Impurity Patents (Class 73/31.02)
  • Publication number: 20120180549
    Abstract: A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 1500° C. or lower; measuring the amount of carbon dioxide gas occurring from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 1 and 2: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is the heating temperature x (° C.) and y is the amount of carbon dioxide gas (mole/g) occurring per 1 g of the positive electrode active material in the heating to the heating temperature x (° C.).
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
  • Patent number: 8220312
    Abstract: The invention is a method and system of screening the content of an enclosure, such as a cargo container, for the presence of one or more target substances, such as explosives or drugs, comprising drawing air from the enclosure and passing the drawn air across at least one sampling card having a coating configured to absorb/adsorb the one or more target substances and thereafter analyzing the sampling card to determine if the coating has absorbed/adsorbed one or more target substances. The system embodiment includes a vacuum source, a conduit coupled to the vacuum source and a sampling card holder disposed along the conduit. The sampling card holder removably holds at least one sampling card having a coating thereon configured to absorb/adsorb the one or more target substances, so that air drawn into the conduct from the enclosure passes across the at least one sampling card.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: July 17, 2012
    Assignee: Teknoscan Systems, Inc.
    Inventor: Sabatino Nacson
  • Patent number: 8217355
    Abstract: Two detectors of the same kind, each having an identical neutral band-pass filter to the target gas, are installed next to Signal channel and Reference channel detectors as pairs in an AB designed NDIR gas sensor layout, which are called Standard Signal channel detector and Standard Reference channel detector. “Standard” GAMMA is the ratio of Standard signal channel detector output over that of Standard Reference channel detector. “Standard” GAMMA is independent of the measurement Physics of NDIR gas sensors, is dependent only upon the performance characteristics of the sensor component and is also independent of the presence of any amount of target gas in the sample chamber. Consequently, “Standard” GAMMA can be used to proportionally correct and update GAMMA of the sensor as its components age over time thereby rendering such an AB designed NDIR gas sensor self-commissioning or staying accurate over time after initial calibration.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: July 10, 2012
    Assignee: Airware, Inc.
    Inventor: Jacob Y Wong
  • Patent number: 8196479
    Abstract: A portable multi-tube air sampler device for capturing samples of trace elements in a suspected contaminated environment which includes a plurality of sample tubes for collecting sample trace elements, parallel inlet and outlet manifolds which minimize the length of the sample inlet path while utilizing short straight sample tubes, a hinged retainer bar mechanism which allows for easy removal and replacement of the various sample tubes, and a removably attachable controller unit which can be installed on the exterior portion of the carrying case for controlling the operation of the sampling protocol. Other embodiments include heated inlet manifold and sample intake paths to prevent contamination accumulation and carryover, a clean cycle option with a filter valved into the inlet flow path to enhance the purging cycle, and a mechanism for converting the present device to a desorbing auto sampler configuration. The present system likewise incorporates a purging cycle prior to each sampling cycle.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: June 12, 2012
    Assignee: Midwest Research Institute, Inc.
    Inventors: Richard K. Ludwick, Keith D. Wilson
  • Patent number: 8190367
    Abstract: Disclosed are means for monitoring the levels of air pollution in urban areas for the purpose of optimizing the conditions of airflow ventilation of buildings according to air pollution levels in their area. The invention supplies data in real time regarding local air pollution levels or relative levels, i.e. current air pollution levels in relation to previous ones. The disclosed system and method makes use of the fluctuations in air pollution levels in order to achieve optimal reduction of air pollution levels inside buildings. The system defines optimal times for ventilation in order to achieve a significant and persisting improvement of indoor air quality, in a routine manner, by using measurements of nondeterministic, continuous and effective fluctuations in air pollution levels at the surroundings of each building, specifically in locations which don't include monitoring stations.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: May 29, 2012
    Assignees: G.R.G. Patents Ltd.
