Carbothermic Reduction Of Aluminum(al) Compound Patents (Class 75/10.27)
  • Publication number: 20110165332
    Abstract: A mass of solid aluminium carbide containing product is produced by a process in which a mixture is formed of an aluminium containing material and a carbonaceous material consisting of, containing or yielding carbon. Then the resulting mixture is heated to a temperature sufficient to react carbon of the carbonaceous material with the aluminium of the aluminium containing material to produce solid aluminium carbide. The solid aluminium carbide then is able to be heated with an aluminium compound selected from AI2O3, AI4CO4, AIO, AI2O and mixtures thereof, to produce aluminium metal and carbon monoxide.
    Type: Application
    Filed: May 8, 2009
    Publication date: July 7, 2011
    Inventor: Yaghoub Sayad-Yaghoubi
  • Patent number: 7896945
    Abstract: A mass of solid aluminium carbide containing product is produced by injecting particulate alumina into a bath (30) of molten aluminium metal; and injecting carbonaceous material, consisting of, containing or yielding carbon, into the bath (30). The bath (30) of molten aluminium metal is maintained at a superheated temperature to heat and react carbon with molten aluminium to produce solid aluminium carbide which mixes with alumina to form a mass (36) containing entrapped gas and entrapped molten aluminium metal and having a bulk or apparent density less than aluminium. The mass is allowed to accumulate as a mass of solid aluminium carbide containing product on the upper surface of the bath. The carbonaceous material is a hydrocarbon material or is produced by pyrolysis, decomposition or cracking of a hydrocarbon material.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 1, 2011
    Assignee: Thermical IP Pty Ltd.
    Inventor: Yaghoub Sayad-Yaghoubi
  • Patent number: 7854783
    Abstract: Apparatus, systems and methods for carbothermically producing aluminum are disclosed. The systems may include a reactor and an electrical supply. The reactor may include a plurality of side-entering electrodes and a top-entering electrode. The electrical supply may be operable to supply multiphase current to the side-entering electrodes and/or the top-entering electrodes. The electrodes may be in communication with a molten bath of the reactor, and the multiphase current supplied thereto may be passed through the bath to heat the reactor. The amount of current supplied to various electrode sets may be adjusted to facilitate tailored heating of the molten bath.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: December 21, 2010
    Assignees: Alcoa Inc., Elkem AS
    Inventors: Joseph A. Lepish, Gerald E. Carkin
  • Patent number: 7824468
    Abstract: A carbothermic process for producing an aluminium carbide containing mass by injecting carbon and alumina into molten aluminium superheated above 1400° C. The carbon reacts with molten aluminium to produce an aluminium carbide and alumina mass. The mass can be heated in the range of 1700° C. to 2000° C. to produce aluminium metal and carbon monoxide.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: November 2, 2010
    Assignee: Thermical IP Pty Ltd.
    Inventor: Yaghoub Sayad-Yaghoubi
  • Patent number: 7819937
    Abstract: An agglomerate comprising alumina, carbon, and a binder for use in a vapor recovery reactor of a carbothermic alumina reduction furnace is disclosed. A method for using alumina-carbon agglomerates to capture aluminum vapor species and utilize waste heat from off-gases in a vapor recovery reactor to form a recyclable material is also disclosed.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: October 26, 2010
    Assignees: Alcoa Inc., Elkem AS
    Inventors: Richard J. Fruehan, David J. Roha, Anders Schei, Mark L. Weaver
  • Publication number: 20100162850
    Abstract: Apparatus, systems and methods for carbothermically producing aluminum are disclosed. The systems may include a reactor and an electrical supply. The reactor may include a plurality of side-entering electrodes and a top-entering electrode. The electrical supply may be operable to supply multiphase current to the side-entering electrodes and/or the top-entering electrodes. The electrodes may be in communication with a molten bath of the reactor, and the multiphase current supplied thereto may be passed through the bath to heat the reactor. The amount of current supplied to various electrode sets may be adjusted to facilitate tailored heating of the molten bath.
