Producing Or Treating Aluminum(al), Beryllium(be), Cobalt(co), Chromium(cr), Magnesium(mg), Nickel(ni), Titanium(ti), Or Alloy Thereof Patents (Class 75/10.18)
  • Patent number: 10633722
    Abstract: There are provided methods and systems for creating multi-phase covetics. For example, there is provided a process for making a composite material. The process includes forming a multi-phase covetic. The forming includes heating a melt including a metal in a molten state and a carbon source to a first temperature threshold to form metal-carbon bonds. The forming further includes subsequently heating the melt to a second temperature threshold, the second temperature threshold being greater than the first temperature threshold. The second temperature threshold is a temperature at or above which ordered multi-phase covetics form in the melt.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: April 28, 2020
    Assignee: GDC Industries, LLC
    Inventors: Michael Dennis Braydich, Harry Couch, Louis A. Luedtke
  • Patent number: 10633723
    Abstract: There are provided methods and systems for creating multi-phase covetics. For example, there is provided a process for making a composite material. The process includes forming a multi-phase covetic. The forming includes heating a melt including a metal in a molten state and a carbon source to a first temperature threshold to form metal-carbon bonds. The forming further includes subsequently heating the melt to a second temperature threshold, the second temperature threshold being greater than the first temperature threshold. The second temperature threshold is a temperature at or above which ordered multi-phase covetics form in the melt.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: April 28, 2020
    Assignee: GDC Industries, LLC
    Inventors: Michael Dennis Braydich, Harry Couch, Louis A. Luedtke
  • Patent number: 10449625
    Abstract: A magnetic inductor for heating parts by means of induction having a geometry with a density greater than or equal to 99.9% (absence of pores), produced by a plurality of welded layers formed by metal dust particles of a conductive, non-magnetic material (such as, inter alia, copper, tin, aluminum, gold, or silver), preferably copper or a copper-based alloy, having a spherical shape and a grain size between 40 and 100 ?m, and in a single-piece part including electrical and mechanical connections. Also, a method for producing the magnetic inductor with EBM technology (electron beam melting/production technology based on electron beam fusion), using a system comprising an electron gun, a vacuum chamber, a working chamber and a manipulation system.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: October 22, 2019
    Assignee: GH Electrotermia, S.A.
    Inventors: Pedro Moratalla Martinez, Juan Carlos Rodríguez Lara, César Cases Sanchís, José Miguel Magraner Cáceres, Miguel Mezquida Gisbert
  • Patent number: 10072319
    Abstract: There are provided methods and systems for creating multi-phase covetics. For example, there is provided a process for making a composite material. The process includes forming a multi-phase covetic. The forming includes heating a melt including a metal in a molten state and a carbon source to a first temperature threshold to form metal-carbon bonds. The forming further includes subsequently heating the melt to a second temperature threshold, the second temperature threshold being greater than the first temperature threshold. The second temperature threshold is a temperature at or above which ordered multi-phase covetics form in the melt.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: September 11, 2018
    Assignee: GDC Industries, LLC
    Inventors: Michael Dennis Braydich, Harry Couch, Louis A. Luedtke
  • Patent number: 9534275
    Abstract: A method for reducing a chromium containing material, comprising: combining the chromium containing material comprising chromium oxide with a carbonaceous reductant to form a chromium containing mixture; delivering the chromium containing mixture to a moving hearth furnace and reducing the chromium containing mixture to form a reduced chromium containing mixture; delivering the reduced chromium containing mixture to a smelting furnace; and separating the reduced chromium containing mixture into chromium metal and slag. The method also comprises agglomerating the chromium containing mixture in a granulator or the like. The chromium containing mixture has an average particle size of less than about 200 mesh (about 75 ?m).
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 3, 2017
    Assignee: Midrex Technologies, Inc.
