Reduction In Presence Of Solid Carbon(c) Containing Material (e.g., Coke, Coal, Carbides, Etc.) Patents (Class 75/503)
  • Patent number: 9005332
    Abstract: A process for producing pig iron or liquid primary steel products is provided. Charge materials containing iron ore and, if appropriate, additions are reduced in at least one reduction unit by means of a reducing gas, and at least parts thereof are smelted in a smelting unit, with coal being added and with formation of the reducing gas. Reducing gas from the smelting unit and/or top gas from the reduction unit are/is subjected to cleaning. The process water obtained during the wet cleaning is degassed and in the process volatile organic compounds are removed from the process water.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: April 14, 2015
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Kurt Lukschander, Ulrike Schmidt
  • Patent number: 8920536
    Abstract: An ore containing crystal water (bond water) is heated to dehydrate the crystal water in the form of water vapor, thereby rendering the ore porous to generate a porous ore. Next, the porous ore is forced into contact with a dry-distilled gas (organic gas) obtained by dry-distillation of an organic substance such as wood and the like or an organic liquid such as tar and the like. An organic compound such as tar and the like contained in the dry-distilled gas or organic liquid adheres to the surface of the porous ore. Next, the porous ore adhered with an organic compound is heated at 500° C. or higher, to generate an ore in which a part of an oxide of an element such as iron and the like contained is reduced by carbon in the organic compound.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: December 30, 2014
    Assignees: Bio Coke Lab. Ltd.
    Inventors: Tomohiro Akiyama, Yuichi Hata, Sou Hosokai, Xinghe Zhang, Purwanto Hadi, Junichiro Hayashi, Yoshiaki Kashiwaya, Hiroshi Uesugi
  • Patent number: 8906131
    Abstract: Metallic iron is produced from a composition formed from a mixture of iron ore particles and particles of a reductant made of a biomass material, a coal or coke in a particulate form together with a flux and is processed in a loose, un-agglomerated non-pelletized, non-briquetted form in a reducing furnace to produce metallic iron directly from the ore. An excess of biomass or coal or coke reductant can be used to provide CO and H that can be recovered as a synthetic gas and converted to electrical or other energy. Metallic iron nuggets or slabs can be produced from manganiferous ores or concentrates. Manganese can be caused to enter the nugget or slab or the slag by adjusting the furnace temperature. Titaniferous ores or concentrates can be used to produce metallic iron slabs or nuggets and a titanium-rich slag.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 9, 2014
    Inventor: John J. Simmons
  • Publication number: 20140331821
    Abstract: A process for recovering pig iron from iron-containing concentrates produced from iron-containing ores and sands by forming agglomerates and reducing them in a natural gas smelter, in which the process makes maximum utilization of heat created in and by the process.
    Type: Application
    Filed: August 22, 2013
    Publication date: November 13, 2014
    Applicant: HOFFMAN & SONS TECHNOLOGIES, LLC
    Inventor: Glenn E. HOFFMAN
  • Patent number: 8871000
    Abstract: The present invention relates generally to a smelting operation or the like, by which molten metal is produced from a metal oxide after metal oxide agglomerates are directly reduced and melted with a carbonaceous material in an electric heating and melting furnace. More specifically, the present invention relates to an electric furnace for producing molten metal that has material recycling capability, especially in-process material recycling capability.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 28, 2014
    Assignee: Midrex Technologies, Inc.
