Transmitted Along Parallel Paths Patents (Class 73/861.31)
  • Patent number: 12188807
    Abstract: A system and method to detect and quantify integration errors in a transit time ultrasonic flow meter uses dissimilar integration methods or schemes employed simultaneously. In a preferred embodiment, a number of chordal paths are arranged in a single meter body such that at least two dissimilar chordal integration schemes can be used to determine the flow rate. At least one of the chordal paths is common to both integration schemes. The total number of chordal paths needed in any chordal measurement plane is less than the sum of the chordal paths used in each of the integration schemes (as is the sum of the planes), thereby reducing hardware requirements.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: January 7, 2025
    Assignee: SENSIA LLC
    Inventor: Gregor J. Brown
  • Patent number: 12098937
    Abstract: In a method for spatially arranging at least one sensor array in a measuring channel, a predetermined desired geometry of the measuring channel is provided; a desired sensor-array arrangement associated with the desired geometry of the measuring channel is provided, where the sensor-array arrangement includes spatially-defined positioning parameters and orienting parameters in regard to the sensor components; an actual geometry of the measuring channel is captured; it is determined if a positioning parameter or an orienting parameter is outside of an admissible value range in relation to the actual geometry of the measuring channel, and the at least two sensor components of the sensor array are arranged in the measuring channel according to a most-current desired-sensor-array arrangement.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: September 24, 2024
    Assignee: Samson Aktiengesellschaft
    Inventors: Marcel Krueger, Michael Merscher, Gaetano Richter, Sebastian Krause
  • Patent number: 12072221
    Abstract: An ultrasonic flowmeter and a fluid pipeline. The ultrasonic flowmeter includes: a housing, which defines a fluid inlet and a fluid outlet with a fluid passage therebetween; and at least two pairs of ultrasonic sensors, wherein each pair of the at least two pairs of ultrasonic sensors have a first ultrasonic sensor and a second ultrasonic sensor arranged opposite to each other; wherein at least some of the at least two pairs of ultrasonic sensors are arranged in grooves on an inner wall of the fluid passage, and center points of front end faces of at least some of the at least two pairs of ultrasonic sensors are located on a cylindrical curved surface defined by the inner wall of the fluid passage.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: August 27, 2024
    Assignee: Honeywell International Inc.
    Inventors: Jie Tong, Wen Peng, Bin Sai
  • Patent number: 12024479
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Grant
    Filed: June 23, 2023
    Date of Patent: July 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Patent number: 11846531
    Abstract: A flow meter is shown. The flow meter includes a housing extending along an axis and defining an interior volume, the interior volume extending between an inlet port and an outlet port. The flow meter further includes an insert positioned within the interior volume and spaced apart from the housing, the insert extending along the axis. A first region between at least part of the insert and the housing along the axis defines a first flow pathway, and a second region within the insert and along the axis defines a second flow pathway.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: December 19, 2023
    Assignee: Sensia LLC
    Inventor: Gregor James Brown
  • Patent number: 11753356
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: September 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce E. Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Patent number: 11650087
    Abstract: An ultrasonic meter (28) for measuring a flow-rate of a fluid is described. The ultrasonic meter (28) includes a flow conduit (5) for the fluid. The flow conduit (5) extends along a first axis (6) between a first opening (7) and a second opening (8). The ultrasonic meter (28) also includes one or more pairs of ultrasonic transducers (2, 3). Each pair of ultrasonic transducers (2, 3) is configured to define a corresponding beam path (9) intersecting the flow conduit (5) within a measurement region (12) of the flow conduit (5). The measurement region (12) spans between a first position (z1) and a second position (z2) spaced apart along the first axis (6). One or more portions of the measurement region (12) which are outside of any of the one or more beam paths (9) correspond to non-sampled volumes (12b). The ultrasonic meter (28) also includes one or more protrusions (34) extending along the first axis (6).
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: May 16, 2023
    Assignee: SENTEC LTD.
    Inventors: Ben Davey, Charlie Paterson
  • Patent number: 11635316
    Abstract: A fluid measuring arrangement with a flow channel for a fluid to be measured having at least two areas of an outer wall forming waveguide parts for surface acoustic waves. The waveguide parts are spaced apart from each other along the circumference of the flow channel. A first and/or a second signal converter is arranged at each waveguide part, wherein at least two first signal converters arranged on different waveguide parts or two second signal converters arranged on different waveguide parts are spaced with respect to each other in the axial direction of the flow channel.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: April 25, 2023
    Assignees: Buerkert Werke GmbH & Co. KG, Burkert S.A.S.
