Friction Tube (e.g., Capillary) Patents (Class 73/54.04)
  • Patent number: 10598682
    Abstract: The superposition of Laguerre-Gaussian guided into and scattered by a particle in a rotated fluid allows the detection of the rotational of the fluid. The presented system allows for virtually real-time determination of vorticity characterization in a fluid. The system allows the direct measurements of fluid flow vorticity using a spatially shaped beam with a superposition of Laguerre-Gaussian modes that reports on the rotational Doppler shift from microparticles intersecting the beam focus.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: March 24, 2020
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Manoochehr M. Koochesfahani, Shahram Pouya, Anton G. Ryabtsev, Alireza Safaripour Tabalvandani
  • Patent number: 10596583
    Abstract: A system for regulating the viscosity of a fluid prior to atomization includes a temperature controller configured to adjust a temperature of a fluid flowing in a conduit prior to atomization of the fluid by an atomizer fluidly connected to the conduit and a sensor in communication with the temperature controller such that the sensor can provide an indicator to the temperature controller of a viscosity of the fluid flowing in the conduit prior to atomization. An adjustment to the temperature of the fluid by the temperature controller is based at least in part on the measured viscosity indicator of the fluid, a target atomization-viscosity of the fluid, and a coking temperature of the fluid.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: March 24, 2020
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: Armand Levasseur, Carl Edberg, Olaf Stallmann, Mourad Younes, Aqil Jamal
  • Patent number: 10545079
    Abstract: The present invention relates to a portable blood viscosity measurement apparatus, and the present invention includes a case portion which is movable and includes an upper case and a lower case which are installed in a foldable manner, a blood sample injection unit that is installed in the upper case, mixes blood in a blood sample container, and automatically supplies the blood, a blood viscosity measurement unit that is installed in the upper case and measures a blood viscosity which is supplied from the blood sample injection unit, and a data processing unit that is installed in the lower case, analyzes a value which is measured by the blood viscosity measurement unit, and calculates blood viscosity.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: January 28, 2020
    Assignee: INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY
    Inventors: Donghwan Lee, Jinmu Jung, Jongho Park, Euiho Lee, Uiyun Lee
  • Patent number: 10480977
    Abstract: A method for detecting a deviation in a flow meter parameter of a flow meter that is adapted to measure a fluid flow rate is provided. The method comprises measuring a differential pressure across at least a portion of the flow meter. The method further comprises comparing the measured differential pressure to an expected differential pressure; the expected differential pressure being based on the measured flow rate. The method further comprises detecting a deviation in the flow meter parameter if the difference between the measured differential pressure and the expected differential pressure exceeds a threshold limit.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 19, 2019
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, Andrew Timothy Patten
  • Patent number: 10422731
    Abstract: An apparatus for monitoring the effective dissolving of a polymer when the use region is not accessible. The apparatus includes a pipe on which are inserted, consecutively: a pump, a flowmeter, a water or brine inlet mechanism for diluting the mother solution flowing in the pipe, a mixer capable of in-line homogenization of the diluted mother solution, a first tube calibrated to simulate the distance and the conditions for moving the diluted solution in the main pipe between the point where the mother solution is diluted and the use region, a mechanism capable of reducing the pressure of the diluted solution flowing in the pipe upstream of the first tube that is calibrated from 10 to 10000 kPa (from 0.1 to 100 bar), a second calibrated tube for creating a head loss, and a device for measuring differential pressure between the inlet and the outlet of the second calibrated tube.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: September 24, 2019
    Assignee: S.P.C.M. SA
    Inventors: Cedrick Favero, Christophe Rivas
  • Patent number: 9638617
    Abstract: Micro-electromechanical device for measuring the viscosity of a fluid, comprises a measuring chamber with a micromechanical actuator, arranged as a cantilever above a metallically conductive counter electrode, elastically deformable towards the counter electrode, surrounded by the fluid to be measured and made of a metallically conductive material, a two-terminal RF voltage source that can be switched off, having a first output terminal connected to the actuator, and a second output terminal connected to the counter electrode, and which is designed to output an RF voltage signal that is suitable for deflecting the actuator out of its rest position, and a measuring device to detect a change in the frequency, amplitude or phase of the RF signal in order to determine a measurement value for the viscosity-dependent speed at which the actuator is deformed.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 2, 2017