    Type: Application
    Filed: March 11, 2010
    Publication date: July 1, 2010
    Applicants: Alcoa Inc., Elkem AS
    Inventors: Joseph A. Lepish, Gerald E. Carkin
  • Patent number: 7736413
    Abstract: Graphite electrodes for the production of aluminum by carbothermic reduction of alumina are either submerged in the molten bath in the low temperature compartment or they are horizontally arranged in the side walls of the high temperature compartment. The electrodes are manufactured by using a mixture of coke particles covering the complete particle size range between 25 ?m to 3 mm and by using an intensive mixer to effectively wet all coke particles with pitch. The electrodes have a flexural strength of at least 20 N/mm2. By using a complete range (continuum) of particle sizes in conjunction with an intensive mixer, the geometric packing of the particles is significantly improved, hence the material density is increased and thus a higher mechanical strength as well as improved electrical conductivity in comparison to conventional graphite electrodes is achieved.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: June 15, 2010
    Assignee: SGL Carbon SE
    Inventor: Johann Daimer
  • Publication number: 20100064850
    Abstract: A mass of solid aluminium carbide containing product is produced by injecting particulate alumina into a bath (30) of molten aluminium metal; and injecting carbonaceous material, consisting of, containing or yielding carbon, into the bath (30). The bath (30) of molten aluminium metal is maintained at a superheated temperature to heat and react carbon with molten aluminium to produce solid aluminium carbide which mixes with alumina to form a mass (36) containing entrapped gas and entrapped molten aluminium metal and having a bulk or apparent density less than aluminium. The mass is allowed to accumulate as a mass of solid aluminium carbide containing product on the upper surface of the bath. The carbonaceous material is a hydrocarbon material or is produced by pyrolysis, decomposition or cracking of a hydrocarbon material.
    Type: Application
    Filed: December 21, 2007
    Publication date: March 18, 2010
    Inventor: Yaghoub Sayad-Yaghoubi
  • Patent number: 7648561
    Abstract: A process for recycling composite materials includes the steps of feeding a quantity of composite material composed of at least one polymer and aluminum into at least one first reactor; heating the composite material in a non-oxidizing environment at a temperature sufficient to volatilize the at least one polymer and form a hydrocarbon by-product and aluminum in the at least one first reactor; feeding the aluminum free of the at least one polymer into a second reactor; and heating the aluminum in a non-oxidizing environment at a temperature sufficient to melt the aluminum in the second reactor.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: January 19, 2010
    Assignee: TSL Engenharia, Manutencao e Preservacao Ambiental Ltda.
    Inventors: Roberto Nunes Szente, Milton Oscar Szente
  • Patent number: 7556667
    Abstract: A batch process for producing low carbon aluminum using a single carbothermic reactor furnace is disclosed in which the slag making, metal making and carbon extraction is carried out in a single furnace, single compartment reactor. The Al2O and Al vapors generated in slag making and metal making steps are recovered in a vapor recovery reactor, and treated with a carbonaceous material to produce recyclable material comprising Al4C3. The recyclable material is used to assist with one or more subsequent slag making steps.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: July 7, 2009
    Assignee: ALCOA Inc.
    Inventor: Richard J. Fruehan
  • Publication number: 20090139371
    Abstract: Apparatus, systems and methods for carbothermically producing aluminum are disclosed. The systems may include a reactor and an electrical supply. The reactor may include a plurality of side-entering electrodes and a top-entering electrode. The electrical supply may be operable to supply multiphase current to the side-entering electrodes and/or the top-entering electrodes. The electrodes may be in communication with a molten bath of the reactor, and the multiphase current supplied thereto may be passed through the bath to heat the reactor. The amount of current supplied to various electrode sets may be adjusted to facilitate tailored heating of the molten bath.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 4, 2009
    Applicant: Alcoa Inc.
    Inventors: Joseph A. Lepish, Gerald E. Carkin
  • Publication number: 20090013823
    Abstract: An agglomerate comprising alumina, carbon, and a binder for use in a vapor recovery reactor of a carbothermic alumina reduction furnace is disclosed. A method for using alumina-carbon agglomerates to capture aluminum vapor species and utilize waste heat from off-gases in a vapor recovery reactor to form a recyclable material is also disclosed.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 15, 2009
    Applicant: Alcoa Inc.