    Inventor: Nir Bassa
  • Patent number: 8181505
    Abstract: A method is proposed for characterizing a totality of particles. The method can be used in particular for characterizing microparticular or nanoparticular aerosols. The method comprises the following steps: a) in a classification step, a class of the totality is selected, wherein the particles of the selected class have a prespecified mobility dm; b) in a counting step, a number N of the particles of the selected class is determined; c) in a charge determination step, a charge Q of the particles of the selected class is determined; and d) in an evaluation step, at least one morphological parameter is determined from the charge Q, the number N and the mobility dm, wherein the morphological parameter comprises at least one item of information about an agglomerate state of the particles.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: May 22, 2012
    Assignees: BASF SE, Regents of The University of Minnesota
    Inventors: Michael Mertler, Bernd Sachweh, Markus Linsenbühler, Michael Schäfer, David Y. H. Pui, Heinz Fissan, Jing Wang, Weon Gyu Shin
  • Patent number: 8176768
    Abstract: A particulate matter detection device 100 includes a first electrode 1 whose one surface is covered with an inter-electrode dielectric material 4; a second electrode 2 disposed on the side of the one surface of the first electrode 1, to perform the discharge of electricity by a voltage applied between the first electrode 1 and the second electrode; and a pair of measurement electrodes 5, 15 disposed on the surface of the inter-electrode dielectric material 4 so as to face each other; characteristic measurement means 3 for measuring electric characteristics between the pair of measurement electrodes 5 and 15; and particulate matter amount calculation means 13 for obtaining the amount of the particulate matter 11 collected by the surface of the inter-electrode dielectric material 4, based on the change amount of the electric characteristics.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: May 15, 2012
    Assignees: NGK Insulators, Ltd., Honda Motor Co., Ltd.
    Inventors: Atsuo Kondo, Takeshi Sakuma, Takashi Egami, Tatsuya Okayama, Masanobu Miki, Keizo Iwama
  • Patent number: 8161797
    Abstract: A device for use with a detection means and a solvent source for sampling low volatility hazardous chemicals within a sample matrix is comprised of a sonicator having a probe for providing mechanical agitation to the sample matrix; means for transporting solvent gas from the solvent source to the sample matrix; means for transporting sample gas from the sample matrix to the detection means; and a heating element for heating the sample gas, solvent gas, and sample matrix. The device may include a thermocouple for providing a temperature reading. It also may include a plurality of interchangeable probe tips of different shapes.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: James A. Genovese, Edward M. Rychwalski, Stephen J. Comaty
  • Patent number: 8083914
    Abstract: An electrochemical gas sensor is disclosed which comprises a gas sensing electrode and a counter electrode disposed within a housing, the housing having an aperture for gas ingress, the gas sensing electrode and counter electrode being separated by a region containing electrolyte, and means for connecting the gas sensing electrode and the counter electrode to a sensing circuit. An electrolyte-absorbing element is disposed inboard of the aperture, between the housing and the gas sensing electrode, in order to absorb electrolyte passing through the gas sensing electrode whilst maintaining a gas path through the electrolyte-absorbing element.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: December 27, 2011
    Assignee: Life Safety Distribution AG
    Inventors: Andrew Peter Millar, Martin Jonathan Kelly
  • Patent number: 8056395
    Abstract: The present invention provides a method for detecting easily and efficiently a chemical substance contained in a gas sample at an ultralow amount. The present invention is directed to detecting method of a chemical substance contained in a gas sample, using an analyzing device with electrostatic atomizer. The analyzing device comprises a vessel, a inlet, a cooling part, an atomizing electrode, a counter electrode, an intermediate electrode, a liquid detecting part, and a detecting electrode. According to a detecting method of the present invention, the gas sample is condensed as a first condensate liquid at the surface of the atomizing electrode. The first condensate liquid is configured to be electric-charged fine particles to obtain a second condensate liquid at the surface of the counter electrode. The resulted second condensate liquid is brought in contact with the detecting electrode and a current voltage is applied between the counter electrode and the detecting electrode.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: November 15, 2011
    Assignee: Panasonic Corporation
    Inventor: Akio Oki
  • Patent number: 8038948
    Abstract: A gas analyzer system for analyzing samples of compressed or ambient gas such as breathing air within a scuba tank, SCBA or ambient air within an industrial plant and informing the user as to the results of the sample's gas purity without the gas sample having to be physically transported to an accredited laboratory. The system comprises a gas analyzer situated at a user facility for receiving the contents of a gas sample and detecting gas purity characteristics, and a server situated at a remote certified testing site and electrically coupled to the gas analysis module via data transmission, such as a wireless or a computer network connection, wherein the server, maintained by a qualified third party receives and stores the gas purity characteristics in the form of computer-readable data signals.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: October 18, 2011
    Assignee: Lawrence Factor, Inc.
