Including Electric Motor Patents (Class 74/490.03)
  • Patent number: 10625414
    Abstract: The present invention relates to a robotic system having at least one robot arm which consists of a plurality of members/limbs, which are connected with each other by joints, in which the housing is configured to transmit the torques and forces, which are introduced into the member, onto a member being adjacent thereto, and in which the housing is composed of at least two housing parts being complementary in shape, which housing parts are connected to each other in a manner allowing the transmission of torques and forces.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: April 21, 2020
    Assignee: FRANKA EMIKA GmbH
    Inventors: Sami Haddadin, Tim Rokahr
  • Patent number: 10586729
    Abstract: A transfer device can have a high durability and no limit in an operation of an arm member. An electrostatic pick 44 of a first transfer device 17 is advanced into a process module 12, and a wafer W is electrostatically attracted to and held on the electrostatic pick 44. While the wafer W is being transferred into a load lock module 14 by driving the first transfer device 17, the electrostatic pick 44 is turned into an electrically floating state, so that a state in which the wafer W is electrostatically attracted to and held on the electrostatic pick 44 is maintained. After the transferring of the wafer W to the load lock module 14 is completed, charges of the electrostatic pick 44 are neutralized, so that the wafer W is not electrostatically attracted to and held on the electrostatic pick 44.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 10, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hiroshi Koizumi, Takehiro Shindo
  • Patent number: 10556308
    Abstract: A work apparatus includes a parallel link mechanism, a position control actuator, a linear motion mechanism, and a rotating mechanism. The parallel link mechanism includes three or more link mechanisms that couple a distal end side link hub to a proximal end side link hub such that a position of the distal end side link hub can be changed relative to the proximal end side link hub. The position control actuator operates the parallel link mechanism. The linear motion mechanism moves a working body in an axial direction orthogonal to a central axis of the proximal end side link hub. The rotating mechanism is mounted on the distal end side link hub and rotates a work object about a rotation center axis parallel to a movement direction of the linear motion mechanism when the central axis and a central axis are on the same line.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 11, 2020
    Assignee: NTN CORPORATION
    Inventors: Kenzou Nose, Hiroshi Isobe, Seigo Sakata, Hiroyuki Yamada
  • Patent number: 10525601
    Abstract: An example robot includes: a motor disposed within a housing at a joint configured to control motion of a member of a robot; a controller including one or more printed circuit boards (PCBs) disposed within the housing and including a plurality of field-effect transistors (FETs) disposed on a surface of a PCB of the one or more PCBs facing the motor; a rotary position sensor mounted on the controller; a shaft coupled to a rotor of the motor and extending therefrom to the controller; and a magnet mounted within the shaft at an end of the shaft facing the controller.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: January 7, 2020
    Assignee: Boston Dynamics, Inc.
    Inventors: Zachary John Jackowski, Kyle Rogers, Adam Young
  • Patent number: 10513028
    Abstract: The composite work apparatus includes: two link actuation devices that support two working bodies such that postures of the working bodies can be individually changed; and three or more linear motion actuators that move the two link actuation devices and two or more work objects relative to each other. In each link actuation device, a distal end side link hub is connected to a proximal end side link hub via three or more link mechanisms such that a posture of the distal end side link hub can be changed relative to the proximal end side link hub, and a posture control actuator that arbitrarily changes the posture of the distal end side link hub relative to the proximal end side link hub is provided to each of two or more link mechanisms of the three or more link mechanisms.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: December 24, 2019
    Assignee: NTN CORPORATION
    Inventors: Hiroshi Isobe, Seigo Sakata, Naoki Marui, Kenzou Nose
  • Patent number: 10443693
    Abstract: An operation device for a link actuating device (51) is provided with a target value input unit (57) having a height direction target value input portion (57z) that allows input of a movement amount in a height direction or a coordinate position in the height direction, which causes the distal end posture of the link actuating device (51) to be changed only in the height direction along a central axis of a proximal end side link hub (12). Input converter (58) is provided to calculate, by using an inputted value, a target distal end posture of the link actuating device (51). The Input converter (58) further calculates a command operation amount of each actuator (53) from the result of the calculation, and inputs the command operation amount to the control device (54).
