Abstract: A method for the production of a ?-TiAl base alloy by vacuum arc remelting, which ?-TiAl base alloy solidifies via the ?-phase (?-?-TiAl base alloy), includes the following method steps of forming a basic melting electrode by melting, in at least one vacuum arc remelting step, of a conventional ?-TiAl primary alloy containing a lack of titanium and/or of at least one ?-stabilizing element compared to the ?-?-TiAl base alloy to be produced; allocating an amount of titanium and/or ?-stabilizing element to the basic melting electrode, which amount corresponds to the reduced amount of titanium and/or ?-stabilizing element, in an even distribution across the length and periphery of the basic melting electrode; and adding the allocated amount of titanium and/or ?-stabilizing element to the basic melting electrode so as to form the homogeneous ?-?-TiAl base alloy in a final vacuum arc remelting step.
Type:
Grant
Filed:
September 28, 2010
Date of Patent:
March 11, 2014
Assignees:
GfE Metalle und Materialien GmbH, TiTAL GmbH
Abstract: A process is provided for producing an aluminium-titanium-boron grain refining master alloy containing titanium boride and titanium aluminide particles, the process comprising melting aluminium in a silicon carbide crucible in a medium frequency induction or an electric resistance furnace, adding to the melt at a temperature between 750 degrees Celsius and 900 degrees Celsius, KBF4 and K2TiF6 salts, pre-mixed in proportions to obtain a Ti/B ratio of 5 in the melt, gently mixing the salt mixture with the melt without introducing any stirring, transferring the molten alloy to an electric resistance furnace maintained at 800 degrees Celsius, decanting the K—Al—F salt, the by-product of the salt reaction, thoroughly stirring the molten alloy in the SiC crucible with graphite rods before finally casting the molten alloy into cylindrical molds in the form of billets and finally extruding the billet into 9.5 mm rods.
Abstract: A method for making a strain aging resistant steel comprises adding boron to the steel, wherein substantially all of the boron in the steel forms boron nitride. A method for making steel comprises adding a nitride-forming element to the steel to lower the free nitrogen content of the steel to a free nitrogen content specification. A high-carbon steel contains boron nitride, wherein the free nitrogen content of the steel is less than 80 ppm. A strain aging resistant steel wherein the carbon content of the steel is between about 0.54 percent and about 0.75 percent.
Abstract: A palladium-boron composition and methods of making and using same are provided. In one aspect, the invention comprises an alloy comprising palladium and boron, the boron being in solid solution in the palladium and the alloy having a two-phase structure, wherein each phase of the two-phase structure has the same crystal structure as the other phase and has a different set of lattice parameters from the other phase such that the palladium is greatly hardened by the presence of the smaller phase crystals within the spaces between the larger phase crystals. The composition is carefully prepared by a process wherein palladium and an amount of boron sufficient to place the boron in solid solution, but insufficient to combine with the palladium, are placed together and repeatedly arc melted, cooled and turned over until sufficiently mixed.