    Inventors: Yannick Fuchs, Yves Hoog, Bertrand Koenig
  • Patent number: 11614460
    Abstract: An electronic device for measuring a speed of flow of a fluid that includes at least two electroacoustic transducers adapted for emitting and/or receiving acoustic signals through the flow of the fluid, the electronic device being adapted for determining a measurement of the speed of flow of the fluid from the characteristics of an acoustic signal emitted and one or more acoustic signals received, these received acoustic signals corresponding to reflections of the emitted acoustic signal.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 28, 2023
    Assignees: UNIVERSITE DU MANS, ASSOC TRANSFERTS TECHNOLOGIES MANS, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Jacques Emery, Mohammed Tabellout, Charfeddine Mechri
  • Patent number: 11572324
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: February 7, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Bruce E. Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Patent number: 11566929
    Abstract: A measuring device has at least one ultrasonic transducer and an evaluator for evaluating a measurement signal provided by the at least one ultrasonic transducer. The evaluator is set up to determine a first comparison signal, by comparing the measurement signal with a first switching threshold, and a second comparison signal, by comparing the measurement signal with a second switching threshold which is different from the first switching threshold, and to determine a signal amplitude of the measurement signal depending on the first and second comparison signal.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: January 31, 2023
    Assignee: Diehl Metering GmbH
    Inventors: Alexander Hofmann, Ulrich Gaugler, Marcus Wetzel
  • Patent number: 11549841
    Abstract: A system and method to detect and quantify integration errors in a transit time ultrasonic flow meter uses dissimilar integration methods or schemes employed simultaneously. In a preferred embodiment, a number of chordal paths are arranged in a single meter body such that at least two dissimilar chordal integration schemes can be used to determine the flow rate. At least one of the chordal paths is common to both integration schemes. The total number of chordal paths needed in any chordal measurement plane is less than the sum of the chordal paths used in each of the integration schemes (as is the sum of the planes), thereby reducing hardware requirements.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 10, 2023
    Assignee: Sensia LLC
    Inventor: Gregor J. Brown
  • Patent number: 11415442
    Abstract: Disclosed is an ultrasonic flow tube comprising: a flow chamber for accepting an inflow of a gas, comprising a center pipe and a plurality of outer pipes surrounding the center pipe, connected between an inlet wall and an outlet wall of the flow chamber such that a velocity of the gas within the center pipe and the plurality of outer pipes is numerically same; and a first transducer attached near the inlet wall and a second transducer attached near the outlet wall, wherein a first acoustic wave package generated by the first transducer and a second acoustic wave package generated by the second transducer is transmitted into the flow chamber such that the center pipe receives a majority of the first and the second acoustic wave package, and the plurality of outer pipes receives a minority of the first acoustic wave package and the second acoustic wave package.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: August 16, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Tobias Meimberg, Norbert Flerlage, Christian Lampe-Juergens, Ralf Schroeder genannt Berghegger, Andreas Wuchrer
  • Patent number: 11215489
    Abstract: An apparatus for measuring a flow velocity of a fluid in a pipe includes: a housing in which a first ultrasonic transducer and a second ultrasonic transducer are arranged at a predefined distance to each other, the first ultrasonic transducer including a first sound transmitting element and a transmitter/receiver unit mounted thereto which emit first ultrasonic pulses at different angles, the second ultrasonic transducer receiving the first ultrasonic pulses and generating a first electronic output signal, the second ultrasonic transducer including a second sound transmitting element and a transmitter/receiver unit mounted thereto which emit second ultrasonic pulses at different angles, the first ultrasonic transducer receiving the second ultrasonic pulses and generating a second electronic output signal; and a control and evaluation unit electrically coupled to the first and second transducers, the control and evaluation unit tuning the first transducer to generate a first electronic output signal of a maxim
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: January 4, 2022
    Assignee: ABB SCHWEIZ AG
    Inventors: Detlef Pape, Philipp Nenninger, Miklos Lenner
  • Patent number: 11175165
