Magnesium(mg) Or Compound Thereof Patents (Class 75/10.47)
  • Patent number: 11389873
    Abstract: A method for producing metal powders by gas atomization is provided, including providing a metal charge; melting the metal charge inside an electric-arc furnace, controlling its composition until a molten metal bath having a desired composition is obtained; tapping the bath from the furnace, collecting it inside a ladle; refining the bath under controlled atmosphere, vacuum, or overpressure condition; atomizing the refined bath by feeding it into a gas atomizer, inside which a molten metal bath flow is produced, and impinging the molten metal bath flow with an atomization inert gas stream for the atomization of the molten metal bath into metal powders; and extracting the obtained metal powders from the gas atomizer.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 19, 2022
    Assignee: TENOVA S.P.A.
    Inventors: Francesco Memoli, Michela Boccadoro
  • Publication number: 20140033866
    Abstract: A method for treating spheroidal graphite iron includes the step: pouring molten spheroidal graphite iron into a pouring electrical furnace (1); covering the molten spheroidal graphite iron (5) with alkali slag (6) which is melted at high temperature and rich in alkali earth metal ion, rare earth metal ion, or mixture of them; connecting the molten spheroidal graphite iron (5) with the negative pole of the direct current source by one pole (7); connecting the alkali slag (6) with the positive pole of the direct current source by another pole (4), treating the molten spheroidal graphite iron (5) with the alkali slag (6) which is used as electrolyte. The method can prevent the spheroidized fading velocity of the spheroidal graphite iron. The pouring electrical furnace can be used for treating the molten spheroidal graphite iron.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Inventors: Yuxin WANG, Juren LIU
  • Patent number: 8092570
    Abstract: A process and apparatus for producing titanium metal is described herein. The process comprises generating an RF thermal plasma discharge using a plasma torch provided with an RF coil; reducing titanium tetrachloride to a titanium metal by supplying titanium tetrachloride and magnesium into the RF thermal plasma discharge; and collecting or depositing the titanium metal at a temperature not lower than the boiling point of magnesium chloride and not higher than the boiling point of the titanium metal.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 10, 2012
    Assignees: Hitachi Metals, Ltd., Tekna Plasma Systems Inc.
    Inventors: Maher I. Boulos, Jiayin Guo, Jerzy Jurewicz, Gang Han, Shujiroh Uesaka, Hiroshi Takashima
  • Patent number: 8007562
    Abstract: The cost-effective hydrogenated, purified titanium powder is manufactured by the semi-continuous process including: (a) magnesium-thermic reduction of titanium chlorides at 830-880° C. in the hydrogen atmosphere characterized by the formation of a hollow porous block of the reaction mass having an open cavity in the center of the block, (b) full thermal-vacuum separation of the hollow block from excessive Mg and MgCl2 at 850-980° C. and residual pressure of 26-266 Pa using a multi-step cycle including: (i) purging hydrogen at 800-950° C. into the reactor at the pressure 10 kPa to 24.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: August 30, 2011
    Assignee: ADMA Products, Inc.
    Inventors: Sergey A. Kasparov, Andrey G. Klevtsov, Aleksandr I. Cheprasov, Vladimir S. Moxson, Volodymyr A. Duz
  • Publication number: 20110154946
    Abstract: A method of producing foamed slag in an arc furnace by measured blowing of a carbon carrier by means of an oxygen carrier into the boundary layer between the slag and molten metal layers or into zones of the slag or molten metal layer adjacent to the boundary layer in an amount such that arc are enveloped at least by a foamed slag layer.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Inventors: Djamschid AMIRZADEH-ASL, Dieter Fünders
  • Patent number: 7815708
    Abstract: The invention relates to a process for the separation and recovery of non-ferrous metals from zinc-bearing residues, in particular from residues produced by the zinc manufacturing industry. The process comprises the steps of: —subjecting the residue to a flash or agitated bath fuming step, thereby producing an Fe bearing slag and Zn- and Pb-bearing fumes; and —extracting the Zn- and Pb-bearing fumes and valorising Zn and Pb; characterised in that CaO, SiO2 and MgO are added as a flux before or during the fuming step so as to obtain a final slag composition with: formula (I) all concentrations being expressed in wt %. The invention also relates to a single-chamber reactor for Zn-fuming equipped with one or more submerged plasma torches as heat and gas sources. [ Fe ] [ SiO 2 ] + [ CaO ] [ SiO 2 ] + [ MgO ] 3 > 3.5 ; 0.1 < [ CaO ] [ SiO 2 ] < 1.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: October 19, 2010
    Assignee: Umicore
    Inventors: Maurits Van Camp, Jonathan Aerts, Benedict Janssens, Sven Santen
  • Patent number: 7691200
    Abstract: Provided is a MgO single crystal for obtaining a magnesium oxide (MgO) single crystal deposition material which is prevented from splashing during the vapor deposition in, e.g., an electron beam deposition method without reducing the deposition rate, and for obtaining a MgO single crystal substrate which can form thereon, e.g., a superconductor thin film having excellent superconducting properties. A MgO single crystal having a calcium content of 150×10?6 to 1,000×10?6 kg/kg and a silicon content of 10×10?6 kg/kg or less, wherein the MgO single crystal has a variation of 30% or less in terms of a CV value in detected amounts of calcium fragment ions, as analyzed by TOF-SIMS with respect to the polished surface of the MgO single crystal. A MgO single crystal deposition material and a MgO single crystal substrate for forming a thin film obtained from the MgO single crystal.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: April 6, 2010
