Joint Between Elements Patents (Class 74/490.05)
  • Publication number: 20130340560
    Abstract: A robotic manipulator arm is disclosed. The arm includes joints that are attachable and detachable in a tool-free manner via a universal mating adapter. The universal mating adapter includes a built-in electrical interface for an operative electrical connection upon mechanical coupling of the adapter portions. The universal mating adapter includes mechanisms and the ability to store and communicate parameter configurations such that the joints can be rearranged for immediate operation of the arm without further reprogramming, recompiling, or other software intervention.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 26, 2013
    Inventors: Robert Raven BURRIDGE, Mars Wei CHU, Bryn Tyler WOLFE
  • Publication number: 20130330162
    Abstract: A robotic arm includes: an arm having one or more joints; an arm securing unit provided at at least one of the one or more joints and configured to secure, by electrostatic adhesion, a positional relationship between two parts coupled by each of the at least one of the one or more joints; and a control unit configured to turn on and off the electrostatic adhesion of the arm securing unit.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Panasonic Corporation
    Inventor: Takashi HORINOUCHI
  • Patent number: 8603077
    Abstract: A force transmission transmits a force received by an input gimbal plate having two degrees of freedom to an output gimbal plate. The input gimbal plate is coupled to a first end of least three lever arms supported by a pivot. The output gimbal plate is coupled to a second end of the lever arms. The output gimbal plate may be coupled to the lever arms by flexible cables. The cables may be substantially contained within a tube. The output gimbal plate may be substantially smaller than the input gimbal plate. The force transmission may include a secondary output gimbal plate coupled to secondary levers that are coupled to the lever arms. The secondary levers may be third class levers. The secondary output gimbal plate may move proportionately to movement of the output gimbal plate. The force transmission may control a surgical end effector in a robotic surgical instrument.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: December 10, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Thomas G. Cooper, Anthony McGrogan, Matthew Reagan Williams, Eugene F. Duval, S. Christoper Anderson
  • Patent number: 8601899
    Abstract: A hybrid robotic manipulator adapted to move objects includes a base and a waist mounted on the base. The waist is configured to rotate on the base. The hybrid robotic manipulator further includes a pair of arms mounted on the waist. Each arm includes an upper arm, a forearm serially coupled to the upper arm at an elbow, and a wrist configured to couple the pair of arms at a distal end through a pair of connecting elements. The wrist further includes an end-effector mounted thereon and configured to grip the object and move the object to a desired position.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 10, 2013
    Assignee: Systemantics India Pvt. Ltd.
    Inventor: G. Jagannath Raju
  • Patent number: 8590426
    Abstract: An multi-axis transmission includes a frame, a motor, a housing, a first output mechanism, a second output mechanism, and a output control mechanism. The motor is secured to the frame, the motor includes a rotary shaft. The housing is axially slidably attached to the frame. The first output mechanism is secured to the frame. The second output mechanism is rotatably attached to the housing. The output control mechanism is secured to the rotary shaft, the output control mechanism is selected to engage the first output mechanism to output a first movement or to engage the second output mechanism to output a second movement angular with the first moment.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 26, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Shen-Chun Li, Hsien-Chuan Liang, Shou-Kuo Hsu
  • Patent number: 8590415
    Abstract: A robotic arm assembly includes a first segment, a second segment, a first driving device, a first transmission mechanism, a second driving device, and a second transmission mechanism. The second segment is rotatably connected to the first segment. The first driving device drives the second segment to rotate about a first axis relative to the first segment via the first transmission mechanism. The second transmission mechanism includes a first bevel gear and a second bevel gear meshed with the first bevel gear. An output shaft is fixed to the second bevel gear, and the output shaft is capable of rotating about a second axis. Each of the second segment, the output shaft, and the second bevel gear defines a guiding hole, and the guiding holes are aligned in the second axis.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 26, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Bo Long
  • Publication number: 20130305867
    Abstract: A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.