    Inventor: Masahiko Tetsumoto
  • Patent number: 8808422
    Abstract: A method and device are disclosed for automatically evaluating a delivery system in respect of the energy efficiency and emissions efficiency thereof. The method may include: determining a service level for the delivery system according to an energy intensity and an evaluation relevance of the particular delivery system, detecting energy data and emissions data of the delivery system corresponding to the determined service level of the delivery system, and calculating at least one indicator based on the detected energy data and emissions data and/or based on data for the energy management and environmental management of the delivery system for evaluating the delivery system with respect to the energy efficiency and emissions efficiency thereof.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 19, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Leopold Werner Kepplinger, Robert Millner, Jan-Friedemann Plaul, Johannes Leopold Schenk, Kurt Wieder, Johann Wurm
  • Patent number: 8790442
    Abstract: A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: July 29, 2014
    Assignee: Nu-Iron Technology LLC
    Inventors: David J. Englund, Mark Schlichting, John Meehan, Jeremiah Crouch, Logan Wilson
  • Patent number: 8690987
    Abstract: Carbon iron composite is produced by feeding a formed product of a carbon-containing substance and an iron-containing substance into a carbonization furnace, carbonizing the formed product in a carbonization zone, blowing a coolant gas into the furnace through a coolant-gas-blowing tuyere disposed in a cooling zone to cool carbon iron composite, exhausting a furnace gas through an outlet in a top portion, and discharging the carbon iron composite through a lower portion of the cooling zone.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: April 8, 2014
    Assignee: JFE Steel Corporation
    Inventors: Takeshi Sato, Tetsuya Yamamoto, Hidekazu Fujimoto, Takashi Anyashiki
  • Patent number: 8690986
    Abstract: An alternative ironmaking process for simultaneously producing a highly metalized iron/steel product, coke from coal, an iron/steel product from an iron rich feedstock, and, optionally, energy using heat recovery. The simultaneous process is performed in the environment of a non-recovery or heat recovery coke oven. The iron rich feedstock is layered on top of a coal bed. The iron rich feedstock and coal bed are heated in the presence of a reducing gas to reduce the iron oxides of the iron rich feedstock into the iron/steel product and to devolatilize the coal into coke. After quenching the iron/steel product and coke, the iron/steel product is separated from the coke.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: April 8, 2014
    Assignee: Forest Vue Research, LLC
    Inventor: Michael P. Barkdoll
  • Patent number: 8690988
    Abstract: A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Nu-Iron Technology, LLC
    Inventor: Iwao Iwasaki
  • Patent number: 8632622
    Abstract: A process for producing pig iron or liquid primary steel products in a smelting unit (1), in particular a melter gasifier. Iron-ore-containing charge materials, and possibly additions, are at least partially reduced in at least one reduction unit (R1, R2, R3, R4) by means of a reducing gas. A first fraction of the at least partially reduced charge materials is melted down in the smelting unit (1), while carbon carriers and oxygen-containing gas are supplied, with the simultaneous formation of the reducing gas. The reducing gas is fed to the reduction unit (R1, R2, R3, R4) and, after the reducing gas has passed through the reduction unit, it is drawn off as top gas. A second fraction of the at least partially reduced charge materials is fed to a smelting reduction unit for reducing and smelting.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: January 21, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Christian Boehm, Jan-Friedemann Plaul, Johannes Leopold Schenk
  • Publication number: 20130291685
    Abstract: A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.
    Type: Application
    Filed: October 16, 2012
    Publication date: November 7, 2013
    Applicant: NU-IRON TECHNOLOGY, LLC
    Inventor: NU-IRON TECHNOLOGY, LLC
  • Patent number: 8557014
    Abstract: A carbonaceous-based metallizing method and apparatus wherein a metallic oxide is converted into a carbon-containing, metallized intermediate that is melted in an induction channel furnace to produce liquid metal from said metallic oxide. In the application of iron ore in the form of fines or concentrate, using low-cost coal will greatly reduce capital and operating costs by virtue of eliminating agglomeration of ore, cokemaking, and blast furnace operation. The liquid iron so produced is efficiently converted into steel in a steelmaking furnace such as a basic oxygen furnace (BOF), especially when it is physically integrated to the induction channel furnace wherein the liquid iron is directly poured into the integrated BOF by the induction channel furnace, producing low-cost steel, little heat loss, and minimum emissions.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: October 15, 2013
    Inventors: Albert Calderon, Terry James Laubis, Richard Owen McCarthy
  • Patent number: 8540951