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 15, 2019
    Assignee: NTN CORPORATION
    Inventors: Seigo Sakata, Yukihiro Nishio, Hiroshi Isobe, Naoya Konagai, Hiroyuki Yamada
  • Patent number: 10384342
    Abstract: A horizontal articulated robot including a base, a first arm provided above the base so as to be capable of rotating about a first axis, a first driving part configured to cause the first arm to rotate with respect to the base, a second arm attached so as to be capable of rotating about a second axis, and a second driving part configured to cause the second arm to rotate with respect to the first arm. The first driving part includes a first motor and a first reduction gear that are arranged in series along the first axis. The second driving part includes a second motor and a second reduction gear which are arranged in series along the second axis. A lower surface of the second reduction gear is disposed at a position lower than an upper surface of the first reduction gear.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: August 20, 2019
    Assignee: FANUC CORPORATION
    Inventor: Satoshi Adachi
  • Patent number: 10286563
    Abstract: A robot system includes a plurality of drive parts, a control unit that controls power for driving the drive parts by switching, and a cable that connects the drive parts and the control unit, wherein the cable has a plurality of power lines, a plurality of frame ground lines, and a shield, a first interposition object is provided between the plurality of power lines and the shield, and, in a section of the cable, respective centers of the plurality of frame ground lines are closer to the shield than respective centers of the plurality of power lines.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: May 14, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Takema Yamazaki, Takashi Kojima
  • Patent number: 10052771
    Abstract: A joint device for a robot includes a first frame, a motor fixed to the first frame, a flange rotated by the motor, and a second frame fixed to the flange. The first frame has an opening extending from a part of a lateral portion to a predetermined part of a bottom portion. An outer rim portion of the flange faces to the opening in the predetermined part. The outer rim portion has through-holes. An end portion of the second frame adjacent to the first frame includes a facing portion that faces to the outer rim portion, and screw holes provided on the facing portion. The flange is fixed to the second frame such that screws inserted into the respective through-holes are fastened to the respective screw holes of the second frame.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: August 21, 2018
    Assignee: DENSO WAVE INCORPORATED
    Inventor: Yusuke Kato
  • Patent number: 10035265
    Abstract: According to an embodiment, a manipulator includes the following elements. The first joint has a rotation axis in a first direction crossing a gravity direction. The second joint has a rotation axis in a second direction crossing the first direction. The first arm and the second arm are coupled with the second joint along a third direction crossing the second direction. The variable center-of-gravity unit coupled with the first arm. The controller controls the variable center-of-gravity unit to perform an operation for moving the first weight of the variable center-of-gravity unit in a direction crossing the rotation axis of the first joint and/or an operation for moving the second weight of the variable center-of-gravity unit in a direction crossing the rotation axis of the second joint.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: July 31, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hideichi Nakamoto
  • Patent number: 9999972
    Abstract: An object of the present invention is to prevent unnecessary driving stop of a stepping motor. A robot arm section includes a robot arm, a stepping motor 31a, a motor driver 31b, an encoder 31c and a step-out detection section 31e. The robot arm has a joint J1. The stepping motor generates power for operating the joint. The motor driver drives the stepping motor according to a target angle. The encoder outputs an encoder pulse every time a drive shaft of the stepping motor rotates by a predetermined angle. The step-out detection section detects a step-out of the stepping motor based on the target angle and a current angle of the stepping motor that is identified based on the encoder pulse. When the stepping motor does not recover from the step-out before a predetermined grace time elapses from a time at which the step-out is detected, the motor driver stops driving the stepping motor at the time point at which the grace time elapses.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: June 19, 2018
    Assignee: Life Robotics Inc.