    Type: Application
    Filed: April 17, 2013
    Publication date: November 21, 2013
    Inventors: William R. Doggett, John T. Dorsey, George G. Ganoe, Bruce D. King, Thomas C. Jones, Charles D. Mercer, Cole K. Corbin
  • Patent number: 8573919
    Abstract: A substrate transport apparatus having a frame, a drive section and an articulated arm. The drive section has at least one motor module that is selectable for placement in the drive section from a number of different interchangeable motor modules. Each having a different predetermined characteristic. The articulated arm has articulated joints. The arm is connected to the drive section for articulation. The arm has a selectable configuration selectable from a number of different arm configurations each having a predetermined configuration characteristic. The selection of the arm configuration is effected by selection of the at least one motor module for placement in the drive section.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: November 5, 2013
    Assignee: Brooks Automation, Inc.
    Inventors: Ulysses Gilchrist, Christopher Hofmeister
  • Patent number: 8573091
    Abstract: A compliant mechanism includes a first unit, a second unit, at least one elastic member and a driver for driving the elastic member to rotate through a predetermined angle. The first and second units collectively define a passage about which the second unit is rotatable relative to the first unit. The elastic member has a plate and first and second shafts which are coaxially connected to two opposite ends of the plate respectively and rotatably connected with the first and second units respectively. The elastic member is rotatable about a co-axis of the first and second shafts and elastically deformable when the second unit rotates relative to the first unit. The elastic member can change its resistance to the rotation of the second unit by rotating; therefore the compliant mechanism has a great safety upon receiving load and is widely applicable in many fields.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 5, 2013
    Assignee: Precision Machinery Research Development Center
    Inventors: Che-Chien Chen, Tzu-Min Yi, I-Ping Chang, Cheng-Wei Tung
  • Publication number: 20130283958
    Abstract: An articulated mechanical arm includes a passive device designed to compensate for the effects of gravity on at least a first pivot connection which articulates a first member of the arm on a second member of the arm, and constitutes a first degree of freedom of the arm. The passive device includes a drive mechanism and at least one magnetic device. The drive mechanism is designed to transmit to the magnetic device any rotation of the second member relative to the first pivot connection. The magnetic device is designed to produce torque further to the rotation of the second member. The drive mechanism and the magnetic device are also designed such that the torque is retransmitted by the drive mechanism to the first pivot connection, such that the retransmitted torque cancels the moment of force caused by gravity exerted on the articulated mechanical arm, relative to the first pivot connection.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 31, 2013
    Applicant: TRIMOS S.A.
    Inventors: Luca DORIGATTI, Stephane DEWARRAT
  • Patent number: 8561496
    Abstract: An industrial robot includes a mounting base, a turning base rotatable relative to the mounting base about a rotation axis, and a stopper mechanically limiting an operating angle of the turning base. The stopper includes a fixed section attached to the mounting base, a connecting base attached to the turning base, and a swing lever pivotally connected to the connecting base and capable of swinging between a first position and a second position. The turning base is maintained in the first position and the second position, respectively, by the stopper when the swing lever contacts the fixed section, thereby limiting the operating angle of the turning base.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: October 22, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Xiao-Peng Pan
  • Publication number: 20130269466
    Abstract: A steerable multi-linked device may include a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first multi-linked mechanism and the second multi-linked mechanism may include a first link, a plurality of intermediate links, a second link movably coupled to a second one of the intermediate links and a reinforcing member. A first one of the intermediate links may be movably coupled to the first link, and the reinforcing member may extend from a first end of a third one of the intermediate links toward a second end of the third one of the intermediate links.