    Assignee: IHP GMBH—INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS/LEIBNIZ-INSTITUT FUR INNOVATIVE MIKROELEKTRONIK
    Inventors: Mario Birkholz, Jurgen Drews, Karl-Ernst Ehwald, Dieter Genschow, Ulrich Haak, Philip Kulse, Egbert Matthus, Katrin Schulz, Wolfgang Winkler, Dirk Wolansky, Marlen Frohlich
  • Patent number: 9494496
    Abstract: A solid-phase extraction apparatus capable of carrying out highly accurate solid-phase extraction by automatically controlling liquid-permeation speeds in an adsorbing step, a cleaning step, and an eluting step of the solid-phase extraction in order to improve the accuracy of the collection rate of a measurement component(s) also in measurement of each of sample solutions respectively having different viscosities and to ensure a certain processing ability.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: November 15, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tadao Yabuhara, Shinya Ito, Izumi Waki
  • Patent number: 9482563
    Abstract: To provide accurate determinations of volumetric flow rate and thus of total liquid volume transported over a given time period, two pressure transducers are disposed a predetermined distance apart along a conduit. Precise pressure measurement readings are generated from which volumetric flow rate can be derived with accuracy. Integration of the volumetric flow rate over time yields an improved measure of the total liquid volume that has flowed through the conduit during the respective temporal interval. The two pressure transducers are disposed along the conduit a predetermined distance apart with no obstruction or restriction in the conduit between the transducers. A controller can be used to determine the volumetric flow rate using the Hagen-Poiseuille Equation.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: November 1, 2016
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Domingo Calderin, Pei-Ying Hsieh
  • Patent number: 9341533
    Abstract: An air data probe includes a probe head defining a longitudinal axis with a forward tip, and a turbulence inducing surface defined in the probe head aft of the forward tip. The turbulence inducing surface is configured and adapted to trip a fluid boundary layer passing over the probe head to transition from laminar to turbulent to control or reduce boundary layer separation resulting in consistent readings at high altitudes.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: May 17, 2016
    Assignee: Rosemount Aerospace Inc.
    Inventors: Charles Jae Doolittle, Brian Daniel Matheis, Roger Duane Foster
  • Patent number: 8997555
    Abstract: A system and method for generating a change in pressure proportional to fluid viscosity is disclosed herein. The system can comprise a first pilot stream, a second pilot stream, and a pressure sensing device that reads a differential pressure across a first junction on the first pilot stream and a second junction on the second pilot stream. The first junction is between a first section having a first predominant pressure loss characteristic, and a second section having a second predominant pressure loss characteristic. Similarly, the second junction can be between a third section having a third predominant pressure loss characteristic and a fourth section having a fourth pressure loss characteristic.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: April 7, 2015
    Assignee: Flowpro Well Technology a.s.
    Inventor: Kristian Brekke
  • Patent number: 8844339
    Abstract: The invention relates to a method for measuring the viscosity of a fluid, said method comprising the following steps: (a) providing a flow of said fluid in a laminar state inside a channel (14, 24) having a characteristic transverse dimension D, and in which an elongate member (12, 22) having a characteristic dimension d is placed substantially along the longitudinal direction of said channel and substantially at the center of the channel, and has a portion of the length l thereof submerged in said channel; (b) measuring the friction force (f) applied by said fluid on the walls of the elongate member; and (c) calculating the dynamic viscosity (?) of said fluid based on the equation (1) f=??lU where U is the average flow rate and ? is a geometric factor.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 30, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Harold Roland Bernard Auradou, Jean-Pierre François Hulin, Benoît Bernard Joseph Semin
  • Patent number: 8806921
    Abstract: A viscometer adapted to determine a temperature at which a liquid test sample has a predetermined viscosity. A method of operating a viscometer comprising the steps of: drying the air contained in the capillary tube; advancing the liquid test sample from the sample reservoir to the capillary tube; changing the temperature of the liquid test sample to a first sub-zero degrees Celsius temperature, and determining a first viscosity of the liquid test sample at the first sub-zero degrees Celsius temperature. Use of a capillary tube for determining a temperature at which a liquid test sample has a predetermined viscosity.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: August 19, 2014
    Assignee: Poulten Selfe & Lee Ltd.