    Inventor: Robert M. Laughlin
  • Patent number: 7997119
    Abstract: This invention describes a sample collection method that could release and collect residues of explosives and other chemicals from a surface; the described method is implemented into a compact detection system that can be used as a “wand” for screening chemicals residues on a subject. The wand configuration includes multi-function for sampling and detecting multiple threads. The invention further describes a method of inspecting a subject using an interrogating apparatus in a sweeping motion; the near range closed loop particle sampling arrangement allows effective collection of particle and vapor residues from a targeted surface. The invention also describes a sampling and detecting apparatus for on-the-fly threat detection using compact ion mobility based detectors.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: August 16, 2011
    Assignee: Excellims Corporation
    Inventor: Ching Wu
  • Publication number: 20110174054
    Abstract: There is herein described a device and a method for measuring and/or monitoring gas levels. More particularly, there is described a device and a method for measuring and/or monitoring pollution levels in the atmosphere and wherein the measured pollution levels are capable of being displayed in a format equivalent to a number of cigarettes per day value.
    Type: Application
    Filed: June 25, 2009
    Publication date: July 21, 2011
    Inventor: Craig Lynn
  • Patent number: 7963146
    Abstract: A method and system may include receiving a sample gas from an ambient environment on a first surface of a selective isolation device within an inlet assembly, dispersing the sample gas in substantially a first direction along the first surface, and circulating a carrier gas through a main assembly coupled to the inlet assembly, the main assembly defining a carrier gas environment. The method and system also may include selectively passing analytes from the sample gas through the selective isolation device to a second surface of the selective isolation device, the selective isolation device separating the ambient environment from the carrier gas environment, dispersing the carrier gas in substantially a second direction along the second surface, and obtaining the analytes in the carrier gas from the second surface.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: June 21, 2011
    Assignee: General Dynamics Armament and Technical Products, Inc.
    Inventor: John M. A. Petinarides
  • Patent number: 7946152
    Abstract: In a measuring apparatus, an atmosphere to be inspected taken out from a space to be inspected in a processing system is analyzed for organic gas concentration. The apparatus is provided with a collector having an approach connected to the space to be inspected. The collector is connected to a gas exhaust system and an adsorption material for preparing a captured organic gas is held in the collector. A temperature control mechanism including a heater controls the adsorption/desorption of organic gas through temperature control of the adsorption material. A carrier gas is supplied from a carrier gas supplying system in order to transfer the desorbed gas taken from the captured organic gas and the concentration of organic gas in the carrier gas transferring the desorbed gas is determined in a concentration measuring unit.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 24, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Misako Saito, Teruyuki Hayashi
  • Patent number: 7931716
    Abstract: A cleaning appliance includes a main body, a filter and an interlock. The main body includes an airflow generator, a separating apparatus separating dirt and dust from an airflow, and a flowpath between the separating apparatus and the airflow generator delimited by a wall. The interlock has a first part located on the filter and a second part located on the main body outside the flowpath, arranged to communicate remotely when the filter is correctly located in the pre-determined position. The interlock is arranged selectively to allow or prevent operation of the airflow generator depending upon the relative separation between the first and second parts. By providing an interlock which has first and second parts which communicate remotely, the second part located on the main body can be isolated from the airflow path so that the second part is not subject to dirt and dust carried by the airflow.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: April 26, 2011
    Assignee: Dyson Technology Limited
    Inventor: George Francis Paul Oakham
  • Patent number: 7913542
    Abstract: A gas sensor assembly detects a constituent in a gaseous stream. The assembly comprises: (a) a mounting surface, (b) a sensor mounted on the mounting surface and sensor capable of generating a detectable signal in the presence of the constituent, and (c) an enclosing structure. The enclosing structure comprises: (i) a walled component having a pair of vertically spaced ends and mounted at one end on the mounting surface so as to circumscribe the sensor, and (ii) a gas-permeable membrane attached at the other end of the walled component, thereby defining an interior volume within said enclosing structure. Flowing the gaseous stream across the membrane infuses a portion of the gaseous stream into said interior volume containing the sensor.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: March 29, 2011
    Assignee: H2Scan Corporation
    Inventor: Robert Pendergrass
  • Publication number: 20110065097
    Abstract: The present invention is a method and apparatus for contaminant detection in the food industry. Particularly, the method and apparatus involve collecting air samples containing aerosolized contaminate particles from a foodstuff and analyzing the sample for presence of a contaminate. Aerosol lab-on-a-chip and/or electronic nose devices are utilized for the detection of contaminant particles.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 17, 2011
    Inventor: Arthur T. Jones, JR.