    Type: Application
    Filed: May 3, 2013
    Publication date: October 17, 2013
    Inventors: Brett Zubiate, Howie Choset
  • Patent number: 8549952
    Abstract: A robot includes a base, a plurality of link mechanisms, at least one drive device, and a controller. The plurality of link mechanisms are provided on the base. Adjacent link mechanisms among the plurality of link mechanisms are connectable to each other. The at least one drive device is to bend and extend the plurality of link mechanisms. The controller is configured to control the at least one drive device.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: October 8, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Kenji Matsukuma, Takayuki Nakamura, Kazuhiko Yokoyama, Kazuhiro Fukudome
  • Patent number: 8549951
    Abstract: A joint mechanism is for a robot. The joint mechanism includes a base; a first drive device mounted on the base including a first drive shaft; a second drive device including a second drive shaft; a joint body defining a plurality of toothed grooves and a guiding groove. A sliding board mounted on first drive shaft, the sliding board slidably located in the guiding groove to guide the joint body to swing relative to the base. A gear mounted on the second drive shaft, the gear meshes with the toothed grooves; a limiting assembly for rotatably mounting the joint body on the base. When the first drive device is started, the first drive shaft is rotated to drive the joint body rotating around the first drive shaft; when the second drive device is started, the second drive shaft is rotated to drive the gear rotating so the joint body swings relative to the base.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 8, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Shen-Chun Li, Hsien-Chuan Liang, Shou-Kuo Hsu
  • Publication number: 20130255429
    Abstract: A robot includes an arm , a wrist and a rotation support mechanism The rotation support mechanism has a shaft section provided in the wrist and an outer shape of which is a column shape; a bearing which is disposed on an outer periphery section of the shaft section and rotatably supports the shaft section around a center axis thereof; an annular-shaped ring member provided in the wrist and is concentrically disposed with the bearing by separating on the outer periphery side of the bearing; and an annular-shaped oil seal provided in the arm and slides with respect to the ring member by abutting the outer periphery section of the ring member and holding airtightness with the ring member according to the rotation of the center shaft of the shaft section.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 3, 2013
    Applicant: Seiko Epson Corporation
    Inventors: Seiji HAHAKURA, Takuya OWA
  • Patent number: 8544359
    Abstract: A robot arm assembly includes a first shaft base, a second shaft base rotatably connected to the first shaft base, a wire harness, and a clamping mechanism for clamping the wire harness. The first shaft base defines a first through hole along a longitudinal axis, and the second shaft base defines a second through hole. The clamping mechanism includes a main body connected to the second shaft base, and a locking member engaged with the main body. The second shaft base rotates relative to the first shaft base around the longitudinal axis. The main body further comprise a clamping portion on an end thereof, and the clamping portion is capability of radial deformation. The locking member resists the clamping portion to clamp the wire harness. The wire harness extends through the first through hole, the second through hole, and then the clamping mechanism.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: October 1, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Chao-Qiang Liu
  • Patent number: 8544360
    Abstract: An industrial robot includes a first rotation assembly, a second rotation assembly, and a cable assembly. The first rotation assembly includes a holding seat, a first rotation shaft rotatably positioned in the holding seat, and a first driver driving the first rotation shaft to rotate. The second rotation assembly includes a fixing seat. The cable assembly is received in the first rotation assembly and the second rotation assembly. The fixing seat includes a main body and a retaining portion extending from one end of the main body, and the main body of the fixing seat is positioned on the holding seat and fixed with the first rotation shaft of the first rotation assembly. The main body of the fixing seat defines a passing slot to receive the cable assembly and a passing hole communicating with the passing slot through which the cable assembly passes.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: October 1, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Jun Liu, Jun-Hai Liu
  • Patent number: 8534154
    Abstract: A clamp replacing apparatus includes a robot arm, a clamp and a connecting assembly configured for detachably connecting the clamp to the robot arm. The connecting assembly includes a first rotator and a second rotator. The first rotator is fixed to the robot arm and comprises a number of first locking portions each defining a receiving groove. The second rotator is fixed to the clamp and comprises a number of second locking portions corresponding to the first locking portions and each defining a bolt portion. The bolt portion can be received in the corresponding receiving groove or escaped from the receiving groove.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 17, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Shen-Chun Li, Shou-Kuo Hsu
  • Patent number: 8528439
    Abstract: The invention relates to a manipulator (1) comprising a plurality of members (12, 14) connected to each other by joints (A1-A6) that can be adjusted by drives (M1-M6), and a counterweight device (15) associated with one of the joints (A1-A6) and comprising a rod (19) coupled to a first member (12) connected to the joint (A1-A6) on one side and connected to a spring device (26) supported on a seat (25) on the other side, said seat being coupled to a second member (14) connected to the joint (A1-A6) by means of at least one bearing arrangement (18), comprising a first bearing component (17) and a second bearing component (16) connected to the second member (14). The seat (25) is connected to the first bearing component (17) by means of at least one cantilevered arm (23, 24).