    Inventor: Woo-Keun Yoon
  • Patent number: 9884422
    Abstract: A robot includes a base, a first arm rotatably provided on the base via a first connecting section, a second arm rotatably provided on the first arm via a second connecting section, and a movable shaft section provided in the second arm and movable with respect to the second arm. When a movable range of the movable shaft section is represented as S and the height between a distal end of the movable shaft section on the opposite side of the first arm at the time when the movable shaft section moves to the first arm side most with respect to the second arm and a first connection surface, which is a connection surface of the base and the first connecting section, is represented as H1, a relation H1?3S is satisfied.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: February 6, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Seiji Hahakura, Masato Yokota
  • Patent number: 9764480
    Abstract: A robot includes a body, a first arm, and a second arm. The first arm includes one joint, an adjacent joint that is adjacent to the one joint, and another adjacent joint that is adjacent to the adjacent joint. When the first arm is extended in a vertical orientation relative to the body, the one joint of the first arm has a rotation axis that is offset by a first distance in a first horizontal direction from a rotation axis of the adjacent joint of the first arm, and the another adjacent joint of the first arm has a rotation axis that is offset by a second distance in a second horizontal direction from the rotation axis of the adjacent joint of the first arm. The first horizontal direction is opposite to the second horizontal direction.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: September 19, 2017
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Takenori Oka, Manabu Okahisa
  • Patent number: 9724834
    Abstract: A substrate-transporting robot apparatus is disclosed. The robot apparatus may include an upper arm, a forearm independently rotatable relative to the upper arm, a wrist member independently rotatable relative to the forearm, and an end effector adapted to carry a substrate. In some aspects, the independent rotation is provided by a robot drive assembly having a second driving pulley mounted for rotation on a first driving pulley. In another aspect, robot drive assemblies including base-mounted and web-mounted pulleys are disclosed. Robot drive assemblies and operational methods are provided, as are numerous other aspects.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: August 8, 2017
    Assignee: Applied Materials, Inc.
    Inventor: Izya Kremerman
  • Patent number: 9719553
    Abstract: A rotation drive device includes a crankshaft which has two ends dynamically connected to a drive source and a driven device, respectively. The drive source drives the crankshaft to rotate the driven device. The crankshaft structurally changes to make the two ends of the shaft portion connected to the rotation drive portion and the driven portion, respectively, at different central angles, which divides the space into two subspaces which are located two sides of the shaft portion, so that the wire can be arranged in the subspaces at both sides of the shaft portion, thus enhancing the flexibility of wire distribution while improving rotation range of motion.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 1, 2017
    Assignee: HIWIN TECHNOLOGIES CORP.
    Inventors: Yi-Ting Lo, Chin-Yen Su
  • Patent number: 9545697
    Abstract: A method for performing operations on a structure. A moveable platform may be positioned in an area relative to the structure to define a working envelope. The moveable platform may be connected to a tool that may be moved around a plurality of axes within the working envelope using the moveable platform. The tool may be moved to a plurality of locations within the working envelope using the moveable platform. An operation may be performed with the tool through the working envelope at each of the plurality of locations using the moveable platform.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: January 17, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Eric Whinnem, Gary A. Lipczynski, John A. Baumann
  • Patent number: 9394979
    Abstract: A bearing is interposed in the revolute pair between a proximal end side link hub and each proximal side end link member. A control device controls an actuator, to perform work-time control for causing a determined work operation to be executed and to perform, while the work-time control is stopped, grease circulation control for circulating grease sealed in the bearing. The maximum value ?max of a bending angle in the work-time control does not exceed the maximum allowable bending angle ??max being the maximum value of the bending angle allowable in the mechanism, and the maximum value of the bending angle in the grease circulation control is greater than the maximum value ?max of the bending angle in the work-time control and smaller than the maximum allowable bending angle ??max.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: July 19, 2016
    Assignee: NTN CORPORATION
    Inventors: Hiroyuki Yamada, Hiroshi Isobe, Keisuke Sone
  • Patent number: 9278455