  • Patent number: 7905154
    Abstract: The present invention is a method and apparatus for contaminant detection in the food industry. Particularly, the method and apparatus involve collecting air samples containing aerosolized contaminate particles from a foodstuff and analyzing the sample for presence of a contaminate. Aerosol lab-on-a-chip and/or electronic nose devices are utilized for the detection of contaminant particles.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: March 15, 2011
    Inventor: Arthur T. Jones, Jr.
  • Patent number: 7900501
    Abstract: An air quality monitor having multiple sensors deployed in an electric circuit returns a single sign indication of atmospheric impurity regardless of whether the impurity gas is of the oxidizing or reducing type. Each sensor employs a gas sensitive material that exhibits a response in the form of a change in electrical resistance of the material in the presence of a gas and that exhibits a negligible response to changes in the moisture content of the atmosphere. A powder is dried and calcined and the result is ground into a fine powder and pressed into a desired shape to make the gas sensitive material. Adding a binder during the pressing and firing the shaped powder results in a gas sensitive material with porosity. Gas is flowed to the gas sensitive material and the resulting change in resistance is measured and returned as a single sign indication of atmospheric impurity.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: March 8, 2011
    Assignee: Atmospheric Sensors Ltd.
    Inventor: Patrick T. Moseley
  • Patent number: 7895881
    Abstract: A device for detecting chemical or biological substances includes an analytical instrument for detecting the substances and for providing information concerning the qualitative or quantitative presence of the substances, and also a contamination sensor for measuring the degree of contamination of the analytical instrument and/or of the device.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: March 1, 2011
    Assignee: EADS Deutschland GmbH
    Inventors: Gerhard Mueller, Andreas Helwig, Johann Goebel
  • Patent number: 7886578
    Abstract: A sensor element for gas sensors for determining the concentration of particulates in gas mixtures, in particular soot sensors having at least one first measuring electrode applied to an electrically insulating substrate and at least one second measuring electrode, a voltage being applicable to the first and second measuring electrodes. The first measuring electrode is at least partly covered by a porous material open to diffusion of the particles to be determined.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: February 15, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Ralf Schmidt, Markus Siebert, Sabine Roesch, Helmut Marx, Henrik Schittenhelm
  • Patent number: 7866202
    Abstract: Disclosed is a method of fabricating a carbon monoxide detector and a carbon monoxide detector fabricated using the same. Particularly disclosed is a method of fabricating a carbon monoxide detector, which can operate at room temperature and process high detecting selection, and the detector fabricated using the same. The method comprises: providing a substrate having an upper surface; forming two electrode sets on the upper surface of the substrate, and the two electrode sets combined to provide an interdigitated array electrode; forming a tin dioxide layer, which covers the portion of the two electrode sets and the portion of the upper surface; and forming an organic polymer layer on the surface of the tin dioxide layer.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: January 11, 2011
    Assignee: Forward Electronics Co., Ltd.
    Inventors: Ko-Shao Chen, Shu-Juan Liao, Yun-Huang Chen, Jung-Chien Chang
  • Patent number: 7824618
    Abstract: Provided is a sensor structure comprising a heater and a temperature sensor at the center of a membrane having a well structure, allowing a temperature to be rapidly controlled with low power, and the object is analyzed using a conductivity change measured at two or more substrate temperatures with a pair of detecting electrode and a detecting layer implemented on the heater, wherein the sensing layer can include a conductive particle and a non-conductive organic composite.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: November 2, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Shin Kim, Yun Tae Kim, Hae Sik Yang, Young Jun Kim, Seung Chul Ha, Yoon Seok Yang
  • Patent number: 7797984
    Abstract: A semiconductor manufacturing apparatus includes a processing chamber for performing a manufacturing processing on a wafer. A gas supply line for introducing a purge gas is connected to an upper portion of the processing chamber, a valve being installed on the gas supply line. A rough pumping line with a valve is connected to a lower portion of the processing chamber. Installed on the rough pumping line are a dry pump for exhausting a gas in the processing chamber and a particle monitoring unit for monitoring particles between the valve and the dry pump. In the semiconductor manufacturing apparatus, after the valve is opened, the purge gas is supplied to apply physical vibration due to shock wave in the processing chamber so that deposits are detached therefrom to be monitored as particles.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: September 21, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Hiroyuki Nakayama, Tsuyoshi Moriya
  • Patent number: 7780092
    Abstract: An arrangement includes a plurality of wireless microsystems and a central data processor. Each microsystem is operable to measure a plurality of indoor environmental quality-related parameters and is operable to communicate first information pertaining to the measured parameters wirelessly to a network device. The central data processor is operably coupled to receive the first information from the network device, and further configured to generate a metric value of an indoor environmental quality of at least a first space based at least in part on the first information, the metric value dependent upon each of the measured parameters of at least a first of the plurality of microsystems.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 24, 2010
    Assignee: Siemens Industry Inc.