    Inventors: Vincent F. Chevrier, Russell Kakaley
  • Patent number: 9080225
    Abstract: Provided are an aluminum alloy and a manufacturing method thereof. In the method, aluminum and a magnesium (Mg) master alloy containing a calcium (Ca)-based compound are provided. A melt is prepared, in which the Mg master alloy and the Al are melted. The aluminum alloy may be manufactured by casting the melt.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: July 14, 2015
    Assignee: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Shae-Kwang Kim, Jin-Kyu Lee, Min-Ho Choi, Young-Ok Yoon
  • Publication number: 20150020646
    Abstract: The present invention is a method for manufacturing a titanium ingot (30), the method being characterized by comprising: a step of melting a titanium alloy for a predetermined time by cold crucible induction melting (CCIM); a step of supplying molten titanium (6) to a cold hearth (10), and separating high density inclusions (HDIs)(8) by precipitation in the cold hearth (10) while spraying a plasma jet or an electron beam onto the bath surface of the molten titanium (6); and a step of supplying a molten titanium starting material from which the HDIs (8) are separated by precipitation to a mold (20) to obtain the titanium ingot.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 22, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Daisuke MATSUWAKA, Daiki TAKAHASHI, Hitoshi ISHIDA, Hiroshi YOKOYAMA
  • Patent number: 8840833
    Abstract: A component, such as a SOFC interconnect, and methods of making the component are provided using various chromium powders, including powder particles with a chromium core covered with an iron shell, a pre-alloyed Cr—Fe powder or a chromium powder produced by hydrogen reduction with hydrogen.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: September 23, 2014
    Assignee: Bloom Energy Corporation
    Inventors: Martin Janousek, Shivanand I. Majagi
  • Publication number: 20140251084
    Abstract: A method for reducing a chromium containing material, comprising: combining the chromium containing material comprising chromium oxide with a carbonaceous reductant to form a chromium containing mixture; delivering the chromium containing mixture to a moving hearth furnace and reducing the chromium containing mixture to form a reduced chromium containing mixture; delivering the reduced chromium containing mixture to a smelting furnace; and separating the reduced chromium containing mixture into chromium metal and slag. The method also comprises agglomerating the chromium containing mixture in a granulator or the like. The chromium containing mixture has an average particle size of less than about 200 mesh (about 75 ?m).
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Applicant: MIDREX TECHNOLOGIES, INC.
    Inventors: Vincent F. CHEVRIER, Russell KAKALEY
  • Publication number: 20140130637
    Abstract: A method is used to make an aluminum alloy with excellent tensile strength, low density and excellent radiation. The method includes the steps of providing a base material, adding 0.06 wt % to 0.30 wt % of zirconium and 0.06 wt % to 0.30 wt % of vanadium to the base material, and melting the basic material with the zirconium and vanadium to provide an aluminum alloy. The base material includes 92.55 wt % to 97.38 wt % of aluminum, 0.9 wt % to 1.8 wt % of silicon, less than 0.5 wt % of iron, 0.6 wt % to 1.2 wt % of copper, 0.4 wt % to 1.1 wt % of manganese, 0.6 wt % to 1.4 wt % of magnesium, less than 0.40 wt % of chromium, less than 0.25 wt % of zinc and less than 0.20 wt % of titanium.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Chang-Chuan Hsu, Shan Torng, Sy-Cherng Yang, Fan-Chun Tseng, Wei-Ming Huang, Ren-An Luo
  • Publication number: 20130269480
    Abstract: A method is used to make an aluminum alloy with excellent tensile strength, low density and excellent radiation. The method includes the steps of providing a base material, adding 0.06 wt % to 0.30 wt % of zirconium and 0.06 wt % to 0.30 wt % of vanadium to the base material, and melting the basic material with the zirconium and vanadium to provide an aluminum alloy. The base material includes 92.55 wt % to 97.38 wt % of aluminum, 0.9 wt % to 1.8 wt % of silicon, less than 0.5 wt % of iron, 0.6 wt % to 1.2 wt % of copper, 0.4 wt % to 1.1 wt % of manganese, 0.6 wt % to 1.4 wt % of magnesium, less than 0.40 wt % of chromium, less than 0.25 wt % of zinc and less than 0.20 wt % of titanium.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Chang-Chuan Hsu, Shan Torng, Sy-Cherng Yang, Fan-Chun Tseng, Wei-Ming Huang, Ren-An Luo
  • Patent number: 8394168
    Abstract: A process for manufacturing Ti alloy structures using a SFFF manufacturing process with a welding torch as a high energy source, which comprises using as a feed a feed wire made from Ti sponge and alloying powders, or forming a Ti alloy in-situ in the melt.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: March 12, 2013
    Assignee: Materials & Electrochemical Research Corp.