    Inventors: Stephen J. Gosling, Ian Mylrea
  • Publication number: 20130233059
    Abstract: A capillary break-up extensional rheometry (Ca BER) instrument including: opposing plates between which a capillary fluid bridge can be formed; and a surface acoustic wave (SAW) actuator having a working surface located on one of the plates, wherein when the test fluid is applied to the working surface of the SAW actuator, and the SAW actuator is energised, a said liquid bridge of the test fluid is produced between the plates.
    Type: Application
    Filed: June 22, 2011
    Publication date: September 12, 2013
    Applicant: Royal Melbourne Institute of Technology
    Inventors: Amarin McDonnell, Pradipto Bhattacharjee, James Friend, Leslie Yeo, Prabhakar Ranganathan
  • Publication number: 20130036797
    Abstract: Disclosed is a fluid viscosity measuring device which can measure the viscosity of a fluid such as blood. The fluid viscosity measuring device of the present invention comprises: a first fluid inlet portion in which a fluid, the viscosity of which is to be measured, is injected, and a second fluid inlet portion in which a reference fluid having a standard viscosity is injected; a connection pipe configured to connect the first fluid inlet portion to the second fluid inlet portion and form a passage for the fluid, the viscosity of which is to be measured, and the reference fluid; a plurality of counting channels in communication with the connection pipe at a predetermined distance to be filled with the two fluids flowing along the passage, respectively; and a boundary surface measuring unit configured to count the counting channels filled with the two fluids, respectively.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 14, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sung Yang, Yang-Jun Kang
  • Patent number: 8307697
    Abstract: A method for estimating the viscosity of a liquid in an aspirating or dispensing probe, includes: measuring a reference pressure which is the pressure inside a metering tip when no dispense or aspirate is occurring (Pref); dispensing or aspirating a liquid having a volume of air between the liquid and the pumping mechanism of the probe; stopping the aspirate or dispense; measuring the pressure (Pstop) inside the tip at a time (t) which is the time when the aspirate or dispense is stopped; measuring the pressure (Pstop?) inside the tip at a time (t?) after t; and estimating viscosity as a function of Pref, Pstop, and Pstop?. In a preferred embodiment, the method is carried out on a diagnostic analyzer.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 13, 2012
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventor: Zhong Ding
  • Patent number: 8245565
    Abstract: An embodiment of the present invention is a transport and storage system for a slurry comprising: a main container; and a test container, the main container and the test container being exposed to the same environmental conditions, the main container and the test container containing a slurry from the same batch, wherein the test container is designed to determine the viscosity of the slurry.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 21, 2012
    Assignee: Infineon Technologies AG
    Inventor: Stefan Geyer
  • Publication number: 20110239744
    Abstract: The invention relates to a method for measuring the viscosity of a fluid, said method comprising the following steps: (a) providing a flow of said fluid in a laminar state inside a channel (14, 24) having a characteristic transverse dimension D, and in which an elongate member (12, 22) having a characteristic dimension d is placed substantially along the longitudinal direction of said channel and substantially at the centre of the channel, and has a portion of the length l thereof submerged in said channel; (b) measuring the friction force (f) applied by said fluid on the walls of the elongate member; and (c) calculating the dynamic viscosity (?) of said fluid based on the equation (1) f=??lU where U is the average flow rate and ? is a geometric factor.
    Type: Application
    Filed: October 15, 2009
    Publication date: October 6, 2011
    Inventors: Harold Roland Bernard Auradou, Jean-Pierre Francois Hulin, Benoît Bernard Joseph Semin
  • Publication number: 20110126614
    Abstract: Measuring device for measuring the dynamic viscosity and the density as physical quantities of an essentially non-compressible measuring medium, with a vessel having a total volume, which is charged with a compressible medium and into which a measuring medium with a fraction volume may be introduced, and with pressure means for measuring an initial pressure and a modification internal pressure in the vessel, in which modification means for compressing and decompressing, respectively, the compressible medium are provided, by means of which the total volume of the vessel may be modified by a predetermined modification volume and in which the pressure means for measuring the modification internal pressure in the vessel in consequence of the compression and decompression, respectively, by the modification means are formed and in which there is provided a collection vessel connected with the vessel via an opening of the vessel and a capillary tube for collecting a liquid measuring medium.