    Inventor: Osman Ahmed
  • Patent number: 7737700
    Abstract: Detecting air ingredients is obtained, a heater and gas sensitive acting layers are arranged on a substrate, which are connectable to an analyzing unit. Electrical resistances of n acting layers are connected in series; heater is a temperature sensor connected in parallel with this series connection, electrical resistance of heater is smaller than the sum of electrical resistances of acting layers and resistances are connected with a total of n+1 electrical terminals via electrodes so that heater is connected with two terminals and n?1 other terminals are connected with a respective junction that interconnects two acting layers. Heater is intermittently heated so that a predefined constant temperature of acting layers is achieved, temperature of acting layers is acquired by determining electrical resistance of heater; voltages in the series connection of acting layers are analyzed and a concentration of gases are determined from electrical resistances of acting layers.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 15, 2010
    Assignee: UST Umweltsensortechnik GmbH
    Inventors: Olaf Kiesewetter, Anatolij Ewert, Volkmar Melchert, Sven Kittelmann
  • Patent number: 7726177
    Abstract: An apparatus for sensing a constituent in an environment including a sensor circuit and a suppression circuit. The sensor circuit has a sensor element and an operating state control element. The sensor element senses the constituent by presenting an electrical parameter which varies as a function of a degree of the constituent. The control element maintains the sensor at a preferred operating state. A detected electrical parameter of said sensor element is subject to error resulting from a leakage of electrical current between the control element and the sensor element. The suppression circuit reduces or stops the leakage to reduce the error.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: June 1, 2010
    Assignee: Detector Electronics Corporation
    Inventors: Morton Lee Schlesinger, Anthony Charles Young, John Dee King
  • Patent number: 7722816
    Abstract: A detection device and method for detecting the presence of an agent in a fluid. The device includes a membrane having first and second sides. The membrane allows a stimulus, e.g. ultraviolet light, to dissolve in response to presence of the agent. A source is positioned on a first side of the membrane. The source sources the stimulus toward the membrane. A detection structure is disposed on the second side of the membrane for detecting the stimulus. The detection structure generates an output voltage in response to the intensity of the stimulus detected. As the membrane dissolves, the intensity of the stimulus detected changes.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: May 25, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Hongrui Jiang, Sudheer S. Sridharamurthy
  • Patent number: 7669490
    Abstract: To provide a filter test apparatus that can easily and efficiently test parallel filters in a clean room, a plurality of filters for purifying air supplied into the room are disposed in parallel, and a moving frame oriented along the exit surfaces of a filter group is disposed in the clean room, in which the exit surfaces of the filter group are used as the ceiling surfaces or side surfaces of the room, so as to allow movement in the direction along the exit surfaces of the filter group in a direction orthogonal to the longitudinal direction of the moving frame. The moving frame is disposed so as to span opposing room walls and in a position near the exit surfaces of the filter group in the room. A filter test device is movably mounted on the moving frame in the longitudinal direction of the moving frame.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: March 2, 2010
    Assignee: Taikisha Ltd.
    Inventor: Yasuhiro Yoshitome
  • Patent number: 7665345
    Abstract: A gaseous product detecting device (1; 20; 30; 40; 70) has a measuring cell (6; 59; 60), a filtering element (3; 45) for retaining particulate present in the air entering the measuring cell (6; 59, 60), and a detecting element (13; 50, 56) housed inside the measuring cell (6; 59, 60). A wall (9; 49, 61; 79, 82) of the measuring cell (6; 59, 60) is movable in fluidtight manner between a withdrawn position, in which the measuring cell (6; 59, 60) has a maximum volume, and a forward position, in which the measuring cell (6; 59, 60) has a minimum volume and the detecting element (13; 50, 56) is prevented from being impressed by resting against a shutter surface (5a; 43a, 49b; 82a) of the measuring cell (6; 59, 60).