    Inventors: Richard J. Fruehan, David J. Roha, Anders Schei, Mark L. Weaver
  • Publication number: 20090007723
    Abstract: Graphite electrodes for the production of aluminum by carbothermic reduction of alumina are either submerged in the molten bath in the low temperature compartment or they are horizontally arranged in the side walls of the high temperature compartment. The electrodes are manufactured by using a mixture of coke particles covering the complete particle size range between 25 ?m to 3 mm and by using an intensive mixer to effectively wet all coke particles with pitch. The electrodes have a flexural strength of at least 20 N/mm2. By using a complete range (continuum) of particle sizes in conjunction with an intensive mixer, the geometric packing of the particles is significantly improved, hence the material density is increased and thus a higher mechanical strength as well as improved electrical conductivity in comparison to conventional graphite electrodes is achieved.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 8, 2009
    Applicant: SGL CARBON AG
    Inventor: Johann Daimer
  • Publication number: 20090000425
    Abstract: A graphite electrode for an electrothermic reduction furnace is formed from anode grade coke and graphitized at a graphitization temperature below 2700° C. The resulting electrode is particularly suited for carbothermal reduction of alumina. It has an iron content of about 0.05% by weight, a specific electrical resistivity of above 5 ?Ohm·m, and a thermal conductivity of less than 150 W/m·K. The graphite electrode is manufactured by first mixing calcined anode coke with a coal-tar pitch binder, and a green electrode is formed from the mixture at a temperature close to the softening point of the pitch binder. The green electrode is then baked to carbonize the pitch binder to solid coke. The resultant carbonized electrode, after further optional processing is then graphitized at a temperature below 2700° C. for a time sufficient to cause the carbon atoms in the carbonized electrode to organize into the crystalline structure of graphite.
    Type: Application
    Filed: September 8, 2008
    Publication date: January 1, 2009
    Applicant: SGL Carbon AG
    Inventor: JOHANN DAIMER
  • Publication number: 20080196545
    Abstract: A batch process for producing low carbon aluminum using a single carbothermic reactor furnace is disclosed in which the slag making, metal making and carbon extraction is carried out in a single furnace, single compartment reactor. The Al2O and Al vapors generated in slag making and metal making steps are recovered in a vapor recovery reactor, and treated with a carbonaceous material to produce recyclable material comprising Al4C3. The recyclable material is used to assist with one or more subsequent slag making steps.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: Alcoa Inc.
    Inventor: Richard J. Fruehan
  • Publication number: 20080016984
    Abstract: Systems and associated methods for carbothermically producing aluminum are provided, the systems generally including a reactor having a depth such that when the reactor contains molten liquid hydrostatic pressure of the molten liquid is at least about 0.5 atm as measured proximal the bottom of the reactor. A plurality of horizontally disposed electrodes, which may be offset from one another in a vertical and/or horizontal direction, may also be used in accordance with the system to provide selective heating gradients within the molten liquid.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 24, 2008
    Applicant: Alcoa Inc.
    Inventor: Roy A. Christini
  • Patent number: 7169207
    Abstract: The device and method of the present invention employs a column having a gas inlet in its lower part and a gas outlet in its upper part. Carbon particles are introduced into the column through a supply pipe. The supply pipe is movable so that by manipulating the height of the supply pipe in conjunction with discharging particulate matter through the column, the height of the bed of particulate matter in the column can be adjusted so that the retention time of the off gas in the particulate bed is constant. By maintaining a constant retention time of the off gas in the bed, complete conversion of the off gas is achieved.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: January 30, 2007
    Assignees: Alcoa Inc., Elkem ASA
    Inventors: Olaf Trygve Vegge, Jon Christian Brinch
  • Patent number: 6849101
    Abstract: In a method for recovering Al from an off-gas (3,4) produced during carbothermic reduction of aluminum utilizing at least one smelter (1,2), the off-gas (3,4) is directed to an enclosed reactor (5) which is fed a supply of wood charcoal (7) having a porosity of from about 50 vol. % to 85 vol. % and an average pore diameter of from about 0.05 ?m to about 2.00 ?m, where the wood charcoal (7) contacts the off-gas (3,4) to produce at least Al4C3 (6), which is passed back to the smelter (1,2).
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 1, 2005
    Assignees: Alcoa Inc., Elkem ASA, Carnegie Mellon University
    Inventors: Richard J. Fruehan, Yun Li, Gerald Carkin
  • Patent number: 6805723
    Abstract: A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: October 19, 2004
    Assignees: Alcoa Inc., Elkem ASA
    Inventors: Jan Arthur Aune, Kai Johansen
  • Publication number: 20040173053
    Abstract: A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.