    Inventors: James C. Withers, Roger S. Storm, Raouf O. Loutfy
  • Patent number: 8167970
    Abstract: A method for purifying Al—Ti—B) alloy melt includes putting and melting industrial aluminum ingot in an electromagnetic induction smelting furnace, the melt of Al being covered by a high-temperature covering agent, and its temperature up to at about 670˜900° C.; adding material of K2TiF6 and KBF4 into the smelting furnace and then stirring the compounds therein to react; adding compound comprising Mg, L, Na and F to the evenly stirred K2TiF6 and KBF4, the compound having an amount about 0.01%˜1% of a sum weight of total K2TiF6 and KBF4, and uniformly stirring for about 15˜60 minutes under a reaction temperature being constantly at about 670˜900° C., the dregs being removed, the Al alloy being casting molded.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: May 1, 2012
    Assignee: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
    Inventors: Xuemin Chen, Qingdong Ye, Jianguo Li, Chaowen Liu, Yueming Yu
  • Publication number: 20120024108
    Abstract: A system and process for reclaiming nickel and cadmium from a feed source such as Ni—Cd batteries. The feed source is shredded to produce feed particles, screened to size the particles, magnetically separated to remove non-metallic materials, and induction heated to generate nickel and cadmium products.
    Type: Application
    Filed: October 10, 2011
    Publication date: February 2, 2012
    Applicant: METAL CONVERSION TECHNOLOGIES, LLC
    Inventor: John A. PATTERSON
  • Patent number: 8101152
    Abstract: A titanium halide, preferably titanium tetrachloride, is reacted with suitable reductant, preferably an alkali metal or alkaline earth metal, under ultrasonic excitation in a liquid reaction medium to form nanometer size particles of titanium which may incorporate unreacted reductant. The nanosized titanium particles may be a precursor for nanosized titanium oxide which is formed by oxidizing the titanium, preferably with a low molecular weight alcohol. When the titanium particles incorporate unreacted reductant the oxidation reaction will yield nanometer sized titanates. The nanosized particles, whether titanium oxide or titanates may be extracted by first filtering them from the reaction medium, followed by washing with water to remove any water-soluble reaction products followed by spray drying.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: January 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Ion C. Halalay, Michael P. Balogh
  • Patent number: 8034150
    Abstract: A system and process for reclaiming nickel and cadmium from a feed source such as Ni—Cd batteries. The feed source is shredded to produce feed particles, screened to size the particles, magnetically separated to remove non-metallic materials, and induction heated to generate nickel and cadmium products.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: October 11, 2011
    Assignee: Metal Conversion Technologies, LLC
    Inventor: John A. Patterson
  • Publication number: 20110165332
    Abstract: A mass of solid aluminium carbide containing product is produced by a process in which a mixture is formed of an aluminium containing material and a carbonaceous material consisting of, containing or yielding carbon. Then the resulting mixture is heated to a temperature sufficient to react carbon of the carbonaceous material with the aluminium of the aluminium containing material to produce solid aluminium carbide. The solid aluminium carbide then is able to be heated with an aluminium compound selected from AI2O3, AI4CO4, AIO, AI2O and mixtures thereof, to produce aluminium metal and carbon monoxide.
