By Optical Measurement Patents (Class 73/61.69)
  • Patent number: 8607621
    Abstract: Systems and methods used to monitor a fluid where it is important to know the size, concentration and nature of particulates in the fluid. For example, the systems and method can be used to diagnose contamination issues in fluids such as fuel, lubrication, power transfer, heat exchange or other fluids in fluid systems, for example diesel engines or hydraulic systems, where contaminant particles in the fluids are of concern.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: December 17, 2013
    Assignee: Cummins Filtration IP, Inc.
    Inventor: Barry M. Verdegan
  • Patent number: 8147757
    Abstract: The present invention describes a system and method for accurately measuring the concentration of a substance within a filter housing. A concentration sensor and a communications device are coupled so as to be able to measure and transmit the concentration of a particular substance within the filter housing while in use. This system can comprise a single component, integrating both the communication device and the concentration sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of concentration values. The use of this device is beneficial to many applications. For example, the ability to read concentration values in situ allows integrity tests to be performed without additional equipment.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 3, 2012
    Assignee: EMD Millipore Corporation
    Inventor: Anthony DiLeo
  • Patent number: 8137983
    Abstract: The present invention describes a system and method for accurately measuring the concentration of a substance within a filter housing. A concentration sensor and a communications device are coupled so as to be able to measure and transmit the concentration of a particular substance within the filter housing while in use. This system can comprise a single component, integrating both the communication device and the concentration sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of concentration values. The use of this device is beneficial to many applications. For example, the ability to read concentration values in situ allows integrity tests to be performed without additional equipment.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 20, 2012
    Assignee: EMD Millipore Corporation
    Inventor: Anthony DiLeo
  • Patent number: 7921697
    Abstract: A method and apparatus for monitoring an underdrain in a filter system for filtering water or wastewater. At least one diagnostic condition relating to the performance of the underdrain is monitored to determine if the underdrain is operating in an acceptable manner.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: April 12, 2011
    Assignee: RG Delaware, Inc.
    Inventor: R. Lee Roberts
  • Patent number: 7797980
    Abstract: A method for calibrating machines suitable to effect an analysis of a blood sample by measuring the erythrocyte sedimentation rate (ESR) and/or aggregation of the red corpuscles, wherein the measurement is effected by exploiting the optical density kinetics obtained from the measurement of the variation in the optical density of the blood sample in an interval of time, to include measuring in which, by the same machine with which the measurement of the optical density is effected on the blood sample, a measurement is effected of the optical density of two latexes, or turbidimetric samples. Each of the two latexes has a known optical density that is reproducible, measurable and different from each other. The method also calibrates in which the difference is calculated between the values of optical density of the latexes as obtained from the measurement performed by the machine and the known values of optical density, to determine at least one correction factor usable to calibrate machine.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: September 21, 2010
    Assignee: Alifax Holding S.p.A.
    Inventors: Alfredo Ciotti, Paolo Galiano, Giuseppe Ciotti
  • Patent number: 7788969
    Abstract: Systems and methods used to monitor a fluid where it is important to know the size, concentration and nature of particulates in the fluid. For example, the systems and method can be used to diagnose contamination issues in fluids such as fuel, lubrication, power transfer, heat exchange or other fluids in fluid systems, for example diesel engines or hydraulic systems, where contaminant particles in the fluids are of concern.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: September 7, 2010
    Assignee: Cummins Filtration IP, Inc.
    Inventor: Barry M. Verdegan
  • Patent number: 7772578
    Abstract: A diagnostic test device comprising means for sampling a liquid biological sample, means for reacting the sample with at least one reagent to provide one or more visible indicia and an optical detector for detecting the presence of said one or more indicia, the device further comprising a releasable tether which is released by contact with the liquid sample, thereby to cause the optical detector to detect the said one or more indicia.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: August 10, 2010
    Assignee: Church & Dwight Co., Inc.
    Inventors: Paul Duesbury, Mark Davis, Brett Cochrane, Mark Burnapp
  • Patent number: 7754089
    Abstract: A method and apparatus for monitoring an underdrain in a filter system for filtering water or wastewater. At least one diagnostic condition relating to the performance of the underdrain is monitored to determine if the underdrain is operating in an acceptable manner.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: July 13, 2010
    Assignee: RG Delaware, Inc.
    Inventor: R. Lee Roberts
  • Patent number: 7622729
    Abstract: A diagnostic test device comprises means for sampling a liquid biological sample. Means is provided for reacting the sample with a reagent to provide one or more visible indicia. A photodetector for scans a detection region to produce a pulsed output indicative of the presence of the one or more indicia. The photodetector is connected to a signal processing circuit for processing the pulsed output. The signal processing circuit produces an output change in response to light intensity variation which is substantially independent of baseline current.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: November 24, 2009
    Assignee: Church & Dwight Co., Inc.
    Inventor: Paul Duesbury
  • Patent number: 7294513
    Abstract: A method and apparatus is described by which means molecules in suspension may be characterized in terms of the size and mass distributions present. As a sample solution is separated by centrifugal means, it is illuminated at a particular radial distance from the axis of rotation by a fine, preferably monochromatic, light beam. Despite the high resolution of such devices, a key problem associated with most separators based upon use of centrifugal forces is the difficulty in deriving the absolute size and/or molar mass of the separating molecules. By integrating means to detect light scattered, over a range of scattering angles, from samples undergoing centrifugal separation, molecular sizes in the sub-micrometer range may be derived, even in the presence of diffusion. Adding a second light beam at a displaced rotational angle, preferably of an ultraviolet wavelength, that intersects the sample at the same radial region as the first beam permits determination of the molecular concentration at that region.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: November 13, 2007
    Assignee: Wyatt Technology Corporation
    Inventor: Philip J. Wyatt
  • Patent number: 6632679
    Abstract: Method and apparatus to determine the speed of sedimentation of blood and other parameters connected thereto, said method being carried out by detecting the development over time of the optical density, or absorbance, of a sample of blood, said sample being sent in the form of a flow inside a capillary container (12), said detection being made in correspondence with a point of said capillary container (12) and the relative data acquired being processed to obtain said speed of sedimentation and said connected parameters, said method providing to instantly interrupt the flow of the blood sample flowing inside said capillary container (12), in order to determine a thickening of the red cells in said blood sample and their consequent sedimentation, said detection being made substantially simultaneously with said instant interruption.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: October 14, 2003
    Assignee: Sire Analytical Systems Srl
    Inventor: Enzo Breda
  • Patent number: 6336358
    Abstract: A measuring technology of sedimentation rate of sediments in a liquid sample capable of measuring, for example, the sedimentation rate of erythrocytes in a patient requiring an urgent medical treatment in about ¼ of the time needed in the conventional measuring method, and also capable of measuring the sedimentation rate of erythrocytes in an infant limited in the blood sampling volume. A test container filled with a liquid sample is inclined and held at a specific inclination angle, light is projected to this test container, the light passing through the test container is electrically detected by a line sensor or the like, the liquid level of the supernatant in the liquid sample and the position of the boundary of the supernatant and sediments are calculated to obtained the depth of the sediments, and the sedimentation rate of the sediments is calculated from the depth of the sediments and the measuring time.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: January 8, 2002
    Assignee: Sefa Technology Inc.
    Inventors: Shigenori Kishimori, Yoji Hasebe