With Mechanical Coupling To Indicator Patents (Class 73/861.93)
  • Patent number: 8656789
    Abstract: An adapter assembly that works with a standard utility meter to wirelessly transmit data about consumption. The adapter assembly generates information about consumption by cooperating with a pointer of an index of a utility meter. In some embodiments, the adapter assembly includes an upper portion and a clip that interface together. The upper portion and the clip are configured to maintain alignment with the pointer and not create stress on the index.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: February 25, 2014
    Assignee: Landis+Gyr Innovations, Inc.
    Inventors: Michael B. Davis, Nathan Edward Woody
  • Patent number: 7775422
    Abstract: A meter for flowing material, e.g., water, has a meter register having an electronic display, e.g., an LED or LCD display, and a mechanical read-out display driven by a stepper motor to record units of water that flowed through the meter. In the event of an electrical power failure, the LED or LCD readout values are lost, however, the mechanical read-out values remain. Further, signals are transmitted to a microprocessor of a meter register to change the rotation of the stepper motor so that the meter register can be used with different types of meters. Still further, a meter generator co-acting with a meter register forwards an electrical pulse signal after a quantity of material or utility passes through a water meter to a microprocessor of a remote reader. The remote reader includes an odometer coupled to a stepper motor.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: August 17, 2010
    Assignee: Arad Measuring Technologies Ltd.
    Inventors: Dan Winter, Ronald N. Koch
  • Patent number: 7650801
    Abstract: The invention relates to a turbine flowmeter for measuring the consumption of fluids, particularly water. The turbine flowmeter comprises a housing (1) with an inflow (2), and outflow (3) and a flow channel (4). The turbine flowmeter also comprises a measuring unit (5) for measuring and indicating the consumption. A turbine (10) with a hub (11) and a number of radial vanes (12.1, 12.2) is located inside the channel (4). A holding insert (20) is also located inside the channel (4) and is comprised of a water guide cross (20.1) and of an insert base body (20.2). The water guide cross (20.1) comprises a hub (21), radial struts (22) extending from the hub (21) to the wall of the channel (4), a nozzle body (23), which surrounds the front (14) of the turbine (10), however, a gap (17) remains through which the fluid flows, and comprises a central opening (24) in the nozzle body (23). The vanes (12.1. 12.2) of the turbine (10) are positioned near the nozzle body (23). A nozzle ring (16) connects the vanes (12.1, 12.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: January 26, 2010
    Assignee: M & FC Holding LLC
    Inventor: Holger Kuhlemann
  • Patent number: 6959611
    Abstract: A flow meter, particularly for warm water heating systems, includes a measuring element and an indicator element. The indicator element has a basic component with a cylindrical attachment extending into the collector pipe. An indicator rod with a rebounding plate extends into the measuring element and vertically slidable. According to the invention, a filter is installed ahead of the rebounding plate in the flow direction of the heating medium. Where the basic component extends to a cylindrical attachment affecting the flow against the rebounding plate, it is suitable to provide a number of slits in the cylindrical external wall of the lower portion of the attachment, the slits being distributed around the perimeter parallel to the axis. In this manner, dirt particles, which could impair the function of the indicator, are virtually filtered out.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: November 1, 2005
    Assignee: Watts Industries Deutschland
    Inventor: Ulrich Schehl
  • Patent number: 6881507
    Abstract: The mass flow of hydrogen fuel in the anode loop of a hydrogen fuel cell is measured using a rotating flow meter. The flow meter includes a bladed rotor mounted for rotation within a tube disposed in the stream of hydrogen fuel flowing through the anode loop. A magnetic sensor senses changing magnetic field caused by the rotation of the rotor and produces an alternating signal having a frequency related to the rotational rate of the rotor, and thus of the mass flow rate of the hydrogen fuel. A fuel purity sensor increases the accuracy of the mass flow measurement by determining the concentration of foreign substances contained in the fuel.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: April 19, 2005
    Inventor: Milos Milacic