    Assignee: Tateho Chemical Industries Co., Ltd
    Inventors: Atsuo Toutsuka, Yoshifumi Kawaguchi, Masaaki Kunishige
  • Publication number: 20100037728
    Abstract: An object of the present invention is to provide a method for reducing a chromium-containing material at a high chromium reduction degree. In the method of the present invention, a mixture of a feedstock containing chromium oxide and a carbonaceous reductant is heated and reduced by radiation heating in a moving hearth furnace. The average rate of raising the temperature of the mixture in the reduction is preferably 13.96° C./s or higher in the period from the initiation of the radiation heating of the mixture until the mixture reaches 1,114° C.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 18, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd)
    Inventors: Hiroshi SUGITATSU, Hidetoshi Tanaka, Takao Harada, Itsuo Miyahara, Isao Kobayashi
  • Patent number: 7618473
    Abstract: A method of restoring the electrical efficiency of channel and pressure pour furnaces includes plunging a fluxing material with a specially designed plunging lance. The plunging lance chamber containing the fluxing material is 24 to 32 inches in length, 3 inches in diameter and has a capacity to hold 5 to 7.5 pounds of flux briquettes. The plunging chamber has holes drilled along the length of the body. The fluxing material contains by weight from 8.0 to 28.7% CaCO3 (calcium carbonate or limestone), from 0 to 18.5% MgCO3 (magnesium carbonate), from 3.6 to 18.0% Al2O3 (alumina) from 1.4 to 7.1% SiO2 (silica), in the form of a complex aluminosilicate, and from 19.4 to 46.4% Na2O (sodium oxide), in the form of soda ash (sodium carbonate). The total level of sodium ranges from 23 to 26% and up to 10% sodium fluoride or sodium chloride may be substituted for soda ash.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: November 17, 2009
    Inventors: Rodney L. Naro, David C. Williams
  • Publication number: 20070266824
    Abstract: A slag conditioner containing MgO, up to 50% slag-making carbon, 10 to 60% particulates of bag house dust and dropout box particles and 2% to 25% binder is mixed and formed under pressure to produce aggregates which can have the form of a briquette. The MgO content of the mixture comprising: 20% to 90% burned aggregates comprised of particles less than 8 mm of which at least 30% is 0.2 mm or greater and containing between 35% and 94% MgO; and up to 50% light burned magnesite.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Inventors: Joseph L. Stein, John Beatty
  • Patent number: 6875251
    Abstract: A process for the manufacture of steel in which a charge material comprising direct reduced iron, and optionally containing steel scrap, is continuously charged into a stationary electric arc furnace. Inside the furnace, a bath of molten steel and a continuous slag layer are maintained, the steel bath preferably having a volume of approximately 7 to 13 tap volumes. Heat for melting the charge material is preferably provided by open arcs between the electrodes and the metal bath, with the slag layer preferably being superheated to about 40 to 150° C. above the bath temperature. In order to prevent excessive superheating, the slag preferably has a melting point substantially the same as, or greater than, the bath temperature, with the slag melting temperature being adjustable by varying the amount of MgO in the slag. The slag preferably has low basicity to reduce the rate of refractory erosion.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: April 5, 2005
    Assignee: Hatch Ltd.
    Inventors: Iakov Gordon, Frank M. Wheeler
  • Publication number: 20030213337
    Abstract: A process for the manufacture of steel in which a charge material comprising direct reduced iron, and optionally containing steel scrap, is continuously charged into a stationary electric arc furnace. Inside the furnace, a bath of molten steel and a continuous slag layer are maintained, the steel bath preferably having a volume of approximately 7 to 13 tap volumes. Heat for melting the charge material is preferably provided by open arcs between the electrodes and the metal bath, with the slag layer preferably being superheated to about 40 to 150° C. above the bath temperature. In order to prevent excessive superheating, the slag preferably has a melting point substantially the same as, or greater than, the bath temperature, with the slag melting temperature being adjustable by varying the amount of MgO in the slag. The slag preferably has low basicity to reduce the rate of refractory erosion.
    Type: Application
    Filed: May 15, 2002
    Publication date: November 20, 2003
    Inventors: Iakov Gordon, Frank M. Wheeler
  • Patent number: 6533998
    Abstract: The invention relates to a process for producing nodular cast iron with a high number of graphic nodules. This process comprises the following steps: preparing molten base iron for wasting castings of nodular cast iron; adding Mg to the molten base iron; inoculating the casting stream with a first inoculant when casting the cast iron into a casting mold. According to the invention, between the addition of the Mg and the inoculation of the casting stream, a preliminary inoculation using a further inoculant is carried out as an additional step. The invention also relates to a casting obtained by using this process.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: March 18, 2003
    Assignee: Corus Technology B.V.
    Inventors: Pieter Cornelis Van Eldijk, Frans-Benoni Lietaert