    Type: Application
    Filed: May 8, 2009
    Publication date: July 7, 2011
    Inventor: Yaghoub Sayad-Yaghoubi
  • Patent number: 7967057
    Abstract: There is described a method for producing ultrahigh-purity Fe-base, Ni-base, and Co-base alloying materials to achieve impurity levels of (C+O+N+S+P)<100 ppm, and Ca<10 ppm, in the form of a large ingot, using a refining flux while forcibly cooling the crucible. A refining flux selected from the group consisting of metal elements of the Groups IA, IIA, and IIIA of the Periodic Table, oxides thereof, halides thereof, and mixtures thereof, is added to the molten metal during primary melting and the molten metal is held in contact with the refining flux for at least 5 minutes before tapping. Thereafter, the molten metal is caused to undergo solidification inside a mold, thereby producing a primary ingot.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: June 28, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Kazutaka Kunii, Tatsuhiko Kusamichi, Jumpei Nakayama, Kiyoshi Kiuchi
  • Patent number: 7896945
    Abstract: A mass of solid aluminium carbide containing product is produced by injecting particulate alumina into a bath (30) of molten aluminium metal; and injecting carbonaceous material, consisting of, containing or yielding carbon, into the bath (30). The bath (30) of molten aluminium metal is maintained at a superheated temperature to heat and react carbon with molten aluminium to produce solid aluminium carbide which mixes with alumina to form a mass (36) containing entrapped gas and entrapped molten aluminium metal and having a bulk or apparent density less than aluminium. The mass is allowed to accumulate as a mass of solid aluminium carbide containing product on the upper surface of the bath. The carbonaceous material is a hydrocarbon material or is produced by pyrolysis, decomposition or cracking of a hydrocarbon material.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 1, 2011
    Assignee: Thermical IP Pty Ltd.
    Inventor: Yaghoub Sayad-Yaghoubi
  • Publication number: 20100275727
    Abstract: The present invention provides a getter material configured by a pressed powder mixture comprising Ba—Al alloy powder and Ni powder, wherein when the pressed powder mixture is heated in a vacuum atmosphere or an inert gas atmosphere, a temperature at which an exothermic reaction starts is ranging from 750° C. to 900° C. According to this getter material, since the temperature at which the pressed powder mixture starts the exothermic reaction is set within a range from 750° C. to 900° C., there can be provided a getter material and an evaporation type getter device capable of suitably controlling an evaporation amount of getter components under a stable condition, and is excellent in responsiveness because a time ranging from a starting time of heating the getter material to a starting time of evaporation of the getter components can be shortened.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Hiromichi HORIE, Yoshiyuki Fukuda, Hiromasa Kato, Nobuaki Nakashima, Yasuhisa Makino
  • Patent number: 7824468
    Abstract: A carbothermic process for producing an aluminium carbide containing mass by injecting carbon and alumina into molten aluminium superheated above 1400° C. The carbon reacts with molten aluminium to produce an aluminium carbide and alumina mass. The mass can be heated in the range of 1700° C. to 2000° C. to produce aluminium metal and carbon monoxide.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: November 2, 2010
    Assignee: Thermical IP Pty Ltd.
    Inventor: Yaghoub Sayad-Yaghoubi
  • Patent number: 7781018
    Abstract: This invention discloses a method of making an oxygen scavenging particle comprised of an activating component and an oxidizable component wherein one component is deposited upon the other component from a vapor phase and is particularly useful when the activating component is a protic solvent hydrolysable halogen compound and the oxygen scavenging particle is a reduced metal.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: August 24, 2010
    Assignee: M&G USA Corporation
    Inventor: Kevin L. Rollick
  • Patent number: 7753986
    Abstract: The present invention relates to a process wherein an intermediate form of titanium, namely titanium sponge, is produced by reduction of a feedstock of titanium in a reactant liquid bath, where the feedstock, titanium tetrachloride, is reduced by molten magnesium to titanium sponge, and the reactant liquid bath is inductively stirred during the reduction process. The reduction process with induced stirring is performed in an electric induction cold crucible, with or without a liner. Subsequent purification and melting of the titanium sponge can be accomplished in the electric induction cold crucible so that purified titanium can be supplied from the cold crucible.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: July 13, 2010
    Assignee: Inductotherm Corp.