    Abstract: A wrist includes a wrist housing including a wrist driving structural portion to which rotation is transmitted from a wrist driving pulley, a cylindrical portion arranged coaxially with a rotational axis of the wrist driving structural portion and penetrated by a first hand driving shaft to which rotation is transmitted from a hand driving pulley, a cable introducing portion forming an annular gap with the cylindrical portion, and a hand-driving-shaft penetrating portion penetrated by a second hand driving shaft rotating a hand interface by rotation of the first hand driving shaft being transmitted thereto, and a cable, which comes out of a second arm from a wrist supporting portion, is drawn into the wrist housing from the annular gap and is routed to a hand interface supporting portion in a slackened state.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 8, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kimihito Mushikami, Haruo Ito, Keisuke Sadao, Junji Takehara, Hisato Uda
  • Patent number: 9246416
    Abstract: A braking apparatus for a three-phase brushless motor is provided in a motor-driven appliance, and includes a switching circuit having six switching elements and a brake control device. The brake control device executes two-phase short-circuit control in braking control in which a braking force is generated in the motor. In the two-phase short-circuit control, an on/off state of each of the switching elements is set in such a manner that two out of three conduction paths constituting one of a positive electrode side conduction path that connects three terminals of the motor and a positive electrode side of a direct current power source and a negative electrode side conduction path that connects the three terminals and a negative electrode side of the power source are in a conducting state and other of the three conduction paths is in a non-conducting state.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: January 26, 2016
    Assignee: MAKITA CORPORATION
    Inventor: Yoshitaka Ichikawa
  • Patent number: 9024488
    Abstract: A drive section for a substrate transport arm including a frame, at least one stator mounted within the frame, the stator including a first motor section and at least one stator bearing section and a coaxial spindle magnetically supported substantially without contact by the at least one stator bearing section, where each drive shaft of the coaxial spindle includes a rotor, the rotor including a second motor section and at least one rotor bearing section configured to interface with the at least one stator bearing section, wherein the first motor section is configured to interface with the second motor section to effect rotation of the spindle about a predetermined axis and the at least one stator bearing section is configured to effect at least leveling of a substrate transport arm end effector connected to the coaxial spindle through an interaction with the at least one rotor bearing section.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: May 5, 2015
    Assignee: Brooks Automation, Inc.
    Inventors: Ulysses Gilchrist, Martin Hosek, Jairo Terra Moura, Jay Krishnasamy, Christopher Hofmeister
  • Publication number: 20150114163
    Abstract: A controlled relative motion system includes a base support and a manipulable support. A plurality of lower link members are pivotally coupled to the base support, and each includes a spherical section capture opening. A plurality of upper link members are rotatably coupled to the lower link members via spherical joints at the spherical section capture openings. The manipulable support is pivotally coupled to the plurality of upper link members.
    Type: Application
    Filed: November 8, 2012
    Publication date: April 30, 2015
    Inventor: Mark E. Rosheim
  • Publication number: 20150114164
    Abstract: A first driving signal is supplied to a first electrode of a vibrating body. A second driving signal is supplied to a second electrode of the vibrating body. A common driving signal is supplied to a common electrode of the vibrating body. A phase of the first driving signal is set changeable with respect to a phase of the common driving signal. A phase of the second driving signal is set changeable with respect to the phase of the common driving signal. Then, it is possible to switch a driving direction of a piezoelectric motor according to which phase of the first driving signal or the second driving signal is varied from the phase of the common driving signal. If the phase is simply changed, a switch is unnecessary. It is possible to reduce a driving circuit in size.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 30, 2015
    Inventor: Osamu URANO
  • Patent number: 9016158
    Abstract: A head structure of a robot according to the invention includes a first motor and a second motor so supported side by side within a head of the robot that output shafts are positioned coaxially with each other; a left elastic frame that is so driven by the first motor and one end of which is so fitted as to be rotatable around the output shaft and the other end of which extending in a perpendicular direction from the output shaft is supported by a trunk of the robot; and a right elastic frame that is so driven by the second motor and one end of which is so fitted as to be rotatable around the output shaft and the other end of which extending side by side with the left elastic frame from the output shaft is supported by the trunk.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 28, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Azusa Amino, Ryosuke Nakamura, Taishi Ueda
  • Publication number: 20150107395