    Abstract: Methods and systems for measuring a fluid flow comprise a plurality of transceivers disposed at predetermined locations distributed along a perimeter around the fluid flow. The transceivers transmit and receive acoustic signals through the fluid flow there between. A plurality of different acoustic paths through the fluid flow are formed between different transceiver pairs. Different time intervals are measured between respective times of transmitting and receiving the acoustic signals; and along the plurality of different acoustic paths. A velocity map of the fluid flow is calculated by fitting the measured different time intervals to a model of the fluid flow. The model of the fluid flow defines a velocity map with different flow velocities in a cross-section plane transverse to the fluid flow.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: November 16, 2021
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Paul Louis Maria Joseph Van Neer, Daniele Piras, Uilke Stelwagen, Erwin Johannes Martinus Giling
  • Patent number: 10718646
    Abstract: An ultrasound flow measurement apparatus is provided having a plurality of ultrasonic transducers for determining the flow rate of a fluid flowing in a line, said ultrasound flow measurement apparatus having a plurality of measurement paths at which two respective ones of the ultrasonic transducers are arranged opposite one another with the flow being arranged therebetween and with a mutual axial spacing in the longitudinal direction of the line and having an evaluation unit that is configured to calculate the flow rate from time of flight differences of ultrasonic signals along the respective measurement paths in the direction with the flow and against the flow. The measurement paths have different axial offsets here.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 21, 2020
    Assignee: SICK ENGINEERING GMBH
    Inventors: Alexander Nerowski, Martin Oberländer
  • Patent number: 10584995
    Abstract: An Ultrasonic flowmeter for measuring the flow of a medium through a measuring tube (3) with at least two ultrasonic transducers (4,5) and at least one control and evaluation unit (6). The measuring tube (3) has an inner wall, the ultrasonic transducers (4, 5) are transmitters (4,5) for transmitting an ultrasonic signal (7) and/or are receivers (4, 5) for receiving the ultrasonic signal, and are arranged offset in the direction of flow such that the respective transmitter (4, 5) transmits an ultrasonic signal (7) in the direction of flow or against the direction of flow during operation. The receiver (4, 5) receives the ultrasonic signal (7) transmitted by the transmitter (4, 5) after at least one reflection on the inner wall of the measuring tube (3), the ultrasonic signal (7) having a first signal component (8) and at least a second signal component (9).
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: March 10, 2020
    Assignee: KROHNE AG
    Inventors: Jeroen Martin van Klooster, Arie Huijzer
  • Patent number: 10260919
    Abstract: An ultrasound measuring apparatus for measuring the flow rate of a fluid in a conduit having two measurement systems is provided that each have at least one pair of ultrasound transducers that span a measurement path between them and that each have a control unit to determine transit times from ultrasound transmitted and received with and against the flow. In this respect, the control units are each configured to fix measurement times for a transit time determination on a measurement path autonomously and independently of one another in accordance with a rule that produces a respective different sequence of the measurement times in both measurement systems.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 16, 2019
    Assignee: SICK ENGINEERING GMBH
    Inventors: Toralf Dietz, Arnd Schlicke, Henri Kirmse
  • Patent number: 9453749
    Abstract: A hybrid ultrasonic flowmeter includes at least a first sensing plane including four ultrasonic transducers (transducers) positioned in a parallelogram arrangement on a meter pipe wall including a first and second transducer pair. A first reflector is positioned between the first transducer pair on a first portion of the meter pipe wall, and a second ultrasonic reflector is between the second transducer pair on a second portion of the meter pipe wall opposite the first wall portion. The transducers have assembly angles and emission patterns for emitting ultrasonic beams to provide a plurality of direct measurement paths and a plurality of reflective paths involving a first reflective path involving the first ultrasonic reflector and a second reflective path involving the second ultrasonic reflector. A flow electronics module including a transceiver causes the transducers to transmit ultrasonic signals and processes sensing signals generated by the transducers for determining a volume flow.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: September 27, 2016
    Assignee: Honeywell International Inc.