    Inventor: Oleg S. Fishman
  • Publication number: 20100064850
    Abstract: A mass of solid aluminium carbide containing product is produced by injecting particulate alumina into a bath (30) of molten aluminium metal; and injecting carbonaceous material, consisting of, containing or yielding carbon, into the bath (30). The bath (30) of molten aluminium metal is maintained at a superheated temperature to heat and react carbon with molten aluminium to produce solid aluminium carbide which mixes with alumina to form a mass (36) containing entrapped gas and entrapped molten aluminium metal and having a bulk or apparent density less than aluminium. The mass is allowed to accumulate as a mass of solid aluminium carbide containing product on the upper surface of the bath. The carbonaceous material is a hydrocarbon material or is produced by pyrolysis, decomposition or cracking of a hydrocarbon material.
    Type: Application
    Filed: December 21, 2007
    Publication date: March 18, 2010
    Inventor: Yaghoub Sayad-Yaghoubi
  • Patent number: 7622153
    Abstract: This invention discloses a method of making an oxygen scavenging particle comprised of an activating component and an oxidizable component wherein one component is deposited upon the other component from a vapour phase and is particularly useful when the activating component is a protic solvent hydrolysable halogen compound and the oxygen scavenging particle is a reduced metal.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: November 24, 2009
    Assignee: M&G USA Corporation
    Inventor: Kevin L. Rollick
  • Patent number: 7582133
    Abstract: Methods for reducing carbon contamination when melting highly reactive alloys involving providing a graphite crucible having an interior, applying at least a first protective layer to the interior of the graphite crucible, placing a highly reactive alloy into the crucible having the first protective layer, and melting the highly reactive alloy to obtain a melted alloy having reduced carbon contamination.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: September 1, 2009
    Assignee: General Electric Company
    Inventors: Thomas Joseph Kelly, Michael James Weimer, Bernard Patrick Bewlay, Michael Francis Xavier Gigliotti, Jr.
  • Publication number: 20090199679
    Abstract: A carbothermic process for producing an aluminium carbide containing mass by injecting carbon and alumina into molten aluminium superheated above 1400° C. The carbon reacts with molten aluminium to produce an aluminium carbide and alumina mass. The mass can be heated in the range of 1700° C. to 2000° C. to produce aluminium metal and carbon monoxide.
    Type: Application
    Filed: July 27, 2006
    Publication date: August 13, 2009
    Inventor: Yaghoub Sayad-Yaghoubi
  • Publication number: 20090095127
    Abstract: A system and process for reclaiming nickel and cadmium from a feed source such as Ni—Cd batteries. The feed source is shredded to produce feed particles, screened to size the particles, magnetically separated to remove non-metallic materials, and induction heated to generate nickel and cadmium products.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 16, 2009
    Inventor: John A. PATTERSON
  • Patent number: 7468088
    Abstract: One aspect of the invention is a method for incorporating carbon homogeneously into aluminum materials. The first step is to apply a positive charge to molten aluminum. Next, a negative charge is applied to an organic compound. Under an inert atmosphere, the negatively charged organic compound is mixed with the positively charged molten aluminum while running electric current therethrough. An aluminum material with carbon homogeneously dispersed throughout is recovered.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: December 23, 2008
    Assignee: Aluminastic Corporation
    Inventors: Matthew E. Blankenhorn, William F. Clifford, Sr.
  • Publication number: 20080178705
    Abstract: The present invention relates to an apparatus and process wherein an intermediate form of a Group IVB metal, such as titanium sponge, is produced by reduction of a feedstock of the Group IVB metal in a reactant liquid bath, for example where the feedstock, titanium tetrachloride, is reduced by molten magnesium to titanium sponge, and the reactant liquid bath is inductively stirred during the reduction process. The reduction process with induced stirring may be performed in an electric induction cold crucible, with or without a liner. Subsequent purification and melting of the intermediate form of the Group IVB metal can be accomplished in the electric induction cold crucible so that purified Group IVB metal can be supplied from the cold crucible.
