Thorium(th) Patents (Class 75/394)
  • Patent number: 8221520
    Abstract: The invention relates to a process for producing 228Th from a natural thorium salt, which comprises in succession: a) the separation of the radium from the other radioelements present in this salt, by at least one coprecipitation of the radium by barium sulphate, this coprecipitation comprising: i) the addition of sulphuric acid and a barium salt to an aqueous solution of said natural thorium salt in order to form a barium-radium sulphate coprecipitate and ii) the separation of the coprecipitate from the medium in which it has formed; b) the extraction of the thorium 228 coming from the decay of radium 228 from the coprecipitate thus separated; and, optionally c) the purification and concentration of the 228Th thus extracted. Applications: manufacture of radiopharmaceutical products useful in nuclear medicine, in particular in radioimmunotherapy for the treatment of cancers and AIDS.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 17, 2012
    Assignee: Areva NC
    Inventors: Gilbert Andreoletti, Michel Belieres, Pascal Nardoux, Jean-Paul Moulin, Anne Montaletang, Patrick Bourdet
  • Publication number: 20100018347
    Abstract: A method of chemically extracting radium-228, rare earth metals, thorium, the decay products of thorium, and phosphates from thorium-containing ores. The method involves breaking thorium-containing ore into fragments, wetting the fragments with a concentrated strong acid to make a slurry, heating the slurry, passing the heated solution through a first anion exchange column, retaining metals and radium-228 captured on the resin, allowing the radium-228 ions to decay to actinium-228, purifying the actinium-228 fraction, sending the actinium-228 fraction through a capture column, eluting the captured thorium-228 with acid, removing radium from the solution, retaining the radium-228 fraction for isomer in-growth, retaining decay products from the radium-228, separating the REEs from the process stream; and eluting and retaining the REEs.
    Type: Application
    Filed: October 5, 2007
    Publication date: January 28, 2010
    Inventors: Charles S. Holden, Larry A. Burchfield
  • Publication number: 20020073804
    Abstract: A method for recycling thoriated tungsten objects such as thoriated tungsten scrap resulting from the fabrication of electrodes for lamps. The thoriated tungsten objects are oxidized, homogenized by mixing and chemically reduced under a hydrogen gas atmosphere to form thoriated tungsten. This method eliminates the need to separate the tungsten from its dopants. The thoriated tungsten obtained as the end product is returned to the production process and is preferably used as a raw material for the production of welding electrodes or thoriated tungsten discharge lamp electrodes.
    Type: Application
    Filed: September 28, 2001
    Publication date: June 20, 2002
    Applicant: Patent-Treuhand-Gesellschaft fur elektrische Gluhlampen mbH
    Inventor: Dieter Meiss
  • Patent number: 5096545
    Abstract: A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride.
    Type: Grant
    Filed: May 21, 1991
    Date of Patent: March 17, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: John P. Ackerman