Copper(cu) Obtained Patents (Class 75/429)
  • Patent number: 10428404
    Abstract: The present invention provides a method of converting copper containing material to blister copper comprising: (a) providing copper containing material comprising copper sulfides and iron sulfides, whereby the copper containing material comprises at least 35 wt % copper of the total weight of the copper containing material; (b) reacting the copper containing material in a furnace with an oxygen containing gas, in the absence of flux, to effect oxidation of iron sulfide and copper sulfide, and controlling injection of the oxygen containing gas and the temperature so that the resulting converter slag is in a molten phase to obtain blister copper and converter slag.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: October 1, 2019
    Assignee: OUTOTEC (FINLAND) OY
    Inventors: Markku Lahtinen, Jouni Pihlasalo, Mikael Jåfs
  • Patent number: 9211587
    Abstract: There are provided a cuprous oxide powder having a smaller particle diameter than that of conventional cuprous oxide powders, and a method for producing the cuprous oxide powder by a chemical reducing process. In a method for producing a cuprous oxide powder by adding a reducing agent, such as a reducing sugar, to a solution containing copper hydroxide, which is formed by adding one of an alkali solution and a copper ion containing solution to the other thereof, to deposit cuprous oxide particles by reduction, 0.00001 to 0.04 moles (10 to 40000 ppm) of ferrous ions with respect to the amount of copper ions in the copper ion containing solution are added to the copper ion containing solution before forming copper hydroxide, to produce a cuprous oxide powder which has a mean primary particle diameter of not greater than 0.5 micrometers when it is measured by a scanning electron microscope (SEM), the cuprous oxide powder having a 50% particle diameter (D50 diameter) of not greater than 0.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 15, 2015
    Assignee: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Yuki Kaneshiro, Shinichi Suenaga, Akihiro Asano
  • Patent number: 8308843
    Abstract: A method and a device using pyrolysis for recycling used printed circuit board in which water (moisture) is introduced in the pyrolysis process and a fully sealed low pressure environment is established to ensure that no combustion happens in the pyrolysis process to enhance the safety of the process; pyrolysis gases generated in the process are concentrated and purified to provide useful fuels or chemical materials; therefore, the present invention can reduce process cost, improve recycling efficiency and provide processing device with high safety, thereby enhancing industry usability.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 13, 2012
    Inventor: Hsieh-Sen Wu
  • Patent number: 6797033
    Abstract: A method for recovering catalytic metals from fluids containing catalytic metal colloids. Fluid compositions such as rinse solutions or dragout baths containing catalytic metal colloids are passed through a filter that entraps catalytic metal colloids on the filter. The catalytic metal colloids have a high affinity for the filter in contrast to other components of the fluids. The other components of the fluids pass through the filter while the catalytic colloids concentrate on the filter. The filter containing the catalytic metal colloids is burned, and the catalytic metal is retrieved. The method is economically efficient and environmentally friendly.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: September 28, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Jeffrey Doubrava, Anthony Gallegos, Eric G. Lundquist, James C. Bohling, Richard F. Staniunas, Chad Serell
  • Patent number: 6773485
    Abstract: A method for recovering catalytic metals from fluid compositions containing catalytic metal colloids. Fluid compositions such as aqueous rinse solutions or dragout baths containing catalytic metal colloids are passed through a porous metal filter that entraps the catalytic metal colloids. The catalytic metal colloids have a high affinity for the porous metal filter in contrast to other components of the fluids. The other components of the fluids pass through the porous metal filter while the catalytic metal colloids concentrate on the porous metal filter. The catalytic metal colloids that are captured on the porous metal filter are removed from the filter by backwashing the filter with a gas and/or a liquid. The backwashing forces the catalytic metal colloids off of the porous metal filter and through a solids discharge valve and into a solids collection container. The method is economically efficient with high catalytic metal recovery and is environmentally friendly.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 10, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Jeffrey Doubrava, Anthony Gallegos, Eric G. Lundquist, James C. Bohling, Richard F. Staniunas
  • Patent number: 6565773
    Abstract: There is provided conductive paste wherein conductive fillers composed of copper micro-fibers are mixed into thermoplastic resin or thermosetting resin.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: May 20, 2003
    Assignee: Yazaki Corporation
    Inventors: Hitoshi Ushijima, Yoshinobu Akiha
  • Patent number: 6274104
    Abstract: The invention relates to a method for recovering non-ferrous metals, particularly nickel, cobalt, copper, zinc, manganese and magnesium, from materials containing said metals by converting said non-ferrous metals into sulphates by means of melt and melt coating sulphation, i.e. by a thermal treatment under oxidizing conditions within a temperature range of 400 to 800° C., during which a reaction mixture is formed containing at least one said non-ferrous metal, iron(III)sulphate and alkali metal sulphate, and appropriate reaction conditions are selected to substantially prevent iron(III)sulphate from thermally decomposing to hematite, and finally, said non-ferrous metals are recovered as metallic compounds. In the method of the invention, a process is formed around the melt and melt coating sulphation, which comprises nine steps.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 14, 2001