    Type: Application
    Filed: May 24, 2010
    Publication date: June 2, 2011
    Inventor: Wolfgang Belitsch
  • Publication number: 20100281956
    Abstract: A viscometer adapted to determine a temperature at which a liquid test sample has a predetermined viscosity. A method of operating a viscometer comprising the steps of: drying the air contained in the capillary tube; advancing the liquid test sample from the sample reservoir to the capillary tube; changing the temperature of the liquid test sample to a first sub-zero degrees Celsius temperature, and determining a first viscosity of the liquid test sample at the first sub-zero degrees Celsius temperature. Use of a capillary tube for determining a temperature at which a liquid test sample has a predetermined viscosity.
    Type: Application
    Filed: May 6, 2010
    Publication date: November 11, 2010
    Applicant: Poulten Selfe & Lee Ltd.
    Inventors: Stephen J. GOSLING, Ian Mylrea
  • Publication number: 20090293593
    Abstract: An embodiment of the present invention is a transport and storage system for a slurry comprising: a main container; and a test container, the main container and the test container being exposed to the same environmental conditions, the main container and the test container containing a slurry from the same batch, wherein the test container is designed to determine the viscosity of the slurry.
    Type: Application
    Filed: June 3, 2008
    Publication date: December 3, 2009
    Applicant: Infineon Technologies AG
    Inventor: Stefan GEYER
  • Patent number: 7594428
    Abstract: The method comprising the steps of engaging the flow circuit of the detector with a reference fluid, accepting a sample in the flow circuit of the detector, sensing an attribute of the sample for determining a characteristic of the sample, changing the direction of the flow of the sample in the flow circuit, and purging the sample from the flow circuit such that the flow circuit is ready to accept another sample. Another method provides the steps of engaging the flow circuit of the detector with a reference fluid, inserting a sample in the flow circuit juxtaposed to the reference fluid, sensing an attribute of the sample for determining a characteristic of the sample, and deviating the direction of the flow of the sample from the flow circuit for purging the sample from the flow circuit such that the reference fluid is maintained in the flow circuit.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: September 29, 2009
    Assignee: Viscotek Corporation
    Inventors: Alan Titterton, Max A. Haney
  • Publication number: 20090193878
    Abstract: A method for detecting levels of viscosity of a sample of whole blood, comprising the steps of providing a curve of the kinetics of optical density of the sample of whole blood, said curve comprising a first point (b) having a value of optical density and a point (c) of minimum value of said optical density; determining the value of the drop between the value of optical density in correspondence with the point (b) and the minimum value of optical density in correspondence with the point (c); obtaining information, based on the value of drop, on the value of viscosity of said sample of whole blood, wherein a low value of the drop of optical density corresponds to a higher level of viscosity of the sample of blood and a high value of the drop corresponds to a lower level of viscosity of the sample of blood.
    Type: Application
    Filed: January 26, 2009
    Publication date: August 6, 2009
    Applicant: ALIFAX HOLDING SPA
    Inventors: Alfredo Ciotti, Paolo Galiano
  • Patent number: 7481160
    Abstract: An integrated system for: complete waste compactor operational control; remote fullness monitoring; and, remote performance and maintenance diagnostics. Such diagnostic information is transferred wirelessly or otherwise to one or more recipients, so as to directly provide a critical warning in real time. The waste compactor controller/monitor system allows for periodic real-time oil viscosity measurements of the hydraulic fluid to account for changes in such viscosity. The system adjusts the timing of the compactor stroke to permit more efficient operation and inhibit damage to the hydraulic ram and/or container during use.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 27, 2009
    Assignee: One Plus Corp.