    Inventors: David Bachmann, Rolf Schmitt, Markus Hantzsch, Andreas Weber, Joern Hendrik Weber
  • Patent number: 9383238
    Abstract: A system for determining characteristics of a multiphase fluid includes pipe and multiple pairs of transducers positioned circumferentially around the pipe. Each pair of transducers includes a transmitting transducer and a receiving transducer. The transmitting transducer of each pair of transducers is oriented to transmit a respective acoustic signal toward the receiving transducer of the pair of transducers. The transmitting transducer of each pair of transducers is operable to transmit the respective acoustic signal sequentially with respect to other transmitting transducers of the multiple pairs of transducers. A reception of a first acoustic signal transmitted by a transmitting transducer of a first pair transducers of the multiple pairs of transducers is completed by a receiving transducer of the first pair transducers before a transmitting transducer of another pair of transducers of the multiple pairs of transducers transmits a second acoustic signal.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 5, 2016
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Farid G. Mitri, Cole T. Brinkley, Robert Louis Williford
  • Patent number: 9182259
    Abstract: An ultrasonic flow meter is equipped with a housing through which a liquid flows, and a pair of detection units disposed on opposite ends of the housing and including acoustic wave transmitting and receiving units capable of transmitting and receiving acoustic wave signals. Vibration generating mechanisms having vibration generating bodies arranged perpendicularly to the detection units are disposed on an outer circumferential side of the housing. In addition, when the flow rate of the liquid that flows through the housing is measured, the vibration generating bodies are energized and made to vibrate, such that gas bubbles, which adhere to cover members in contact with the liquid and that cover the acoustic wave transmitting and receiving units, are removed by the vibrations.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: November 10, 2015
    Assignee: SMC CORPORATION
    Inventors: Takamitsu Suzuki, Akinori Nagata
  • Patent number: 9140594
    Abstract: An ultrasonic, flow measuring device, which includes a measuring tube having a straight measuring tube axis, a transmitter for sending an acoustic signal on a first signal path, a receiver for receiving the acoustic signal on the first signal path and at least a first reflection surface, on which the acoustic signal is reflected at least once on the first signal path. The acoustic signal incident on the first reflection surface propagates along a first straight subsection, which has a first separation from the measuring tube axis, wherein the transmitter, the receiver and the first reflection surface are so oriented relative to one another and arranged in or on the measuring tube that the acoustic signal on the first signal path from the first transmitter to the first receiver is so reflected on the at least a first reflection surface that the acoustic signal reflected on the first reflection surface propagates through the measuring tube on the first signal path along a second straight subsection.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: September 22, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Achim Wiest, Andreas Berger
  • Patent number: 9068870
    Abstract: Apparatus and method for ultrasonic flow metering of viscous fluids. In one embodiment, an ultrasonic flow metering system includes an ultrasonic flow meter, a flow conditioner, and a reducer. The ultrasonic flow meter includes a pair of ultrasonic transducers arranged to exchange ultrasonic signals through a fluid stream flowing between the transducers. The flow conditioner is disposed upstream of the ultrasonic flow meter. The reducer is disposed between the flow conditioner and the ultrasonic flow meter to reduce the cross sectional area of the fluid stream flowing from the flow conditioner to the ultrasonic flow meter.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 30, 2015
    Assignee: DANIEL MEASUREMENT AND CONTROL, INC.
    Inventors: Paththage Jayampathi Anuradha Priyadarshana, Drew Shine Weaver, Peter Syrnyk, Dale Goodson
  • Publication number: 20150020608
    Abstract: Elements of a single beam-forming array of ultrasonic transducer elements are selectively activated to direct two or more ultrasonic beams to a series of acoustic mirrors mounted to or fabricated at known locations at an inside surface of the pipe. The ultrasonic beams traverse measurement path segments at known angles through a fluid flowing through the pipe before being received back at the single transducer array. Fluid flow velocity along the fluid flow path is calculated as a function of a difference in time-of-flight (TOF) along first and second ultrasonic beam paths after subtracting TOF components contributed by known-length non-measurement path segments. The difference in TOF results from an additive downstream fluid flow velocity vector component along a first measurement path segment and a subtractive upstream fluid flow velocity vector component along a second measurement path segment.
    Type: Application
    Filed: November 5, 2013
    Publication date: January 22, 2015
    Inventors: Matthieu Chevrier, Michael Weitz
  • Publication number: 20150013472
    Abstract: An ultrasonic flowmeter comprising an elongate duct through which fluid flows when the flowmeter is in use. Ultrasonic transducers are arranged respectively to transmit and receive ultrasonic pulses propagated through such fluid when the flowmeter is in use. Electronic circuitry is connected to the transducers to provide a measure of the time delay between emission of an electronic pulse from one of the transducers and reception of the pulse by the other of the transducers. The circuitry is constructed to enable an output to be provided which is dependent upon that delay and which is indicative of the rate of flow of fluid through the duct. The transducers are located respectively at opposite ends of the duct and are arranged to transmit and receive ultrasonic pulses propagated through the fluid substantially parallel to the duct from one end thereof to the other.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Applicant: GILL CORPORATE LIMITED