    Abstract: Systems and methods relating to a clutch system for use in controllably transmitting torque from an input shaft to an output shaft. The clutch system has a torque transmission fluid that has a viscosity that changes based on the strength of an electromagnetic field passing through the fluid. A number of sensors are placed at different radial locations on the torque transmission disks to detect the strength of the electromagnetic field. Based on the strength of the electromagnetic field, the amount of torque being transmitted from the input shaft to the output shaft can be adjusted. Also disclosed is a distributed actuation architecture that uses this clutch system. The distributed actuation architecture allows for the use of a single drive motor in conjunction with multiple instances of the clutch system to actuate a mechanical linkage, such as a robotic arm.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 23, 2015
    Inventors: Mehrdad KERMANI, Alex SHAFER
  • Patent number: 9010214
    Abstract: The various robotic medical devices include robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Additional embodiments relate to devices having arms coupled to a device body wherein the device has a minimal profile such that the device can be easily inserted through smaller incisions in comparison to other devices without such a small profile. Further embodiments relate to methods of operating the above devices.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2015
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Eric Markvicka, Tom Frederick, Jack Mondry, Joe Bartels, Shane Farritor
  • Patent number: 8997599
    Abstract: A motorized joint having two degrees of freedom in rotation connecting two elements is provided. The joint includes two pivot connections such that a first one of the pivot connections establishes a first pivot axis, and a second one of the pivot connections establishes a second pivot axis. The first pivot axis is not parallel to the second pivot axis. A first motor is disposed in fixed relation to a first one of the two elements and has a drive shaft aligned with a first drive axis so as to cause by means of a first speed reducer with parallel axes the two elements to rotate about the first pivot axis.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 7, 2015
    Assignee: Aldebaran Robotics
    Inventors: Bruno Maisonnier, Pascal Lafourcade, Romain Fischesser
  • Publication number: 20150068348
    Abstract: A robot includes a base, a multi-joint arm provided in the base, and a wrist member configuring a part of the multi-joint arm. The wrist member includes: a motor including a rotor, a rotor shaft, and a stator; and a housing including a motor housing recess, in which the motor is positioned and housed, and forming an external shape of the wrist member. The housing has a motor incorporating recess including a positioning section for the stator, a hole section for fixing the stator incorporated in the motor incorporating recess, and a heat radiation groove section on a sidewall of the motor incorporating recess. A heat radiation member is filled in the heat radiation groove section.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Inventor: Daisuke KIRIHARA
  • Publication number: 20150068349
    Abstract: A joint driving device includes: a reduction gear output shaft that transmits a torque to a second link; a transmission shaft that transmits reaction of the torque to a first link; a transmission shaft outer cylinder arranged on the outer circumference of the transmission shaft and connected to the transmission shaft; a reduction gear output shaft outer cylinder arranged in the outer circumference of the reduction gear output shaft and connected to the reduction gear output shaft; and a wire body arranged between the first link and the second link and including at least one of a wire and a pipe. The transmission shaft includes the motor frame as at least a part. The wire body is housed in a space between the transmission shaft outer cylinder and the transmission shaft, and a space between the reduction gear output shaft outer cylinder and the reduction gear output shaft.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Inventor: Tomokazu HIRABAYASHI
  • Patent number: 8973460
    Abstract: A linear actuator suitable for mobilizing a load comprises: a leg linked to the load by one of its ends with a ball joint with three degrees of freedom in rotation; a plate that is mobile in translation along an axis belonging to a plane of a support of the actuator, said mobile plate being mechanically linked to the leg by its other end. The linear actuator also comprises at least one first elastic cable, fixed by one of its ends to the mobile plate, and fixed by its other end to the support, being engaged in a first pulley fixed to the support. The actuator can notably be used to mobilize a simulation platform mounted on a hexapod.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 10, 2015
    Assignee: Thales
    Inventor: Olivier Duplouy
  • Publication number: 20150053040
    Abstract: An encoder includes a first rotator connectable to a rotating shaft and including a first pattern, and a first detection unit positioned at a non-rotatory member and configured to detect the first pattern. The encoder also includes a second rotator connectable to an output shaft that is rotatable around a predetermined axis and is configured to output rotation caused by the rotating shaft. The encoder also includes a second detection unit positioned at the non-rotatory member and configured to detect the second pattern, and a reference unit configured to position the first detection unit and the second detection unit by a common position reference.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 26, 2015
    Inventors: Takeshi UEDA, Kou OHNO, Toru MORITA
  • Patent number: 8960042