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: February 23, 2010
    Assignee: Giuliano Sciocchetti
    Inventors: Giuliano Sciocchetti, Massimo Pagliari, Elvio Soldano
  • Publication number: 20100037679
    Abstract: A control system and associated methods for an air treatment system. In one aspect, the present invention provides a control system and method for controlling blower speed as a function of separately determined smoke and dust concentrations. In one embodiment, the control system and method provides a variable delayed between changes in motor speed to address undesirable rapid changes between speeds. In another aspect, the present invention provides a system and method for calibrating a sensor to provide more uniform operation over time. In yet another aspect, the present invention provide a system and method for calibrating motor speed to provide more consistent and uniform motor speed over time. The present invention also provides a system and method for tracking filter life by as a function of time, motor speed and/or a sensed variable, such as particulate concentration in the environment.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 18, 2010
    Applicant: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: Thomas A. Niezgoda, Thomas J. Leppien, Gregory K. Evans
  • Patent number: 7647813
    Abstract: A hydrogen sensor (100) with instant response that uses one or more quartz tuning forks (101, 102) while no chemical reactions or other material modifications are involved. Sensor (100) can be used in any application to measure percent range of hydrogen concentrations.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: January 19, 2010
    Assignee: Applied Nanotech Holdings, Inc.
    Inventor: Igor Pavlovsky
  • Patent number: 7610794
    Abstract: A compact sensor with which particles floating in the air can be easily detected. A sensor having a microstructure which detects a detection object by contact is used. A microstructure has an opening to be a detection hole corresponding to the size of a detection object, and a pair of electrodes having a bridge structure are provided thereabove or thereunder so as to partially contact with each other.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: November 3, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi, Fuminori Tateishi
  • Patent number: 7611671
    Abstract: Highly sensitive devices for detecting nitric oxide and/or other gaseous analytes in gaseous samples are improved by the incorporation of a carbon monoxide scavenger in the interior of the device or in the device packaging. The release of carbon monoxide within the housing of the device by the plastic used in the construction of the housing or by anything within the device that releases carbon monoxide causes a loss in sensitivity due to competition between the carbon monoxide and the nitric oxide for the binding sites on the device sensor. The scavenger corrects this by either catalyzing the oxidation of carbon monoxide to the less competitive carbon dioxide or immobilizing the carbon monoxide by affinity-type or covalent binding. Analogous effects are achieved for analytes other than nitric oxide but that likewise encounter interference from carbon monoxide in binding to sensors.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: November 3, 2009
    Assignee: Aperon Biosystems Corp.
    Inventors: David J. Anvar, David J. Chazan, Bryan P. Flaherty, Bhairavi R. Parikh
  • Patent number: 7607338
    Abstract: A Computer Vision Chemical Detector has been developed that uses invertebrate organisms trained to respond to targeted chemical odors.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: October 27, 2009
    Assignee: The United States of America as represented by the Secretary of Agriculture
    Inventors: Wallace J. Lewis, Glen C. Rains, Samuel L. Utley
  • Patent number: 7543478
    Abstract: A mail screening device for hazardous materials is disclosed. The mail screening device comprises a sample collection unit that uses air jets or air knives to dislodge residues of hazardous materials from a mail, and a detection unit that detects the hazardous materials in the exhaust air flow. Comparing to traditional mail screening systems that use belts and rollers to physically pinch a mail for sample collection, the device of the present invention is less complex and easier to operate, thereby reducing installation, maintenance and replacement costs.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: June 9, 2009
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Eric Gregory Burroughs, Kenneth Scott Damer, Matt Szarek
  • Publication number: 20090121128
    Abstract: The exemplary embodiments provide a method, system, and device for identifying chemical species in a sample. According to one embodiment, the method, system, and device may include introducing a sample gas into a differential ion mobility device, ionizing at least a portion of the sample gas to generate at least one ion species, filtering the at least one ion species between a pair of filter electrodes, generating a detection signal in response to the at least one ion species depositing a charge on a collector electrode, and detecting a spectral peak associated with the at least one ion species.
    Type: Application
    Filed: January 16, 2009
    Publication date: May 14, 2009
    Applicant: General Dynamics Armament and Technical Products, Inc.