    Inventors: Michael John GILL, Samuel William BIRTWELL, Oliver Stewart BLACKLOCK
  • Patent number: 8919207
    Abstract: A multimode flow meter can use both the time-of-transit of upstream and downstream ultrasonic signals and time for transmission of downstream-only signals to determine a flow velocity of a medium flowing through a conduit. Based on factors, such as previously computed flow velocity and signal-to-noise ratio of the upstream signal, a mode of operation may be switched and only the time for transmission of the downstream signals may be used to determine flow velocity. The multimode flow meter can compute cross-flow to reduce its effect on the determination of flow velocity.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 30, 2014
    Assignee: General Electric Company
    Inventors: Lei Sui, James Michael Korba, Toan Huu Nguyen, Generoso Polcaro
  • Publication number: 20140144247
    Abstract: An ultrasonic, flow measuring device, including a measuring tube a transmitter a receiver and at least a first reflection surface. An acoustic signal incident on a first reflection surface and an acoustic signal reflected on the first reflection surface travel, in each case, along a straight subsection of the first signal path. The transmitter, the receiver and the first reflection surface are so oriented with respect to one another and arranged in or on the measuring tube that the acoustic signal on the first signal path from the first transmitter to the first receiver is so reflected on the first reflection surface that the sum of all lengths of all subsections as projected on a measuring tube axis, extending in a first plane parallel to the measuring tube axis, and having a predetermined separation other than zero from the measuring tube axis has a predetermined value different from zero.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 29, 2014
    Applicant: Endreas + Hauser Flowtec AG
    Inventors: Achim Wiest, Andreas Berger, Sascha Gruwald
  • Patent number: 8291773
    Abstract: An ultrasonic measurement device (10) for determining a flow velocity of a fluid in a conduit comprises a pipe section (12) having a central longitudinal axis (22) and a cross section (24) with a radius (R), the central longitudinal axis (22) defining a horizontal reference plane (26); at least a first two-path measurement system with a first path (30a) and a second path (30b) defined by a first pair of ultrasonic transducers (32) and a second pair of ultrasonic transducers (32) mounted to the wall of the pipe section (12), the ultrasonic transducers (32) of each path (30a-b) opposing each other at the ends of their path (30a-b), each path (30a-b) oriented parallel to the horizontal reference plane (26) with a distance to the horizontal reference plane (26) while having a component transverse to the central longitudinal axis (22); first evaluation means (38) to determine a first flow velocity value from the first path (30a) by comparing the ultrasonic transit times along the first path (30a) with and again
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 23, 2012
    Assignee: Sick Engineering GmbH
    Inventors: Toralf Dietz, Lars Oehmichen, John Lansing
  • Patent number: 8239157
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 7, 2012
    Assignee: Micro Motion, Inc.
    Inventors: Craig B McAnally, Andrew T Patten, Charles P Stack, Jeffrey S Walker, Neal B Gronlie
  • Patent number: 8234934
    Abstract: An ultrasound measurement apparatus (10) is set forth for measuring the flow speed of a fluid in a conduit (12) having a plurality of ultrasonic transducers (14) pairs of which span between them a plurality of main measurement paths and at least one diagnosis measurement path, and having an evaluation unit (12) which is made to determine a respective individual measured value for the flow speed from transit times of ultrasound transmitted and received with and against the flow on each measurement path (16, 18), to calculate individual measured values of the main measurement paths as a main measured value for the flow speed, to determine a measured diagnosis value from the at least one individual measured value of the diagnosis measured path and to compare the main measured value and the measured diagnosis value with one another.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 7, 2012
    Assignee: Sick Engineering GmbH
    Inventors: Toralf Dietz, John Lansing
  • Patent number: 8229686
    Abstract: A method and apparatus for measuring a flow rate of a component of a stratified two-phase fluid flow within a substantially horizontally extending pipe is provided. The method includes the steps of: a) determining a first fluid velocity value and a second fluid velocity value within the pipe section; b) determining a density of the fluid flow within the pipe section, and creating a measured fluid density value; c) determining a degree of fluid phase stratification of the fluid flow using at least one of the top and bottom fluid flow velocity values, and the measured fluid density value; and d) determining a flow rate value for at least one of a liquid component of the fluid flow and a gas component of the fluid flow within the pipe section.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 24, 2012
    Assignee: Expro Meters, Inc.
    Inventor: Abhinav Singh Rawat
  • Publication number: 20110277558
    Abstract: An ultrasound measurement apparatus (10) is set forth for measuring the flow speed of a fluid in a conduit (12) having a plurality of ultrasonic transducers (14) pairs of which span between them a plurality of main measurement paths and at least one diagnosis measurement path, and having an evaluation unit (12) which is made to determine a respective individual measured value for the flow speed from transit times of ultrasound transmitted and received with and against the flow on each measurement path (16, 18), to calculate individual measured values of the main measurement paths as a main measured value for the flow speed, to determine a measured diagnosis value from the at least one individual measured value of the diagnosis measured path and to compare the main measured value and the measured diagnosis value with one another.