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: September 10, 2013
    Assignee: KUKA Roboter GmbH
    Inventor: Joachim Markert
  • Patent number: 8529136
    Abstract: A ball bearing having external surfaces coated with ceramic materials is provided. The raceways of the ball bearing may advantageously be formed of metal such as stainless steel. The ceramic coating acts as an insulator increasing the resistance of the ball bearing to heat within the ball bearing environment. The balls within the raceway of the ball bearing may advantageously be coated with a lubricant to decrease friction in the ball bearing because the insulating ceramic coating prevents the environmental heat from causing the degradation of the lubricant.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: September 10, 2013
    Assignee: Wafertech, LLC
    Inventors: Xiao-Jun Liu, Mark Chou
  • Patent number: 8525460
    Abstract: An SEA architecture for controlling the torque applied by an SEA that has particular application for controlling the position of a robot link. The SEA architecture includes a motor coupled to one end of an elastic spring and a load coupled to an opposite end of the elastic spring, where the motor drives the load through the spring. The orientation of the shaft of the motor and the load are measured by position sensors. Position signals from the position sensors are sent to an embedded processor that determines the orientation of the load relative to the motor shaft to determine the torque on the spring. The embedded processor receives reference torque signals from a remote controller, and the embedded processor operates a high-speed servo loop about the desired joint torque. The remote controller determines the desired joint torque based on higher order objectives by their impedance or positioning objectives.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 3, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Matthew J. Reiland, Brian Hargrave, Robert Platt, Muhammad E. Abdallah, Frank Noble Permenter
  • Patent number: 8516919
    Abstract: A robot includes a base a movable platform, a plurality of control arms, a first actuator, a plurality of second actuators, and a rotation mechanism. The plurality of control arms are rotatably connected to the base and the movable platform respectively. The second actuators are configured to respectively drive the control arms to swing. The rotation mechanism includes a shaft rotated by the first actuator. The shaft is rotatable relative to the base and the movable platform is positioned around at least two axes. The at least two axes include two axes substantially perpendicular to each other. The shaft is slidable relative to the base.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: August 27, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Yong Feng
  • Patent number: 8516920
    Abstract: A wrist housing, a wrist rotatably connected to the wrist housing, a first driver, a first transmission mechanism, a rotary member, a second driver, and a second transmission mechanism makes a robot arm assembly. The wrist housing is hollow. The first driver is assembled within the wrist housing for driving the wrist to rotate relative to the wrist housing along a first rotary axis. The first transmission mechanism is also assembled within the wrist housing and is positioned between the wrist and the first driver. The rotary member is rotatably assembled to a distal end of the wrist along a second rotary axis. The second driver is assembled within the wrist housing for driving the rotary member to rotate. The second transmission mechanism is assembled within the wrist housing, and is positioned between the second driver and the rotary member.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: August 27, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Zhen-Xing Liu
  • Patent number: 8516918
    Abstract: A biomimetic mechanical joint for generating a variable torque between support members of a biomimetic robotic device, including a base support member, a rotary support member rotatably coupled to the base support member, and a variable-radius pulley operably coupled between the base support member and rotary support member. The variable-radius pulley comprises a sheave body having a variable radius and one or more tendon grooves formed in the circumferential outer surface. The mechanical joint further includes one or more flexible tendons and antagonistic actuator pairs, with each actuator pair being coupled to one or more tendons and configured to operate the tendon around the variable-radius pulley in either direction to create a variable torque between the base and rotary support members.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: August 27, 2013
    Assignee: Raytheon Company
    Inventors: Stephen C. Jacobsen, Marc X. Olivier, Brian J. Maclean
  • Publication number: 20130213171
    Abstract: A substrate transfer apparatus has a plurality of arms which rotate on different shafts. A first driver rotates the first arm, a second driver rotates a second arm coupled to the first arm, a third driver rotates a third arm coupled to the second arm, and a fourth arm rotates with rotation of the third arm and is coupled to the third arm. The drivers control rotation of the arms to perform different operations in transferring the substrate between different processing locations.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 22, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Samsung Electronics Co., Ltd.