    Inventors: Matthew Todd Griffin, John Michael Alfred Petinarides, Paul Joseph Rauch, Jerome Paul Dahl, Robert Francis McAtee
  • Publication number: 20090113991
    Abstract: In a measuring apparatus, an atmosphere to be inspected taken out from a space to be inspected in a processing system is analyzed for organic gas concentration. The apparatus is provided with a collector having an approach connected to the space to be inspected. The collector is connected to a gas exhaust system and an adsorption material for preparing a captured organic gas is held in the collector. A temperature control mechanism including a heater controls the adsorption/desorption of organic gas through temperature control of the adsorption material. A carrier gas is supplied from a carrier gas supplying system in order to transfer the desorbed gas taken from the captured organic gas and the concentration of organic gas in the carrier gas transferring the desorbed gas is determined in a concentration measuring unit.
    Type: Application
    Filed: June 2, 2006
    Publication date: May 7, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Misako Saito, Teruyuki Hayashi
  • Publication number: 20090071230
    Abstract: The method consists in, first, circulating the air in which the content of a specific pollutant is to be measured through or over materials that reversibly absorb compounds in the air that interfere with the measurement of pollution. These absorbent materials are employed in the form of self-fixing patches or membranes that can be disposed of after use and are placed between the air to be measured and the measurement means. These patches or membranes can be used for all types of measurement means, such as electronic sensors or calorimetric indicators (in which case the membrane will advantageously be transparent). This actual pre-treatment of the air will thus allow reliable, reproducible measurement irrespective of the environmental conditions (humidity, presence of other pollutants, etc.). For humidity, for example, the membrane will consist of silica gel or cotton wool.
    Type: Application
    Filed: December 22, 2006
    Publication date: March 19, 2009
    Inventor: Bruno Aubert
  • Publication number: 20090053989
    Abstract: The invention provides a method and system for constructing a new space or improving and existing space to achieve and maintain high air quality in the interior of the space by limiting airborne allergens, VOCs, particulates, and bio-aerosols therein. One method of the invention, includes the steps of sampling the air quality of the indoor space, removing suspected sources of pollutants, selecting replacement materials having low-VOC off gassing, testing the air quality to ensure the space meets a pre-determined base line air quality, and maintaining the air quality of the indoor space at or below the pre-determined base line air quality.
    Type: Application
    Filed: October 5, 2007
    Publication date: February 26, 2009
    Inventors: Tom Lunde, Nick Nardella
  • Patent number: 7493816
    Abstract: An aspirated smoke detector includes a flow path and a generator of acoustic waves in the flow path. Airborne particulate matter in the flow path responds to the acoustic field by particle agglomeration; the resulting larger particles flow into a photoelectric-type smoke sensor. A sensed level of particles can be processed, or compared to one or more predetermined thresholds to establish presence of one or more predetermined conditions.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 24, 2009
    Assignee: Honeywell International Inc.
    Inventors: Dragan P. Petrovic, Lorenzo Luterotti
  • Patent number: 7485854
    Abstract: A sampling device, for example a sampling valve, is disclosed for introduction of samples into an analysis system. The sampling device comprises a turning element provided with a sampling area. The sampling area is configured to retain samples to be analysed. The turning element is arranged for movement between a first position where the sampling area is exposed to material to be sampled for collection of samples and a second position where samples are released for use by the analysis system.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: February 3, 2009
    Assignees: University of Helsinki, Department of Chemistry, Laboratory of Analytical Chemistry, University of Helsinki, Department of Physical Science, division of Atmospheric Sciences, Finnish Meteorological Instutute
    Inventors: Kari Hartonen, Kari Kuuspalo, Heikki Lihavainen, Pasi Aalto, Markku Rasilainen, Marja-Liisa Riekkola, Markku Kulmala, Yrjo Viisanën
  • Publication number: 20090025453
    Abstract: An aspirated smoke detector includes an ambient air flow separation element in combination with a smoke sensing chamber. The flow separation element can be an active or a passive element. Separated ambient, carrying relative small particles can flow into the sensing chamber. Ambient carrying relatively larger particulate matter is excluded from the sensing chamber.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 29, 2009
    Inventors: Bruce R. Griffith, Ludger LK. Koester, Mark C. Bohanon
  • Publication number: 20090018780
    Abstract: Disclosed herein is a method and system for obtaining information on contaminants in ambient air. Multiple detection systems sample the ambient air for the contaminants in real time. Each of the multiple detection systems analyzes contaminants for hazardous substances. The multiple detection systems transmit information on the hazardous substances to a satellite monitoring system. The satellite monitoring system receives the transmitted information. The satellite monitoring system packages the information transmitted from each of the detection systems and analyzes the packaged information. The satellite monitoring system transmits the analyzed information to a console deployed on a computing device at a command station. The console receives the transmitted information from the satellite monitoring system and communicates user interaction based on the transmitted information to the satellite monitoring system.