    Type: Application
    Filed: September 27, 2010
    Publication date: November 17, 2011
    Applicant: SICK ENGINEERING GMBH
    Inventors: Toralf DIETZ, John LANSING
  • Patent number: 7942068
    Abstract: In one embodiment, a multi-path ultrasonic flow meter for determining the flow rate of a fluid in a conduit is disclosed comprising at least two transducer pairs attached to the conduit at two chord locations, one greater than and one less than a mid-radius chord, wherein the composite ratio the two path velocities to the flow rate is substantially constant over the range of Reynolds numbers. In another embodiment, a method of determining the flow rate of a fluid in a conduit is disclosed comprising the steps of determining a composite velocity by determining a weighted average of a plurality of path velocities, determining a chord velocity ratio based on the path velocities, determining a profile correction factor based on the composite velocity and the chord velocity ratio, and determining the flow rate based on the composite velocity and the profile correction factor.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: May 17, 2011
    Assignee: GE Infrastructure Sensing, Inc.
    Inventors: Xiaolei Shirley Ao, Robert Caravana, Edward Randall Furlong, Oleg Alexander Khrakovsky, Benjamin Edward McDonald, Nicholas Joseph Mollo, Lydia Shen
  • Patent number: 7925456
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: April 12, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Craig B. McAnally, Andrew T. Patten, Charles P. Stack, Jeffrey S. Walker, Neal B. Gronlie
  • Patent number: 7810399
    Abstract: An ultrasonic flowmeter with a measuring tube through which flows a medium and which, viewed in cross section, has a split circumference forming two halves with two ultrasonic converter pairs, each with an associated ultrasound reflector. The converters of each pair are mounted on a common circumferential half in a mutually offset position as viewed in the longitudinal direction of the tube, while the reflector for each pair is positioned on the other, opposite circumferential half in the longitudinal direction of the measuring tube between the two converters, so that an ultrasound signal emitted by one converter of a pair travels along a V-shaped signal path via the reflector of the associated pair to the other converter of that pair. The first pair and the second reflector are positioned on one circumferential half of the tube while the second pair and the first reflector are positioned on the other, opposite circumferential half of the tube.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: October 12, 2010
    Assignee: Krohne AG
    Inventors: Jeroen Martin van Klooster, Cornelis Johannes Hogendoorn
  • Publication number: 20100229654
    Abstract: In one embodiment, a multi-path ultrasonic flow meter for determining the flow rate of a fluid in a conduit is disclosed comprising at least two transducer pairs attached to the conduit at two chord locations, one greater than and one less than a mid-radius chord, wherein the composite ratio the two path velocities to the flow rate is substantially constant over the range of Reynolds numbers. In another embodiment, a method of determining the flow rate of a fluid in a conduit is disclosed comprising the steps of determining a composite velocity by determining a weighted average of a plurality of path velocities, determining a chord velocity ratio based on the path velocities, determining a profile correction factor based on the composite velocity and the chord velocity ratio, and determining the flow rate based on the composite velocity and the profile correction factor.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 16, 2010
    Inventors: Xiaolei Shirley Ao, Robert Caravana, Edward Randall Furlong, Oleg Alexander Khrakovsky, Benjamin Edward McDonald, Nicholas Joseph Mollo, Lydia Shen
  • Patent number: 7752919
    Abstract: Acoustic flow meter with dual flow measurements. At least some of the illustrative embodiments are flow meters comprising a spool piece that defines a central passage, a first plurality of transducer pairs mechanically coupled to the spool piece, a second plurality of transducer pairs mechanically coupled to the spool piece, and meter electronics electrically coupled to the first and second plurality of transducer pairs (the meter electronics configured to determine a first value indicative of fluid flow through the central passage, the first value determined using only signals of the first plurality of transducer pairs). The meter electronics further configured to determine a second value indicative of fluid flow through the central passage, the second value determined using only signals of the second plurality of transducer pairs.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: July 13, 2010
    Assignee: Daniel Measurement and Control, Inc.
    Inventors: Henry Charles Straub, Jr., Charles W. Derr
  • Patent number: 7706986
    Abstract: An ultrasonic flow measuring device, which determines volume and/or mass flow of a medium in a pipeline, or in a measuring tube. The flow measuring device includes a plurality of ultrasonic sensors, which emit and/or receive ultrasonic measurement signals along defined sound paths. The control/evaluation electronics of the flow measuring device is divided into an on-site electronics, in which at least one switch is provided, via which the ultrasonic sensors, arranged in different sound paths, can be driven and/or queried, and at least one remote, control/evaluation unit, wherein the control/evaluation unit so switches the at least one switch, that the driven and/or queried, ultrasonic sensor, or the driven and/or queried pair of ultrasonic sensors, is activated and provides measured values.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: April 27, 2010
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Thomas Fröhlich, Achim Wiest, Andreas Berger, Harald Stocker, Torsten Strunz, Aurele Fleury, Oliver Berberig, Klaus Bussinger, Patrick Oudoire, Saul Jacobson, Frank Wandeler, Oliver Brumberg
  • Patent number: 7643947
    Abstract: A method for calibrating a flowmeter, comprising choosing a pipe configuration from a list of pipe configurations, defining a number of diameters downstream from the pipe configuration where a transducer is to be installed, determining an initial curve number for the chosen pipe configuration, wherein the initial curve number corresponds to a predetermined flow profile correction curve, determining a swirl factor for the chosen pipe configuration, and computing a calibration factor for a given Reynolds number.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: January 5, 2010
    Assignee: Siemens Industry, Inc.