    Type: Application
    Filed: March 12, 2007
    Publication date: July 31, 2008
    Inventor: Oleg S. Fishman
  • Patent number: 6733561
    Abstract: A process is provided for the production of titania rich slag from ilmenite. The ilmenite is fed together with carbonaceous reductant, and in the absence of fluxes, to the molten bath of a D.C. arc furnace. The molten bath of the furnace forms the anode and one or more electrodes in the roof of the furnace forms the cathode. A frozen lining is established and maintained between the refractory lining of the furnace and the molten bath and the process includes means to control the thickness of the frozen lining as well as the whole smelting process.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 11, 2004
    Assignee: Anglo Operations Limited
    Inventors: Albert Francois Simon Schoukens, David John Morris, Frederick Stephen McComb
  • Patent number: 6616724
    Abstract: For the evaporation of given components from initial multiple-substance mixtures and systems at subatmospheric pressure, individual portions (P1, P2, P3, P4, P5) of the multiple-substance mixture and systems are placed in ring crucibles (17) stacked at several levels. Vapors of the lower-boiling component are drawn off through a vapor exhaust opening in each crucible, while the top ring crucible (17) is closed except for its vapor exhaust opening.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: September 9, 2003
    Assignee: Ald Vacuum Technologies Aktiengesellschaft
    Inventors: Manfred Raschke, Wilfried Goy, Franz Hugo, Erwin Wanetzky, Albrecht Melber
  • Publication number: 20020194953
    Abstract: Described is a method and apparatus for producing high purity titanium and high purity titanium so produced. The process contemplates producing titanium sponge in a container and performing titanium fused salt electrolysis in situ in the same container to produce high purity titanium crystal, and where especially low oxygen content is desired, to treat the high purity titanium crystal as produced with iodine.
    Type: Application
    Filed: October 29, 2001
    Publication date: December 26, 2002
    Inventors: Harry Rosenberg, Nigel Winters, Yun Xu
  • Patent number: 6409792
    Abstract: An improved process for successful and homogeneous incorporation of ruthenium and iridium into titanium and titanium alloy melts, ingots, and castings via traditional melting processes (e.g., VAR and cold-hearth) has been developed. This result is achieved through the use of low-melting point Ti-Ru or Ti—Ir binary master alloys within the general composition range of ≦45 wt. % Ru and with a preferred composition of Ti-(15-40 wt. % Ru), or within the general composition range of ≦61 wt. % Ir and with a preferred composition of TI-(20-58 wt. % Ir). Primary features are its lower melting point than pure titanium, lower density than pure Ru and Ir metals, and the ability to be readily processed into granular or powder forms.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: June 25, 2002
    Assignee: RMI Titanium Company
    Inventors: Ronald W. Schutz, Kuang-O Yu, Richard L. Porter, Frank P. Spadafora
  • Publication number: 20010052272
    Abstract: A process is provided for the production of titania rich slag from ilmenite. The ilmenite is fed together with carbonaceous reductant, and in the absence of fluxes, to the molten bath of a DC arc furnace. The molten bath of the furnace forms the anode and one or more electrodes in the roof of the furnace forms the cathode. A frozen lining is established and maintained between the refractory lining of the furnace and the molten bath and the process includes means to control the thickness of the frozen lining as well as the whole smelting process.
    Type: Application
    Filed: March 6, 2001
    Publication date: December 20, 2001
    Inventors: Albert F.S. Schoukens, David J. Morris, Frederick S. Mccomb
  • Patent number: 6217631
    Abstract: A method of heating a body of molten metal passing through a treatment bay. The method comprises providing a body of molten metal in a treatment bay and providing a baffle heater in the treatment bay to contact the molten metal. The baffle heater is comprised of a member fabricated from a material substantially inert to the molten metal, the member containing at least one heating element receptacle. An electric heating element is positioned in the receptacle for heating the member, the element protected from the molten metal by the material constituting the member.
    Type: Grant
    Filed: March 27, 1999
    Date of Patent: April 17, 2001
    Inventor: C. Edward Eckert