    Abstract: A robot arm assembly includes a supporting arm, first and second mechanical arms, a first driving member, a second driving member, a first transmission mechanism between the first mechanical arm and the first driving member, and a second transmission mechanism between the second mechanical arm and the second driving member. The first driving member drives the first transmission mechanism to rotate the first mechanical arm. The second driving member drives the second transmission mechanism to rotate the second mechanical arm. The first driving member and the second driving member are both carried in the supporting arm and are arranged side by side.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: February 24, 2015
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Zhen-Xing Liu
  • Patent number: 8961537
    Abstract: A surgical robot with seven degrees of freedom, including various types of joints, offers a hybrid active-passive control for operation both manually and by programmed navigation. One of the degrees of freedom allows the robot to be moved efficiently around the axis of a patient's body to provide ample workspace for surgical procedures in an operating room.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: February 24, 2015
    Assignees: The Chinese University of Hong Kong, Beihang University
    Inventors: Kwok-sui Leung, Shao-Long Kuang, Yu Wang, Chun-sing Chui, Wing-Hoi Cheung, Pak-Leung Tsang, Wai-kin Ng
  • Patent number: 8956068
    Abstract: The kinematic platform is a spherical-prismatic-spherical kinematic platform providing six degrees of freedom with controlled braking at each joint. The kinematic platform includes a base and an upper platform plate, with the upper platform plate having opposed upper and lower surfaces. The upper surface thereof provides a mounting surface for an external article to which controlled three-dimensional movement is to be imparted. A plurality of linear actuators are further provided, with each linear actuator having opposed upper and lower ends. A plurality of upper and lower spherical joints are provided for pivotally mounting the linear actuators between the upper platform plate and a lower base. Each spherical joint provides selective and controllable braking, allowing for the controlled rotation of each end of each linear actuator with respect to the respective upper platform plate or base.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: February 17, 2015
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Samir Mekid, Azfar Khalid
  • Publication number: 20150034698
    Abstract: A robot includes: a stage unit; a rotation base connected to the stage unit in a rotatable manner around a predetermined rotating axis; an arm unit connected to the rotation base and having a base end rotatable around a first rotation axis that is substantially orthogonal to the rotating axis; a balancer connected to both the rotation base and the arm unit; and a cable arranged along the arm unit outside the balancer while supported by that balancer.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Shingi TAKAHASHI, Tomoyuki SHIRAKI, Masato ITO, Kaori SAKAKI, Takahiko KANAMORI
  • Publication number: 20150013491
    Abstract: A spur gear deceleration mechanism unit (30) of a wrist structure unit is adapted to be driven in a first deceleration ratio structure or a second deceleration ratio structure. The first deceleration ratio structure uses at least a first spur gear (31) fitted onto an output shaft of a wrist inner frame driving motor (21) and a second spur gear (32) rotatably supported by a first auxiliary shaft (41). The second deceleration ratio structure uses at least the first spur gear, a first additional spur gear (51) rotatably supported by an additional auxiliary shaft (50), and a second additional spur gear (52) rotatably supported integrally with the first additional spur gear by the additional auxiliary shaft.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 15, 2015
    Applicant: FANUC CORPORATION
    Inventor: Masayoshi Mori
  • Patent number: 8931359
    Abstract: An actuating device includes a first actuating device mounted to a second actuating device. Each of the first and second actuating devices includes a base link, a first link, a second link, a translating link, a shaft, and a drive. The base link includes a first joint, a second joint, and a base plate extending between them. The first link is mounted for rotation to the first joint, and the second link is mounted for rotation to the second joint. The translating link includes a third joint, a fourth joint, and a translating plate extending between them. The drive includes an arc surface and is mounted to the translating link such that, when operating the actuating device, a position of the arc surface is fixed relative to the translating plate. The shaft is mounted to the arc surface to cause translation of the translating link as the shaft rotates.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 13, 2015
    Assignee: Vivero One Research, LLC
    Inventor: Arthur Quaid
  • Publication number: 20140366673
    Abstract: A robot includes a first arm and a second arm. The first arm and the second arm have different mechanisms from each other.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 18, 2014
    Inventors: Takema YAMAZAKI, Takashi NAGATE
  • Publication number: 20140352459
    Abstract: A drive device includes plural moving portions, piezoelectric motors that move the moving portions, at least one drive circuit that drives the piezoelectric motors, and a connection/disconnection portion that connects and disconnects the piezoelectric motors and the drive circuit. The number of drive circuits is fewer than the number of piezoelectric motors.