    Inventor: Joseph Baumoel
  • Publication number: 20090211330
    Abstract: A method for ascertaining volume- or mass-flow of a medium in a pipeline, or measuring tube, of radius (r) via a sound entrainment method, wherein ultrasonic measuring signals are transmitted and/or received along a plurality of defined sound paths (m). During a calibration phase, successive, different flow profiles (v(r)) of a measured medium are established in the pipeline, or in the measuring tube, and wherein, for each flow profile (v(r)), a defined volume flow, or a defined mass flow, is ascertained, wherein, on the basis of measured values (v)x(r1) . . . vx(rm)) ascertained in the separate measuring paths (m), each flow profile (v(r)) established in the pipeline, or in the measuring tube, is described by a characteristic parameter set (a1 . . . an with n?N) and wherein, for each flow profile (V(r)), on the basis of the defined volume- or mass-flow and on the basis of the measured volume- or mass-flow, a flow-profile-dependent correction factor MF(a1, . . .
    Type: Application
    Filed: April 20, 2006
    Publication date: August 27, 2009
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Thomas Froehlich, Matthias Altendorf, Torsten Strunz
  • Patent number: 7454981
    Abstract: In an apparatus for measuring a parameter of a wet gas flow, a gamma densitometer is provided and configured to non-intrusively measure the density of the wet gas flow. A sonar based flow meter is also provided and configured to non-intrusively determine a flow rate of the gas flow of the wet gas flow. A processing device is in communication with at least one of the gamma densitometer and the sonar based flow meter, the processing device being configured to determine the flow rate of the gas portion and/or liquid portion of the wet gas flow using the measured density and flow rate of the wet gas flow.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: November 25, 2008
    Assignee: Expro Meters. Inc.
    Inventor: Daniel L. Gysling
  • Publication number: 20080196511
    Abstract: The invention relates to a flow cell for an ultrasonic flow meter comprising two transducers of ultrasonic waves wherein the two transducers are reversibly detachable from the flow cell. The flow cell with the transducers detached is sterilisable and is particularly suitable for use in disposable or single-use systems.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 21, 2008
    Applicant: GE HEALTHCARE BIO-SCIENCES AB
    Inventors: HANNO EHRING, DAN HERMANSSON
  • Patent number: 6947851
    Abstract: A transmitting and receiving circuit for an ultrasonic flowmeter. In such circuits, an ultrasonic transducer is typically used as both transmitter and receiver. This is obtained by using switching means, for example in the form of CMOS switches. However, problems arise with ringings of a transducer when having acted as a transmitter. This unwanted ringing makes the crystal of the transducer act as an additional signal generator, and the signal is coupled via parasitic capacitances in a switching means to the receiving ultrasonic transducer. This problem is solved by connecting one pole of a short circuit switch (S3, S4) to the ultrasonic transducer (TR1, TR2) or to the switching means (S1, S2) and the other pole of the short circuit switch to ground. Keeping the short circuit switch closed when the switching means is open, and open when the switching means is closed, creates a decoupling path for the unwanted signal, thereby improving the accuracy of the transmitting and receiving circuit.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: September 20, 2005
    Assignee: Siemens Flow Instruments A/S
    Inventor: Lars Jespersen
  • Patent number: 6907361
    Abstract: An ultrasonic flow-measuring method determines the flow rate of a medium flowing through a line is determined by measuring the runtime of an ultrasonic signal that travels from a first ultrasonic transducer to at least one other ultrasonic transducer. The runtime of the ultrasonic signal as it makes m passes in immediate succession through a predefined path over a predefined path length and at a predefined angle relative to the flow direction is measured, and the runtime of the ultrasonic signal as it makes n passes in immediate succession through the predefined path over the predefined path length at the predefined angle relative to the flow direction is measured, with m and n being mutually different integers, and the dead time of the ultrasonic flow-measuring process is determined on the basis of the measured runtimes. This ultrasonic flow-measuring method permits real-time compensation for the dead time during the actual measuring process, the result being highly accurate measurements.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: June 14, 2005
    Assignee: Khrone A.G.