    Inventors: Jay S. Simon, Martin J. Durbin
  • Patent number: 7366621
    Abstract: Program product to measure fluid flow characteristics in a pipeline is provided. A vortex-shedding body is positioned within the pipeline to form vortices. A vortex meter can include a vortex frequency sensor to measure the frequency of the vortices to determine the volumetric flow rate. A differential pressure meter positioned adjacent the vortex-shedding body can produce a differential pressure meter flow rate signal indicative of the density of fluid when flowing through the pipeline. A thermal flow meter positioned adjacent the vortex-shedding body can produce a mass flow rate signal indicative of the mass flow rate of fluid when flowing through the pipeline. The program product can include instructions for a fluid characteristic determiner to perform the operations of processing measured and sensed signals to produce an output of a volumetric flow rate, a flowing fluid density, and a mass flow rate to be displayed on a fluid characteristic display.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: April 29, 2008
    Assignee: Saudi Arabian Oil Company
    Inventor: James L. Sprague
  • Patent number: 7334457
    Abstract: This apparatus and method relates to the improved sensing of fluid differential pressures. The apparatus and method can be applied in multi-capillary solution viscometers and gel permeation chromatography systems used in the characterization of polymers. A valve is used to alter a flow path in a measurement circuit to reduce or eliminate an undesired fluid output and to accelerate the regeneration of the fluid for analysis of subsequent samples. The apparatus and method can be usefully applied to all instruments and systems comprising viscometers having two or more capillaries.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: February 26, 2008
    Assignee: Viscotek Corporation
    Inventor: Alan Titterton
  • Patent number: 7188515
    Abstract: A microfabricated, a nanoliter capillary viscometer includes a first channel that is defined by a first channel-defining surface in a first substrate and a second channel defining surface in a second substrate. The progress of liquid through this first channel is monitored and used to determine viscosity. Viscosities in the range of 1 cP to 1000 cP are easily measured. Self-calibrating versions of the viscometer are also disclosed.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: March 13, 2007
    Assignee: The Regents of the University of Michigan
    Inventors: Mark A. Burns, Nimisha Srivastava, Robertson D. Davenport
  • Patent number: 7111499
    Abstract: A viscometer tube includes a tubular body divided into three sections: an upper feed section, a lower capillary section and an intermediate transition section providing a transition between the upper feed section and the lower capillary section. Liquid flows from the upper feed section to the intermediate transition section and then to the lower capillary section. The upper feed section intersects the intermediate transition section either laterally or from below. An upper remote end of the intermediate transition section is open to atmosphere.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 26, 2006
    Assignee: The Fluid Life Corporation
    Inventor: Jeff A. Keen
  • Patent number: 7024921
    Abstract: Devices are presented which allow determination of unknown surface properties through the creation of a channel capillary, comprised in part of the subject surface or surfaces, and measurement of the capillary pressure created by a test fluid within the resultant channel. In various embodiments of the invention, a channel is created in a reference material which is bonded, through some mechanism, to the test surface in order to create a narrow capillary channel. In other embodiments of the invention, the capillary channel is created with test surfaces on either side of standoff strips which space the surfaces a precise distance from one another. Methods are presented for using these capillaries through immersion, along their length, in a bath of test fluid, such that the resultant fluid level provides a measure of capillary pressure.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: April 11, 2006
    Inventor: Stephen P. Sutton
  • Patent number: 6941797
    Abstract: The invention relates to a device and a method for automated and simultaneous determination of the viscosity of a plurality of liquids.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: September 13, 2005
    Assignee: Bayer Aktiengesellschaft
    Inventor: Stephan Nowak
  • Patent number: 6907772
    Abstract: A blood viscosity measuring system and methods for measuring blood viscosity monitors the change in height of one of two, oppositely-moving, columns of blood from the circulating blood of a patient and, given the dimensions of a capillary tube through which the blood flows and by detecting a single blood position of the other oppositely-moving column, determines the blood viscosity over a range of shears, especially low shears. The system includes a tube set (disposable or non-disposable) that includes a pair of riser tubes, a capillary tube of predetermined dimensions that is coupled between the riser tubes (or that forms a portion of one riser tube) and a valve mechanism for controlling the circulating flow of blood from the patient into the riser tubes.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: June 21, 2005
    Assignee: Rheologics, Inc.
