to be disposed in a wellbore fluid testing device, the non-porous filter element having a plurality of radial perforations extending there through.
    Type: Application
    Filed: August 20, 2008
    Publication date: December 1, 2011
    Inventors: Trevor G. Jappy, Lynn H. Jenkins, Mark W. Sanders
  • Patent number: 8060311
    Abstract: Job monitoring methods and apparatus for logging-while-drilling equipment are disclosed. A disclosed example method includes obtaining a fluid associated with an underground geological formation, analyzing the fluid with one or more sensors to form respective ones of sensor outputs, identifying a downhole scenario associated with the fluid based on the sensor outputs, the identifying being performed while the sensors are within the underground geological formation, and selecting a telemetry frame type based on the identified downhole scenario.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: November 15, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Sylvain Ramshaw, Julian J. Pop, Peter Swinburne, Kai Hsu, Steven G. Villareal