    Inventors: Jussi Rastas, Pekka Saikkonen
  • Patent number: 6254652
    Abstract: Sequential processing of hydrogen rich and hydrogen deficient feeds (14 and 16) in a heat balanced, single molten metal bath (40) to produce both 90+ mole % hydrogen (90) and one or more lower purity vapor streams (140) is disclosed. The molten metal bath is heated by oxygen addition (18) to burn dissolved carbon from the bath and then cooled by sequential addition of two feeds with differing hydrogen contents. Preferably a 98% hydrogen product with a pressure of at least 2 atm., absolute is obtained, along with a lower purity hydrogen containing stream and a separate carbon oxides flue gas stream.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: July 3, 2001
    Assignee: Marathon Ashland Petroleum LLC
    Inventor: Donald P. Malone
  • Patent number: 5670033
    Abstract: This invention is directed to a process for making copper metal powder from copper-bearing material, comprising: (A) contacting said copper-bearing material with an effective mount of at least one aqueous leaching solution to dissolve copper ions in said leaching solution and form a copper-rich aqueous leaching solution; (B) contacting said copper-rich aqueous leaching solution with an effective amount of at least one water-insoluble extractant to transfer copper ions from said copper-rich aqueous leaching solution to said extractant to form a copper-rich extractant and a copper-depleted aqueous leaching solution; (C) separating said copper-rich extractant from said copper-depleted aqueous leaching solution; (D) contacting said copper-rich extractant with an effective amount of at least one aqueous stripping solution to transfer copper ions from said extractant to said stripping solution to form a copper-rich stripping solution and a copper-depleted extractant; (E) separating said copper-rich stripping soluti
    Type: Grant
    Filed: October 18, 1995
    Date of Patent: September 23, 1997
    Assignee: ElectroCopper Products Limited
    Inventors: David P. Burgess, Wendy M. Gort, Ronald K. Haines, Jackson G. Jenkins, Stephen J. Kohut, Peter Peckham
  • Patent number: 5622615
    Abstract: A sulfur dioxide free process for the production of high purity metallic copper from copper-matte wherein copper-matte is leached under oxidizing conditions in a ferric-containing acid copper sulfate electrolyte leach assembly including one or more leach reactors to yield a copper-rich electrolyte, and copper cathode is produced in an electrowinning assembly which is physically decoupled from the leaching assembly and may include one or more electrowinning cells. The process operates at ambient pressure and temperatures less than the boiling point.
    Type: Grant
    Filed: January 4, 1996
    Date of Patent: April 22, 1997
    Assignee: The University of British Columbia
    Inventors: Sharon K. Young, David B. Dreisinger, Jinxing Ji
  • Patent number: 5574956
    Abstract: A method for oxidizing treatment of molten matte and at the same time directly smelting sulphidic concentrate in a refractory-lined liquid bath reactor, e.g. a converter, into which oxidizing air is introduced below the surface of the liquid bath. For additional supply of energy in order to achieve thermal balance or increase of capacity, sulphidic concentrate is introduced into the gas phase of the liquid bath reactor together with oxygen gas or oxygen-enriched gas by means of a concentrate burner.
    Type: Grant
    Filed: April 13, 1995
    Date of Patent: November 12, 1996
    Assignee: Outokumpu Engineering Contractors Oy
    Inventor: Rolf Malmstrom
  • Patent number: 5344479
    Abstract: A process is disclosed for separating and recovering nickel and copper values from a nickel-copper matte which may contain iron and arsenic. Finely divided nickel-copper matte is leached in aqueous sulphuric acid solution under oxidizing conditions at atmospheric pressure and at a minimum temperature of about 80.degree. C. to selectively leach nickel from the matte to produce a nickel sulphate solution having a final pH in the range of about 4.0 to 6.5, preferably about 6.5, and to produce a copper-rich sulphide residue. The copper-rich sulphide residue is separated from the nickel sulphate solution and leached in a closed reaction vessel at a minimum temperature of about 120.degree. C. under a non-oxidizing atmosphere in a sulphuric acid solution containing an effective amount of copper and sulphuric acid to provide a terminal concentration of at least about 2 g/L Cu.sup.
    Type: Grant
    Filed: March 11, 1993
    Date of Patent: September 6, 1994
    Assignee: Sherritt Gordon Limited
    Inventors: Derek G. E. Kerfoot, Rein Raudsepp
  • Patent number: 4954265
    Abstract: A method of processing an aqueous feed liquid to precipitate at least one metal (e.g., copper, nickel or a combination thereof) in a form to make the metal subsequently removable from the feed liquid by filtration, comprises the initial step of mixing (i) an aqueous feed liquid containing a soluble salt of the metal to be removed, (ii) oxalic acid in excess of that required to react with metal, and (iii) a pH-adjusting liquid in a quantity sufficient to lower the pH of the feed liquid to a point between that at which the feed liquid becomes slightly supersaturated with respect to the oxalate of the metal and that at which precipitation of the metal oxalate is initiated. The mixture is then allowed to stand (either at room temperature or heated to elevated temperatures) for a period of time sufficient to form metal oxalate, and finally the formed metal oxalate is separated from the feed liquid to leave an aqueous liquid suitable for discharge to a sewer line.
    Type: Grant
    Filed: February 1, 1989
    Date of Patent: September 4, 1990
    Assignee: Environmental Recovery Systems, Inc.
    Inventors: Bernard Greenberg, Andrew Sulner