    Inventors: Kenneth Kensey, William N. Hogenauer, Sangho Kim, Young Cho
  • Patent number: 6898963
    Abstract: An apparatus and method for measuring the viscosity of a sample fluid are disclosed. In one embodiment, a holding vessel (82) receives the sample fluid (94) and a weighted fluid (96). The weighted fluid (96) has a greater specific gravity than the sample fluid (94). A floating spacer (100) is buoyantly disposed in the weighted fluid (96) such that an interface (116) between the sample fluid (94) and the weighted fluid (96) is defined between the holding vessel (82) and the floating spacer (100). A capillary tube 86 is positioned in fluid communication with the holding vessel (82) such that a pressure drop is created across the capillary tube (86) when at least a portion of the sample fluid (94) is forced therethrough. The viscosity of the sample fluid (94) may be determined by utilizing Hagen-Poiseuille's Law.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: May 31, 2005
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Cyrus A. Irani
  • Patent number: 6877361
    Abstract: A viscosimeter for measuring the viscosity of a solution in a solvent includes flow resistances having the smallest possible thickness and a small volume compared with all other parallel and following capillaries in a flow conduit system with two legs. The flow conduit system has three parallel flow circuits among which at least two flow circuits are connected by a differential pressure sensor or sensor for differential pressure. The arrangement includes an inlet which divides into two legs, wherein one of the two legs includes a pressure reducing element, a following branch going to a differential pressure sensor and a pressure reducing element in the feeding conduit to a junction which runs into an outlet conduit. The other leg starting from the branch point includes a pressure reducing element which is connected to the differential pressure sensor and to a resistance capillary in the conduit.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: April 12, 2005
    Assignee: WGE Dr. Bures GmbH & Co. KG
    Inventor: Klaus-Dieter Bures
  • Patent number: 6796168
    Abstract: A method for determining the viscosity of a fluid flowing through a system at any point in the system whereby the method involves determining a characteristic relationship for the fluid between viscosity and shear rate; obtaining a shear rate of the fluid as it moves through at least one position in the system; and determining the viscosity of fluid at the at least one position by applying the shear rate to the characteristic relationship. Where the system is the circulatory system of a living being, the method includes determining a viscosity-shear rate relationship unique to that individual. Furthermore, the method further entails determining the actual viscosities and shear rates being experienced in selected blood vessels of the living being.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: September 28, 2004
    Assignee: Rheologics, Inc.
    Inventors: Larry J. Goldstein, William N. Hogenauer
  • Patent number: 6779382
    Abstract: A process for determining changes in a liquid medium, in particular a liquid coating agent or its components, caused by shear stress, in which a given volume of the medium is allowed to pass repeatedly through a shear unit under reproducible conditions.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: August 24, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Paul Rupieper, Michael Höffer, Christian Voyé
  • Patent number: 6755079
    Abstract: A downhole tool and method for determining the viscosity of a reservoir fluid, the tool including a passage having entry, intermediate and exit regions, in which the reservoir fluid flowing through the passage will have a lower Reynolds number in the intermediate region as compared to the entry region, the tool also including differential pressure gauge for measuring the differential pressure across the intermediate region, and either a velocity controller or fluid velocity meter, for either setting or measuring the fluid velocity.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: June 29, 2004
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mark A. Proett, Michael T. Pelletier, Wei Han, Bruce H. Storm, Jr., Roger L. Schultz, Thomas E. Ritter
  • Patent number: 6745615
    Abstract: A blood viscosity measuring system and methods for measuring blood viscosity monitors the change in height of one of two, oppositely-moving, columns of blood from the circulating blood of a patient and, given the dimensions of a capillary tube through which the blood flows and by detecting a single blood position of the other oppositely-moving column, determines the blood viscosity over a range of shears, especially low shears. The system includes a tube set (disposable or non-disposable) that includes a pair of riser tubes, a capillary tube of predetermined dimensions that is coupled between the riser tubes (or that forms a portion of one riser tube) and a valve mechanism for controlling the circulating flow of blood from the patient into the riser tubes.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: June 8, 2004
    Assignee: Rheologics, Inc.
    Inventors: Kenneth Kensey, William N. Hogenauer, Sangho Kim, Young Cho
  • Patent number: 6732573
    Abstract: An apparatus and method for determining the viscosity of the circulating blood of a living being over plural shear rates caused by a decreasing pressure differential by monitoring the changing weight of the blood, or the changing level of a column of blood over time. The apparatus and method utilize a riser, a capillary tube, a collector and a mass detector, such as a precision balance or a load cell, for monitoring the changing weight of a sample of fluid that flows through these components under the influence of the decreasing pressure differential; alternatively, the apparatus and method use a column level detector to monitor the changing level of the column of blood over time.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: May 11, 2004
    Assignee: Rheologics, Inc.