  • Publication number: 20130213172
    Abstract: From a desired wrist joint position and a desired elbow rotation angle, a temporary elbow joint position is calculated on the assumption that a distance between a shoulder joint and an elbow joint is fixed. The shoulder joint has a first axis, a second axis, and a third axis, and the elbow joint has a fourth axis. From the calculated temporary elbow joint position, temporary angles of the first and second axes or temporary angles of the first to fourth axes are determined. The temporary angles are corrected in accordance with at least one evaluation function calculated from the temporary angles.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 22, 2013
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: KABUSHIKI KAISHA YASKAWA DENKI
  • Patent number: 8511197
    Abstract: A robot arm assembly includes a support arm, a lower arm rotatably connected to the support arm, an upper arm rotatably connected to the lower arm, a first driver for driving the lower arm, a first transmission transferring power from the first driver to the lower arm, a second driver for driving the upper arm, and a second transmission transferring power from the second driver to the upper arm. The first and second drivers are mounted on the support arm. The second transmission includes a belt assembly, a beveled gear assembly driven by the belt assembly, and a speed reducer coupled to the upper arm.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: August 20, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Zhen-Xing Liu
  • Patent number: 8511198
    Abstract: A robot arm system includes a support base, a first robot arm, a first driving mechanism, a second robot arm, a second driving mechanism, and a wrist assembly. The first driving mechanism drives the first robot arm to rotate around the first rotation axis. The second driving mechanism drives the second robot arm to rotate around the second rotation axis. The robot arm system further comprises a first wheel positioned on the support base, a second wheel positioned on the second robot arm, a third wheel positioned on the wrist assembly and rotatably connecting to the second robot arm, a first flexible belt connecting the first wheel with the second wheel, and a second flexible belt connecting the third wheel with the second wheel. The first wheel, the second wheel, and the third wheel have the same radius.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 20, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Guo-Qing Zhang
  • Patent number: 8511199
    Abstract: A robot arm assembly includes a support arm, a connecting arm, and an end arm. The support arm is rotatably assembled with the connecting arm along a first axis, and is located at one end of the connecting arm. The end arm is rotatably assembled to the other end of the connecting arm along a second axis substantially perpendicular to the first axis, such that the connecting arm is rotatably assembled between the support arm and the end arm.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: August 20, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Bo Long
  • Publication number: 20130192406
    Abstract: A robotic limb structure which is capable of achieving high speeds. In the context of a biped, the structure is used for a pair of hind limbs. The limb structure includes a primary driven link—such as a thigh pivoting about a hip joint in the case of a hind limb. Secondary links are pivotally connected to the primary driving link. Auxiliary links are provided to constrain the motion between the links. Elastic trim elements are also provided to define a “relaxed” state for the limb and to influence the resonance characteristics of the structure. The control system takes advantage of the resonant characteristics of the structure as a whole.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Inventor: Johnny Godowski
  • Patent number: 8495927
    Abstract: A hexapod platform and a jack that can be used in the hexapod platform are provided. The jack includes a body, a piston capable of translational movement with respect to the body and a rod connected to the piston to follow its translational movement and by means of which the jack applies load. The rod is connected to the piston by means of a ball joint. The hexapod platform comprises six jacks according to the invention.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 30, 2013
    Assignee: BIA
    Inventors: Fayçal Namoun, Ramzi Sellaouti, Fathi Ben Ouezdou
  • Patent number: 8468908
    Abstract: A joint of an industrial robot that includes attaching part (23) having positioning member (22) embedded in one or both of two relatively rotating members, and guide (24) through which positioning member (22) projectably slides. Meanwhile, the side of the positioning member is provided thereon with a reservoir groove for a lubricant and a projection position marker for indicating a given projection length. This makeup provides an inexpensive, highly accurate, and extremely trouble-saving origin adjusting device.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: June 25, 2013
    Assignee: Panasonic Corporation
    Inventors: Seiji Iwai, Takayasu Ohara
  • Publication number: 20130152724