    Type: Application
    Filed: March 18, 2014
    Publication date: December 4, 2014
    Applicant: Seiko Epson Corporation
    Inventors: Akira Matsuzawa, Osamu Urano, Yoshiteru Nishimura, Masakuni Shiozawa, Osamu Miyazawa
  • Publication number: 20140345413
    Abstract: The present invention relates to a tongue module for a robot which is installed in an android face robot formed to have a similar external appearance to a human face and to express feelings. The tongue module includes a tongue body made of composite silicon material and formed to have smooth texturing; a front and rear driving unit configured to move the tongue body in front and rear directions by using a crank arm and a first servo motor; an up and down driving unit configured to bend the tongue body in up and down directions by using wires and a second servo motor; and a linear rail assembly configured to move the tongue body in a straight line.
    Type: Application
    Filed: March 30, 2012
    Publication date: November 27, 2014
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Dong Woon Choi, Dong Wook Lee, Ho Gil Lee, Duk Yeon Lee, Hyun Sub Park
  • Publication number: 20140338489
    Abstract: A linear delta mechanism includes a base platform, a movable platform, and a plurality of guide sets. The base platform includes a base structure and a base stand. The base stand is disposed at a center location of the base structure. The movable platform is movable with respect to the base platform. The plurality of guide sets are connected to the base platform and configured to drive the movable platform. Each of the guide sets includes a linear actuator and an actuating rod. The linear actuators of the guide sets are symmetrically disposed around the base stand. Each of the actuating rods has a first end and a second end. The first end is driven by the linear actuator, and the second end is connected to the movable platform.
    Type: Application
    Filed: October 4, 2013
    Publication date: November 20, 2014
    Applicant: Delta Robot Automatic Co., Ltd.
    Inventors: Chih-Cheng PENG, Tsao-Hsiang WANG, Hsin-Hsien WU, Ming-Chi YANG
  • Publication number: 20140338490
    Abstract: A connection member includes: a main member formed by bending a plate made of a first material having a certain strength into a predetermined shape, and having a hole to which an object to be connected is mounted; and an auxiliary member formed of a second material having a smaller specific gravity than the first material and formed thicker than the main member, jointed around the hole of the main member, and having an insertion hole through which a fastening member for fastening the object to be connected is inserted.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Shinji SHINABE
  • Publication number: 20140331807
    Abstract: A rotating mechanism which returning a rotating body to an original position. The first detecting mechanism for detecting that the rotating body is in the original position is provided with a first section-to-be-detected affixed to the rotating body and the first detecting section affixed to a supporting body. A second detecting mechanism is provided with a swing member attached to the supporting body, an engaging member that lets the swing member swing, a second section-to-be-detected affixed to the swing member, and a second detecting section affixed to the supporting body. The first detecting section detects the first section-to-be-detected at one or two positions, and the second detecting section switches between ON and OFF at one position. The rotating body is first rotated to the position at which the second detecting section switches between ON and OFF, in order to return the rotating body to its original position.