    Inventors: Marcel Meijlom Molenaar, Eugene Albert van Dijk
  • Patent number: 6842716
    Abstract: Propagation time Tp of an ultrasound signal between two spaced-apart transducers constituting an emitter and a receiver is measured. The emitter transducer is subjected to an excitation signal of n successive pulses of period Te giving rise to an ultrasound signal being emitted towards the receiver transducer which receives the ultrasound signal generating and outputting a receive signal. A measurement of an intermediate propagation time Tint is started when the emitter transducer begins to be excited. The receive signal is detected and the oscillations in the receive signal are counted. Measurement of the intermediate propagation time Tint is stopped when an ith oscillation is detected. The propagation time Tp is determined by taking the difference Tint?i×Te. Advantageously, measurement of Tint is stopped for an ith oscillation of the receive signal that corresponds to the receive signal being at a maximum amplitude.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: January 11, 2005
    Assignee: Actaris S.A.S
    Inventor: Christophe Leleu
  • Patent number: 6826965
    Abstract: A tag flow measurement system wherein a first and a second measurement path are provided across a flowing fluid, and a receiver in each path receives signals modulated by scatters in the fluid. The direction of signal propagation in one path faces in an opposite sense to, e.g., is anti-parallel to, the direction of propagation in the other path, and the two receiver outputs are correlated to determine a time interval representative of flow velocity. In one embodiment each path is defined by a transmitter on one side of the conduit and a receiver on the other side of the conduit, and the positions or orientations of transmitter and receiver are reversed in the second pair. Thus, the first transmitter may lie on the same side of the conduit as the second receiver, and the second transmitter may lie on the same side of the conduit as the first receiver. Diametral or chordal paths may be used.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: December 7, 2004
    Assignee: Panametrics, Inc.
    Inventor: Yi Liu
  • Patent number: 6644119
    Abstract: An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: November 11, 2003
    Assignee: The Regents of the University of California
    Inventor: Dipen N. Sinha
  • Patent number: 6474174
    Abstract: An ultrasonic flow rate measuring method comprises steps of measuring an inner diameter of a pipe in a manner to subtract a corrosive resistance layer and its possible thickness deviation from the maximum deviation of an inner diameter presented as a pipe size within the range of being able to be estimated, measuring a flow rate QI of the ideal circular section having the measured inner diameter based on the ultrasonic multi-channel flow rate measuring method, calculating a flow rate QII of the remaining section according to a flow velocity distribution curve and adding the flow rate QII to the flow rate QI to calculate a total flow rate Q. Therefore, the method can enhance the accuracy of the flow rate measurement, if the section area of a pipe can't be measured, exactly, and the inner diameter of the pipe has a deviation due to an ovalness.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: November 5, 2002
    Assignees: International Hydrosonic Co., Ltd., Hydrosonic International Co., Ltd.
    Inventor: Tyan Khak Su
  • Patent number: 6460419
    Abstract: An ultrasonic flow measuring method that includes selecting a section area in a right angle to an ultrasonic transit trajectory line for measuring a flow velocity as a section area necessary for a flow measurement; and multiplying a flow velocity component of a direction corresponding to an ultrasonic transit trajectory, which is directly measured by an ultrasonic wave, by the section area thereby to compute a flow or flowrate, so that a flow measuring error and a measuring error of a section area can be significantly reduced, thereby enhancing the accuracy of the flow measurement. The apparatus having a plurality of paired transducers disposed within the pipe at opposing sides; a mechanism for measuring a flow velocity of the fluid for each of a plurality of chords dividing the section area; and a mechanism for determining the flow of the fluid based on a product of the average flow velocity of the fluid and a flow computing area.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: October 8, 2002
    Assignees: International Hydrosonic Co., Ltd., Hydrosonic International Co., Ltd.
    Inventor: Tyan Khak Su
  • Publication number: 20020053243
    Abstract: An ultrasonic flow measuring method comprises steps of selecting a section area in a right angle to an ultrasonic transit trajectory line for measuring a flow velocity as a section area necessary for a flow measurement; and multiplying a flow velocity component of a direction corresponding to an ultrasonic transit trajectory, which is directly measured by an ultrasonic wave, by the section area thereby to compute a flow or flowrate, so that a flow measuring error and a measuring error of a section area can be significantly reduced, thereby enhancing the accuracy of the flow measurement.
    Type: Application
    Filed: January 3, 2001
    Publication date: May 9, 2002
    Inventor: Tyan Khak Su