    Abstract: A robotic joint assembly includes a first structural member, a second structural member, and a rolling flexure joint joining the first structural member to the second structural member to provide at least one degree of freedom between the first and second structural members. The rolling flexure joint includes first and second flexible hinge members each having one end secured to the first structural member and an opposing end secured to the second structural member. The first and second flexible hinge members cross one another between the first and second structural members.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 20, 2013
    Applicant: iRobot Corporation
    Inventor: iRobot Corporation
  • Patent number: 8464603
    Abstract: An actuating device includes a base link, a first link, a second link, a translating link, a shaft, and a drive. The base link includes a base plate, a first joint, and a second joint. The base plate extends between the first joint and the second joint. The first link is mounted to the first joint to allow rotation of the first link relative to the base plate at the first joint. The second link is mounted to the second joint to allow rotation of the second link relative to the base plate at the second joint. The drive includes an arc surface and is mounted to the translating link such that, when operating the actuating device, a position of the arc surface is fixed relative to the translating plate. The shaft is mounted to the arc surface to cause translation of the translating link as the shaft rotates.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: June 18, 2013
    Assignee: Vivero One Research, LLC
    Inventor: Arthur Quaid
  • Publication number: 20130145893
    Abstract: A ceiling-mounted SCARA robot includes a base, a first arm that is connected to the base via a first coupling part centering around a first articulated shaft and that can pivotally move around the first articulated shaft as a center of pivotal movement within a horizontal plane, a second arm that is connected to the first arm via a second coupling part centering around a second articulated shaft and that can pivotally move around the second articulated shaft as a center of pivotal movement within a horizontal plane, a working shaft that is mounted on the second arm, and a base mounting part that is mounted on the base and places the base on a beam as a structural body for mounting located at a position vertically above an operating area of the working shaft.
    Type: Application
    Filed: September 3, 2010
    Publication date: June 13, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshitaka Kumagai, Mitsuhiro Fukatsu
  • Patent number: 8459928
    Abstract: A conveyor robot (10) includes a main body (12), a first arm (18), and a second arm (16). The first arm (18) is designed to be reciprocable between a wafer cassette and a position above the main body (12). The first arm (18) is provided with a first hand (182) having a plurality of gripping portions designed to grip a wafer. The second arm (16) is designed to be reciprocable between a position above the main body (12) and a wafer stage. The second arm (16) is provided with a second hand (162) having a plurality of gripping portions designed to grip the wafer from a different angle than do the gripping portions of the first hand (182). The gripping portions of the first hand (182) and those of the second hand (162) are positioned at equal height.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 11, 2013
    Assignee: Tazmo Co., Ltd.
    Inventor: Takahiro Kobiki
  • Patent number: 8459139
    Abstract: Disclosed are a robot joint driving apparatus and a robot having the same, capable of minimizing tension of a wire applied to a movable member by installing an idle pulley in a power transmission structure using a ball screw apparatus and the wire. The robot joint driving apparatus includes a reversible drive motor, a pair of movable members performing a linear movement according to rotation of the reversible drive motor, a wire connected to the movable members from both directions of the movable members, an idle pulley rotatably installed at one side of the wire, a joint part rotatably installed at an opposite side of the wire, and an adjustment unit to adjust tension of the wire.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: June 11, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Youn Baek Lee, Hyun Sik Sim, Soo Sang Yang
  • Publication number: 20130139636
    Abstract: A rotary actuator equipped with a sensing mechanism includes a motor and a reducer concentrically disposed inside a cylindrical housing; a scale for detecting the rotational position of a rotary arm, the scale being disposed on the circular outer face of the cylindrical housing; and a position sensor mounted in the facing section of the rotary arm that rotates along the circular outer face, the facing section being in a facing arrangement with the circular outer face. A detection mechanism includes the scale and the position sensor detects the rotational position of the rotary arm capable of rotating within a finite angular range along the circular outer face of the cylindrical housing. The components are concentrically disposed. The actuator is suitable for use as a digital joint unit.