    Type: Application
    Filed: April 17, 2012
    Publication date: November 13, 2014
    Inventors: Yasuyuki Kitahara, Shigeyuki Kaino
  • Publication number: 20140318298
    Abstract: A wrist structure of an industrial robot including a second wrist power transmission part transmitting power of a second wrist motor to a second wrist element and a third wrist power transmission part transmitting power of a third wrist motor to a third wrist element. The second wrist power transmission part includes a hypoid gear set, a drive shaft, a first reduction gear part reducing a speed of rotation from the second wrist motor and transmitting the reduced rotation to the drive shaft, and a second reduction gear part reducing a speed of rotation from the drive shaft and transmitting the reduced rotation to the second wrist small gear, and the third wrist power transmission part includes a hypoid gear set and a third reduction gear part reducing a speed of rotation from the third wrist motor and transmitting the reduced rotation to the third wrist small gear.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: Fanuc Corporation
    Inventor: Toshihiko Inoue
  • Publication number: 20140305246
    Abstract: A rotary motor includes a rotor and at least one stator. The rotor has a shaft. The stator has an iron core and a coil wound around the iron core. A cross section of the iron core perpendicular to the shaft has a long axis and a short axis, and the rotor is disposed on an extension line of the long axis.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 16, 2014
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: CHING-HSIUNG TSAI, HONG-CHENG SHEU, CHI-WEN CHUNG
  • Patent number: 8849455
    Abstract: A robot system according to embodiments includes a position command generating unit that corrects a position command of a motor based on a rotation angle of the motor, which drives a link of a robot via a speed reducer, and a rotation angle of an output shaft of the speed reducer.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 30, 2014
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Tetsuro Izumi, Tomohiro Matsuo
  • Patent number: 8844398
    Abstract: A three-axis robotic system. On the first and second axes, respective linear bearings have movable carriages, and backbone-free linear bases acting as exclusive support or linear bearing supports. A first motor is mounted to the first linear bearing support and coupled to the first carriage. The second linear bearing support is attached at one end to the first carriage and may be orthogonal to the first linear bearing support. A second motor is mounted to the second linear bearing support and coupled to the second carriage. A third axis member is attached to the second carriage. The third axis member may be orthogonal to the first and second linear bearing supports. A third carriage is slidable on the third axis member. A third motor is mounted to the third axis member and coupled to the third carriage. Each respective motor and carriage may be coupled by a belt or leadscrew.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: September 30, 2014
    Assignee: Accel Biotech, Inc.
    Inventor: Bruce Richardson
  • Patent number: 8845681
    Abstract: The present invention is a device having a rigidly linked jaw that is decoupled from an articulating wrist. The device provides for articulating motion as well as actuation that may be used in grasping, cutting, suturing or the like.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: September 30, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Kenneth Grace
  • Publication number: 20140251055
    Abstract: A robotic arm includes a driving unit, a first arm assembly connected to the driving unit, and a second arm assembly. The first arm includes two balls. The second arm assembly includes two arms and two intermediate members. Each intermediate member is secured to an end of one of the two arms. Each intermediate member defines a receiving recess. Each receiving recess has a spherical inner circumferential surface. Each ball is partially received in one of the two receiving recesses and abuts against the spherical inner circumferential surface. The two arms and the two intermediate members are capable of rotating about the balls. The driving unit drives the balls to move. The balls force the arms to move in a direction as a moving orientation of the balls, at the same time the arms rotating about the balls.
    Type: Application
    Filed: November 11, 2013
    Publication date: September 11, 2014
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventors: JIE GAO, JIAN-PING JIN, BING YU
  • Publication number: 20140251054
    Abstract: A two joint module includes a module housing, a first joint and a second joint. The module housing has a structural support portion. The first joint has a first motor and a first motor axis and a first joint axis. The second joint has a second motor and a second motor axis and a second joint axis. The second joint axis is not parallel to the first joint axis. The first joint is attached to the structural support portion and the second joint is attached to the structural support portion.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: ENGINEERING SERVICES INC.
    Inventors: Andrew A. GOLDENBERG, Brent BAILEY, Matthew GRYNIEWSKI, Xiaojia HE, Yi YANG
  • Patent number: 8820189
    Abstract: Disclosed herein are embodiments of an articulated robot wrist which can comprise a first body comprising a first and a second end, said first end being intended to be mounted on a robot component that is rotatable around a first axis; a second body comprising a first and a second end, said first end being rotatably mounted on said second end of said first body, around a second axis inclined with respect to said first axis; and a third body comprising a first and a second end, said first end being rotatably mounted on said second end of said second body, around a third axis inclined with respect to said second axis, wherein said first and third axes are both substantially orthogonal to said second axis, and wherein in at least one position of said robot wrist said first and third axes are substantially aligned with each other.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: September 2, 2014
    Assignee: Comau S.p.A.
    Inventors: Mauro Amparore, Giorgio Pernechele, Giuseppe Paparella