    Type: Application
    Filed: April 25, 2008
    Publication date: January 15, 2009
    Inventor: Yoganand John Sookhu
  • Publication number: 20090007636
    Abstract: A chemiresistor sensor system compensated for temperature and aging effects is disclosed and includes a sensing element exposed to an atmosphere of an ambient environment to be monitored for the presence and/or concentration of a flammable vapor and a temperature compensation element which is isolated from the atmosphere of the ambient environment. The sensing element and the temperature compensation element are electrically connected in series and have similar performance in response to temperature changes and temperature cycling. The output of the chemiresistor sensor system, which is the voltage drop across the sensing element, remains unchanged despite the changes in resistance of the sensing element in response to temperature changes. Therefore, the chemiresistor sensor system can more accurately and consistently detect the presence of flammable vapor in environments subject to temperature changes and/or over long periods of time.
    Type: Application
    Filed: July 2, 2007
    Publication date: January 8, 2009
    Applicant: THERM-O-DISC, INCORPORATED
    Inventor: Jared Starling
  • Patent number: 7472612
    Abstract: Apparatus and methods for detecting the presence of an airborne chemical or biological analyte utilize: a substantially gas- and liquid-impermeable container; means for introducing a substantially analyte-free collection liquid into said container; means for rapidly sampling ambient air and transferring said analyte therefrom into said collection liquid, said sampling means comprising an air intake means and and an air venting means; and means for removing from said container an analyte-enriched collection liquid; wherein said volume of air passes through a substantially horizontal air inlet and downward through a substantially vertical collector electrode tube with means for applying an electric field between said tube and a co-axial spiked wire- or rod-shaped discharge electrode.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: January 6, 2009
    Inventors: Solomon Zaromb, Dennis J. Martell
  • Publication number: 20080307856
    Abstract: Disclosed is a method of fabricating a carbon monoxide detector and a carbon monoxide detector fabricated using the same. Particularly disclosed is a method of fabricating a carbon monoxide detector, which can operate at room temperature and process high detecting selection, and the detector fabricated using the same. The method comprises: providing a substrate having an upper surface; forming two electrode sets on the upper surface of the substrate, and the two electrode sets combined to provide an interdigitated array electrode; forming a tin dioxide layer, which covers the portion of the two electrode sets and the portion of the upper surface; and forming an organic polymer layer on the surface of the tin dioxide layer.
    Type: Application
    Filed: May 16, 2008
    Publication date: December 18, 2008
    Applicant: Forward Electronics Co., Ltd.
    Inventors: Ko-Shao Chen, Shu-Juan Liao, Yun-Huang Chen, Jung-Chien Chang
  • Publication number: 20080282772
    Abstract: A method and system may include receiving a sample gas from an ambient environment on a first surface of a selective isolation device within an inlet assembly, dispersing the sample gas in substantially a first direction along the first surface, and circulating a carrier gas through a main assembly coupled to the inlet assembly, the main assembly defining a carrier gas environment. The method and system also may include selectively passing analytes from the sample gas through the selective isolation device to a second surface of the selective isolation device, the selective isolation device separating the ambient environment from the carrier gas environment, dispersing the carrier gas in substantially a second direction along the second surface, and obtaining the analytes in the carrier gas from the second surface.
    Type: Application
    Filed: May 14, 2007
    Publication date: November 20, 2008
    Applicant: General Dynamics Armament and Technical Products, Inc.
    Inventor: John M. A. Petinarides
  • Patent number: 7430893
    Abstract: The present invention relates to a system and method for sampling a gas flow to measure one or more contaminants within a semiconductor processing tool. The system includes a portable unit containing one or more dry traps, Tenax traps and, if desired, wet impingers. The unit is coupled to a gas flow in a clean room and the dry traps. Tenax traps and wet impingers measure contaminants contained in the gas supply for a determined sampling interval. When the sampling interval is done, the unit is sent to an analysis facility for processing.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: October 7, 2008
    Assignee: Entegris, Inc.
    Inventors: Anatoly Grayfer, Jürgen Michael Lobert, William Goodwin, Frank Vincent Belanger, John E. Sergi, Mark C. Phelps