    Type: Application
    Filed: September 28, 2010
    Publication date: June 6, 2013
    Applicant: HARMONIC DRIVE SYSTEMS INC.
    Inventor: Nozomu Tanioka
  • Patent number: 8453533
    Abstract: A module of a center link pivotably connected to two outer links has continuously rotatable faceplates rotatably disposed on the two outer links, thereby creating four degrees of freedom (4-DOF). Modules may be connected via faceplates to produce a “snake” assembly. A single module may move forward in a straight line through simultaneous rotation of the two faceplates. By reversing the rotation of the faceplates, the module may turn in its own length. By sequentially pivoting the outer links relative to the center link, an “inch worm” movement may be used to move the module. Interconnections of two or more modules increase the number of available degrees of freedom, and increase the flexibility of the resultant assembly. Apertures in the faceplates and the outer links allow for interconnection of modules and allow for electrical power and signal connections. A battery housed in the center link provides power for each module.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: June 4, 2013
    Assignee: The Regents of the University of California
    Inventors: Graham Ryland, Harry H. Cheng
  • Patent number: 8449242
    Abstract: An industrial robot may include an arm unit equipped with a hand structured to place a workpiece on the hand, a column structured to support the arm unit so as to enable the arm unit to move in a vertical direction, a hinge provided at an intermediate position in the vertical direction structured to section and fold the column into a base column and an upper column, supporting members placed on each of the base column and the upper column, screw support members placed on each of the supporting members, a screw shaft that is screwed into the screw support members, a base column side and an upper column side of the screw shaft being threaded reversely to each other, and a screw shaft turning means for turning the screw shaft. The industrial robot carries out transfer work of the workpiece at a predetermined working space.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: May 28, 2013
    Assignee: Nidec Sankyo Corporation
    Inventors: Takayuki Yazawa, Akiko Yamada
  • Publication number: 20130125695
    Abstract: A gear transmission device includes a transmission mechanism, and a gear backlash adjusting mechanism engaged with the transmission mechanism. The transmission mechanism includes a first adjusting gear and a second adjusting gear meshing together. The adjusting mechanism includes a fixing plate and an adjusting member sleeved on the first adjusting gear. The fixing plate defines a limiting hole. The adjusting member comprises a flange received in the limiting hole. A maximum distance from an edge of the flange near the second adjusting gear to the rotation shaft of the first adjusting gear is greater than a minimum distance from an end of the flange away from the second adjusting gear to the rotation shaft of the first adjusting gear.
    Type: Application
    Filed: March 23, 2012
    Publication date: May 23, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventor: BO LONG
  • Publication number: 20130125696
    Abstract: A robot arm assembly includes a first, a second, and a third hollow arm, a fourth arm, and a first, a second, and a third transmission. The second arm is rotatably connected to the first arm, the third arm is rotatably connected to the second arm, the fourth arm is rotatably connected to the third arm. The first transmission sub-assembly is rotatably received in the first arm. The second transmission sub-assembly is rotatably received in the first arm and the second arm. The third transmission sub-assembly is rotatably received in the first arm, the second arm, and the third arm, and fixedly connected to the fourth arm. The first arm, the second arm, the third arm, and the fourth arm are capable of rotating around a first axis, a second axis, a third axis, and a fourth axis respectively.
