Reduction Patents (Class 75/397)
-
Patent number: 8066861Abstract: A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.Type: GrantFiled: February 14, 2008Date of Patent: November 29, 2011Assignee: The United States of America as represented by the Department of EnergyInventor: Jong-Hee Park
-
Patent number: 5356605Abstract: A process for converting PuO.sub.2 and UO.sub.2 present in an electrorefiner to the chlorides, by contacting the PuO.sub.2 and UO.sub.2 with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO.sub.2 and PuO.sub.2 to metals while converting Li metal to Li.sub.2 O. Li.sub.2 O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O.sub.2 out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li.sub.2 O to disassociate to O.sub.2 and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl.sub.2.Type: GrantFiled: October 28, 1992Date of Patent: October 18, 1994Assignee: The United States of America as represented by the United States Department of EnergyInventors: Zygmunt Tomczuk, William E. Miller
-
Patent number: 5290337Abstract: In the pyrochemical reduction of uranium dioxide or other actinide metal oxides by reaction with magnesium, magnesium oxide byproduct is produced. The use of a salt flux comprising magnesium chloride and a rare earth element trichloride such as neodymium chloride is disclosed. The neodymium chloride reacts with magnesium oxide to form magnesium chloride and neodymium oxychloride. The resulting magnesium chloride-neodymium oxychloride salt mixture can readily be subjected to electrolysis to regenerate magnesium and neodymium chloride for reuse in the pyrochemical reduction process. Other uses of the magnesium chloride-neodymium chloride salt flux are also proposed.Type: GrantFiled: September 8, 1992Date of Patent: March 1, 1994Assignee: General Motors CorporationInventor: Ram A. Sharma
-
Patent number: 5160367Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel.Type: GrantFiled: October 3, 1991Date of Patent: November 3, 1992Assignee: The United States of America as represented by the United States Department of EnergyInventors: R. Dean Pierce, John P. Ackerman, James E. Battles, Terry R. Johnson, William E. Miller
-
Patent number: 5147616Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel.Type: GrantFiled: October 3, 1991Date of Patent: September 15, 1992Assignee: The United States of America as represented by the United States Department of EnergyInventors: John P. Ackerman, James E. Battles, Terry R. Johnson, William E. Miller, R. Dean Pierce
-
Patent number: 5141723Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein.Type: GrantFiled: October 3, 1991Date of Patent: August 25, 1992Assignee: The United States of America as represented by the United States Department of EnergyInventors: William E. Miller, John P. Ackerman, James E. Battles, Terry R. Johnson, R. Dean Pierce
-
Patent number: 5118343Abstract: A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.Type: GrantFiled: April 23, 1991Date of Patent: June 2, 1992Assignee: The United States of America as represented by the United States Department of EnergyInventor: Melvin S. Coops
-
Patent number: 5041193Abstract: Actinides metals are recovered from spent nuclear fuel oxides containing fission products by a pyrochemical process. The process comprises, in part, electrorefining the metal complex from an anode by electrolytically oxidizing actinides into a salt and then electrodepositing actinides onto a cathode to form an actinide metal deposit. The actinide metal deposit is then melted to separate the salts and the actinide metals. The separated salt is recycled into an electrorefiner and the actinide metals are recovered and then transferred to a fuel fabrication system.Type: GrantFiled: September 29, 1989Date of Patent: August 20, 1991Assignee: Rockwell International CorporationInventor: LeRoy F. Grantham