    Inventors: Sehyun Shin, Young Cho, Kenneth Kensey, William N. Hogenauer, Sangho Kim
  • Patent number: 6708553
    Abstract: A viscosimeter for measuring the relative, intrinsic or inherent viscosity of a solution in a solvent with at least one flow resistance and one feeding point for the solution to be examined in a conduit system as well as with respective manometers on the flow resistance which are coupled with a differential amplifier, wherein the viscosimeter includes flow resistances such as disk-shaped or leaf-shaped Venturi nozzles or different KV flow resistances with the smallest possible thickness and with a small volume with respect to all other parallel and following capillaries in a flow conduit system with two legs which contains in the first leg at least three pressure reducing elements, for example capillaries, whereby behind the capillary following the branch point a pressure manometer is provided for with a connected bigger vessel, whereby behind further capillaries connected with each other with different diameters and with a big volume which corresponds to 100 to 1000 times the KV flow resistance in the second
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: March 23, 2004
    Assignee: WGE Dr. Bures GmbH & Co. KG
    Inventor: Klaus-Dieter Bures
  • Publication number: 20030182991
    Abstract: Microfluidic devices, systems, and methods measure viscosity, flow times, and/or other flow characteristics within the channels, and the measured flow characteristics can be used to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems, electrokinetic systems and/or other fluid transport mechanisms can generate the flow, controllably mix fluids, and the like.
    Type: Application
    Filed: October 9, 2001
    Publication date: October 2, 2003
    Applicant: Caliper Technologies Corp.
    Inventors: Michael A. Spaid, Andrea W. Chow, Benjamin N. Wang, Ring-Ling Chien, J. Wallace Parce, Anne R. Kopf-Sill
  • Patent number: 6584832
    Abstract: Rapid characterization and screening of polymer samples to determine average molecular weight, molecular weight distribution and other properties is disclosed. Rapid flow characterization systems and methods, including liquid chromatography and flow-injection analysis systems and methods are preferably employed. High throughput, automated sampling systems and methods, high-temperature characterization systems and methods, and rapid, indirect calibration compositions and methods are also disclosed, where the polymer sample, solvent, liquid chromatograph column and/or mobile phase eluant is heated to temperatures of at least 75 degrees Celsius during the sample injection or elution process. The described methods, systems, and devices have primary applications in combinatorial polymer research and in industrial process control.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: July 1, 2003
    Assignee: Symyx Technologies, Inc.
    Inventors: Miroslav Petro, Adam Safir, Ralph B. Nielsen, G. Cameron Dales, Eric D. Carlson, Thomas S. Lee
  • Patent number: 6581440
    Abstract: A process and a device for determining changes in a liquid medium, in particular a liquid coating agent or its components, caused by shear stress, in which a given volume of the medium is allowed to pass repeatedly through a shear unit under reproducible conditions.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: June 24, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Paul Rupieper, Michael Höffer, Christian Voyé
  • Patent number: 6575019
    Abstract: A reciprocating pump and a capillary viscometer utilizing the same. Preferably, the inventive reciprocating pump is a syringe pump comprising: a cylinder, an actuated piston, and a floating piston. A chamber is created between the actuated piston and floating piston which may be filled with a pressurant to establish the quiescent pressure of the test fluid. The capillary viscometer comprises: a capillary tube wound about a heated mandrel, a differential pressure transducer, and a reciprocating pump. Test fluid is first pumped at a known rate from a first chamber, through the capillary tube, and into a second chamber. The pump is then reversed and the test fluid is then pumped from the second chamber, back through the capillary tube, and back into the first chamber. The process may be repeated in a continuous, reciprocating manner.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: June 10, 2003
    Assignee: Chandler Engineering Company LLC
    Inventor: David B. Larson
  • Patent number: 6561011
    Abstract: In an apparatus for measuring the viscosity of plastic materials including a heatable housing structure, enclosing a controllable material pump for generating a certain material flow, a plurality of capillaries, a melt distributor is provided in the supply line of the material from the material pump to the capillaries with which the material can be directed to either of the plurality of capillaries and each capillary is provided with a pressure and a material temperature sensor providing the values needed for determining the viscosity of the material.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: May 13, 2003
    Assignee: Dr. Collin GmbH
    Inventors: Heiner Collin, Heinrich H. Collin
  • Patent number: 6561010
    Abstract: The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: May 13, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Bary W. Wilson, Timothy J. Peters, Chester L. Shepard, James H. Reeves
  • Publication number: 20030056574
    Abstract: The viscometer provides a viscosity value (X&eegr;) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube (13) for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly (16), the flow tube (13) is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics (50) which feed an excitation current (iexc) into the excitation assembly (16). By means of the meter electronics (50), a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics (50), which then determine the viscosity value (X&eegr;) using the two intermediate values (X1, X2).