    Type: Application
    Filed: August 27, 2012
    Publication date: May 23, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventor: BO LONG
  • Patent number: 8443694
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 21, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Patent number: 8443693
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 21, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Patent number: 8442678
    Abstract: A robotic device includes a first link portion, a second link portion that moves relative to the first link portion, a first contact load detecting portion that detects a contact load in a contact area of the first link portion, a second contact load detecting portion that detects a contact load in a contact area of the second link portion, and a first link portion control target setting portion that sets a control target for the first link portion. The first link portion control target setting portion sets the control target for the first link portion such that the difference between the detection value of the contact load of the first contact load detecting portion and the detection value of the contact load of the second contact load detecting portion decreases.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: May 14, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Waseda University
    Inventors: Kentaro Ichikawa, Shigeki Sugano, Kunihiro Iwamoto, Taisuke Sugaiwa, Hiroyasu Iwata
  • Publication number: 20130112031
    Abstract: A robot arm assembly includes a main base, a joint and at least one arm. The main base includes a main body, and the main body includes a mounting portion and a limiting post on a side of the mounting portion. The joint is rotatably mounted on the mounting portion and includes a limit piece corresponding to the limiting post. The at least one arm is fixed to the joint, when the arm rotates relative to the main base to a predetermined extent of rotation, the limit piece abuts against the limiting post to stop the rotation of the arm.
    Type: Application
    Filed: July 18, 2012
    Publication date: May 9, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (SHENZHEN) CO., LTD.
    Inventors: XIAO-PENG PAN, CHAO-QIANG LIU
  • Patent number: 8434384
    Abstract: Disclosed herein is a weight compensation mechanism. A weight compensation mechanism is installed in a link member rotatable in a plurality of directions. The weight compensation mechanism includes a plurality of bevel gears that rotates in harmony with the rotation of the link member. Cam plates are connected to one or more of the bevel gears to be rotated together with the bevel gears. Weight offsetting parts are connected to the cam plates, respectively, and each of the weight offsetting parts compresses an elastic member based on the rotation of the link member and the cam plate to absorb gravitation generated by the weight of the link member.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: May 7, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Chul Kang, Woo Sub Lee, Chang Mook Chun, Chang Hyun Cho
  • Publication number: 20130104686
    Abstract: In a joint mechanism having at least one joint member connected to a connectable member via a joint to be rotatable in a range between an extended position and a bent position, it is configured to have a movable cover constituting a part of a joint member cover that covers the joint member and the movable cover is moved into interior of remaining portion of the joint member cover as the joint member is rotated relative to the connectable member about the joint from the extended position to the bent position. The joint mechanism can be suitably used in fingers of a hand of a humanoid robot.
    Type: Application
    Filed: October 3, 2012
    Publication date: May 2, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: HONDA MOTOR CO., LTD.
  • Patent number: 8429996
    Abstract: A robot arm assembly includes a first robot arm and a second robot arm rotatably connected to the first robot arm. The first robot arm includes a first sleeve, a first input shaft, and a second input shaft. The first input shaft and the second input shaft are seated in the first sleeve. The second robot arm includes a second sleeve and an output shaft received in the second sleeve. The first input shaft is connected to the second sleeve via a pair of bevel gears, and drives the second sleeve to rotate relative to the first sleeve. The second input shaft is connected to the output shaft via at least two pairs of bevel gears, and drives the output shaft to rotate relative to the second sleeve.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 30, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Bo Long
  • Patent number: 8424410
    Abstract: A first link member 4 is swingably connected to the base member 2 on a forward side, and a second link member 5 is swingably connected to the base member 2 on a backward side. A third link member 6 is swingably connected to the output member 3 on the forward side, and a fourth link member 7 is swingably connected to the output member 3 on the backward side. A swinging end of the third link member 6 is swingably connected to the first link member 4 on a first connecting axis J5, and a swinging end of the fourth link member 7 on the backward side is swingably connected to the first link member 4 on a second connecting axis J6. A swinging end of the second link member 5 is swingably connected to the fourth link member 7 on a third connecting axis J7.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: April 23, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Ishikawa, Susumu Miyazaki