    Type: Application
    Filed: March 6, 2003
    Publication date: September 9, 2004
    Inventors: Jan Arthur Aune, Kai Johansen
  • Publication number: 20040134308
    Abstract: The invention relates to a method for producing high-performance Cr—Ti—V hydrogen storage alloys utilizing thermit process, whereby residence of adversely affecting impurities is inhibited, addition of not less than 10 at % of Ti as an alloy component is realized, and thermal burden on the crucible used in the method is reduced. The method includes the steps of: (A) providing an alloy material (1) comprising a Cr oxide, a V oxide, and a reducing agent Al, and an alloy material (2) comprising Ti; (B) placing said alloy materials in a crucible for thermit reduction so that the alloy material (1) is placed above the alloy material (2); (C) igniting the alloy material (1) placed in step (B) and melting all metal elements contained in the alloy materials with heat of thermit reaction of the alloy material (1); and (D) making an alloy melt obtained in step (C) into an alloy.
    Type: Application
    Filed: October 24, 2003
    Publication date: July 15, 2004
    Inventors: Hiroaki Takata, Yutaka Oka, Junichi Nakagawa, Akira Neoda
  • Patent number: 6530970
    Abstract: A method for aluminum recovery during the carbothermic production of aluminum in a smelting furnace (1,2) is disclosed, where during carbothermic reduction of alumina, aluminum and aluminum suboxide vapors are produced (3, 4), which are reacting with carbon. Reactive carbon is generated in situ by the cracking of hydrocarbon compounds (6) in a separate closed reactor vessel (5) at a temperature greater than about 1955° C. Solid aluminum carbide that formed during the reaction can then be recycled by a conduit (8) to the primary reactor for reduction to aluminum, and reactor gas (10) can be fed to a cooler (9).
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: March 11, 2003
    Assignees: Alcoa Inc., Elkem ASA
    Inventor: Tor Lindstad
  • Publication number: 20020170387
    Abstract: A method for aluminum recovery during the carbothermic production of aluminum in a smelting furnace (1,2) is disclosed, where during carbothermic reduction of alumina, aluminum and aluminum suboxide vapors are produced (3, 4), which are reacting with carbon. Reactive carbon is generated in situ by the cracking of hydrocarbon compounds (6) in a separate closed reactor vessel (5) at a temperature greater than about 1955° C. Solid aluminum carbide that formed during the reaction can then be recycled by a conduit (8) to the primary reactor for reduction to aluminum, and reactor gas (10) can be fed to a cooler (9).
    Type: Application
    Filed: May 21, 2001
    Publication date: November 21, 2002
    Inventor: Tor Lindstad
  • Patent number: 6475260
    Abstract: A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000° C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 5, 2002
    Assignee: Alcoa Inc.
    Inventor: Alfred F. LaCamera
  • Patent number: 6440193
    Abstract: The present invention relates to a process for carbothermic production of aluminum where molten bath aluminum carbide and aluminum oxide are produced in a low temperature compartment (2), and continuously flow into a high temperature compartment (3) where the aluminum carbide is reacted with alumina to produce a top aluminum layer (31), where the aluminum layer (31) forms a layer on the top of a molten slag layer and is tapped from the high temperature compartment (3) at outlet (5), and where off-gases from the two compartments are treated in reactors fed by one or more columns (9, 19). According to the invention the low temperature compartment (2) and the high temperature compartment (3) are located in a common reaction vessel (1) where the low temperature compartment is separated from the high temperature compartment by an underflow partition wall (4).
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: August 27, 2002
    Assignees: Alcoa Inc., Elken ASA
    Inventors: Kai Johansen, Jan A. Aune
  • Patent number: 6361580
    Abstract: A continuous process for the production of elemental aluminum is described. Aluminum is made from aluminum oxide and a reducing gas such as a light hydrocarbon gas or other reducing gas, for example hydrogen. In the process, a feed stream of the aluminum oxide and the reducing gas is continuously fed into a reaction zone. There the aluminum oxide and reducing gas are reacted at a temperature of about 1500° C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental aluminum. The product stream is continuously quenching after leaving the reaction zone, and the elemental aluminum is separated from the other reaction products.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: March 26, 2002
    Assignee: Massachuetts Institute of Technology
    Inventors: Sven Plahte, Bjorn Lillebuen, Alexander F. Diaz, Jack B. Howard, Anthony J. Modestino, William A. Peters
  • Publication number: 20020029656
    Abstract: A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000° C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.
    Type: Application
    Filed: August 27, 2001
    Publication date: March 14, 2002
    Inventor: Alfred F. LaCamera