    Type: Application
    Filed: August 23, 2002
    Publication date: March 27, 2003
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Publication number: 20030046983
    Abstract: A method and an apparatus for measuring the concentrations of the components of a fluid are described, which can be used to measure the concentrations of the components continuously in real time and to monitor a high pressure gas, and is suitably used for in-line monitoring. In the method and the apparatus, a fluid sample is conducted through a measuring tube, wherein the measuring tube has a small aperture with a constant diameter in a fluid flow path. The pressure difference (P1−P2) between the upstream and the downstream of the small aperture and the flow rate at the downstream of the small aperture are measured to determine the concentrations of the components of the fluid.
    Type: Application
    Filed: March 26, 2002
    Publication date: March 13, 2003
    Inventors: Tetsuya Sato, Shang-Qian Wu, Tetsuya Kimijima
  • Publication number: 20030037601
    Abstract: A library of materials is screened for viscosity. A library of materials is provided. The library is contacted with at least one capillary for applying a force through the materials. The relative flow resistance of the materials is measured in response to the force; and the materials in the library are ranked based on the monitored flow resistance.
    Type: Application
    Filed: August 24, 2001
    Publication date: February 27, 2003
    Applicant: Symyx Technologies, Inc
    Inventors: Paul Mansky, Damian A. Hajduk
  • Patent number: 6523396
    Abstract: An apparatus and method for determining the viscosity of a fluid over plural shear rates caused by a decreasing pressure differential by monitoring the movement of the fluid through a riser tube and a capillary tube. The movement can be monitored by detecting the changing weight of the fluid, using a precision balance or load cell, as it moves through the riser tube and capillary tube into a fluid collector; or, alternatively, the movement can be monitored by detecting the changing level of a fluid column in the riser tube using a column level detector. A processor then uses the changing weight or height data, along with the dimensions of the capillary tube and a dimension of the riser tube, to determine the viscosity of the fluid. In addition, apparatus and methods for determining fluid viscosity online and fluid mixture homogeneity online are also described.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: February 25, 2003
    Assignee: Rheologics, Inc.
    Inventors: Sehyun Shin, Young Cho, Kenneth Kensey, William N. Hogenauer, Sangho Kim
  • Publication number: 20030005752
    Abstract: An apparatus and method for determining the viscosity of a fluid over plural shear rates caused by a decreasing pressure differential by monitoring the movement of the fluid through a riser tube and a capillary tube. The movement can be monitored by detecting the changing weight of the fluid, using a precision balance or load cell, as it moves through the riser tube and capillary tube into a fluid collector; or, alternatively, the movement can be monitored by detecting the changing level of a fluid column in the riser tube using a column level detector. A processor then uses the changing weight or height data, along with the dimensions of the capillary tube and a dimension of the riser tube, to determine the viscosity of the fluid. In addition, apparatus and methods for determining fluid viscosity online and fluid mixture homogeneity online are also described.
    Type: Application
    Filed: May 28, 2002
    Publication date: January 9, 2003
    Applicant: RHEOLOGICS, INC.
    Inventors: Sehyun Shin, Young Cho, Kenneth Kensey, William N. Hogenauer, Sangho Kim
  • Patent number: 6484565
    Abstract: An apparatus and method for determining the viscosity of a fluid over plural shear rates caused by a decreasing pressure differential by monitoring the movement of the fluid through a riser tube and a capillary tube. The movement can be monitored by detecting the changing weight of the fluid, using a precision balance or load cell, as it moves through the riser tube and capillary tube into a fluid collector; or, alternatively, the movement can be monitored by detecting the changing level of a fluid column in the riser tube using a column level detector. A processor then uses the changing weight or height data, along with the dimensions of the capillary tube and a dimension of the riser tube, to determine the viscosity of the fluid. In addition, apparatus and methods for determining fluid viscosity online and fluid mixture homogeneity online are also described.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: November 26, 2002
    Assignee: Drexel University
    Inventors: Sehyun Shin, Young Cho, Kenneth Kensey, William N. Hogenauer, Sangho Kim