    Abstract: A process for extracting metal values from ores or residues is disclosed. The process mentioned above is mainly suitable for aluminoferrous ores such as bauxite, titanoferrous ores such as ilmenite, or residues such as red mud waste. The process involves pulverizing the ore and/or residue and mixing with a carbonaceous material, followed by smelting the iron values and slag in the mixture to yield molten iron and oxides of aluminum and titanium. The process is simple, cost-effective, and provides effective extraction of high purity metal values.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 24, 2013
    Inventor: Keki Hormusji Gharda
  • Patent number: 8470068
    Abstract: Method and system for producing metallic nuggets includes providing reducible mixture of reducing material (such as carbonaceous material) and reducible iron bearing material (such as iron oxide) that may be arranged in discrete portions, such as mounds or briquettes, on at least a portion of a hearth material layer (such as carbonaceous material). A coarse overlayer of carbonaceous material may be provided over at least some of the discrete portions. Heating the reducible mixture to 1425° C. or 1400° C. or 1375° C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: June 25, 2013
    Assignee: Nu-Iron Technology, LLC
    Inventors: Iwao Iwasaki, Andrew J. Lindgren, Richard F. Kiesel
  • Publication number: 20130047787
    Abstract: Disclosed is a carbon-material-containing iron oxide briquette composition that, when obtaining direct reduced iron by heating in a moving hearth reduction furnace, does not turn into powder in the furnace leading to an accumulation of powder, and reliably prevents the obtained direct reduced iron from turning into powder during conveyance, decreasing yield. Further disclosed are a method for producing same, and a method for producing direct reduced iron using same. The carbon-material-containing iron oxide briquette composition is characterized by: the solidus temperature that is of an Al2O3-CaO—SiO2 ternary system slag in said briquette composition and that is determined by the amount of contained Al2O3, CaO, and SiO2 being no greater than 1300 DEG C.
    Type: Application
    Filed: March 24, 2011
    Publication date: February 28, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Motohiro Horiguchi, Kazutaka Kunii
  • Patent number: 8377169
    Abstract: A method for manufacturing granular metallic iron by reducing a raw material mixture including an iron oxide-containing material and a carbonaceous reducing agent, comprises: a step of charging the raw material mixture onto a hearth of a moving hearth-type thermal reduction furnace; a step of reducing the iron oxide in the raw material mixture by the carbonaceous reducing agent through the application of heat, thereby forming metallic iron, subsequently melting the metallic iron, and coalescing the molten metallic iron to granular metallic iron while separating the molten metallic iron from subgenerated slag; and a step of cooling the metallic iron to solidify; wherein the heat-reducing step includes a step of controlling the flow velocity of atmospheric gas in a predetermined zone of the furnace within a predetermined range. This method makes it possible to manufacture the granular metallic iron of high quality.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: February 19, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Tokuda, Shuzo Ito, Shoichi Kikuchi
  • Publication number: 20120285295
    Abstract: A method of producing metallic iron nuggets includes providing a hearth with refractory material, and providing a reducible mixture above at least a portion of the hearth, where the reducible mixture includes reducible iron bearing material, reducing material such that the reducible mixture has a quantity of reducible iron bearing material and between about 65% and about 90% of a stoichiometric amount of reducing material necessary for complete iron reduction of the reducible iron material, between about 1% and 4% by weight manganese oxide, between about 1% and 3% by weight fluorspar, and additives providing a slag basicity ratio of CaO/SiO2 between 1.2 and 1.7. Then the method includes thermally treating the reducible mixture in the presence of other carbonaceous material separate from the reducible mixture forming one or more metallic iron nuggets by melting.
    Type: Application
    Filed: April 17, 2012
    Publication date: November 15, 2012
    Applicant: NU-IRON TECHNOLOGY, LLC
    Inventor: Iwao Iwasaki
  • Patent number: 8287621
    Abstract: A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: October 16, 2012
    Assignee: Nu-Iron Technology, LLC
    Inventor: Iwao Iwasaki
  • Patent number: 8262766
    Abstract: An object of the present invention is to provide a method for reducing a chromium-containing material at a high chromium reduction degree. In the method of the present invention, a mixture of a feedstock containing chromium oxide and a carbonaceous reductant is heated and reduced by radiation heating in a moving hearth furnace. The average rate of raising the temperature of the mixture in the reduction is preferably 13.96° C./s or higher in the period from the initiation of the radiation heating of the mixture until the mixture reaches 1,114° C.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: September 11, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Sugitatsu, Hidetoshi Tanaka, Takao Harada, Itsuo Miyahara, Isao Kobayashi
  • Patent number: 8177880
    Abstract: A hearth furnace 10 for producing metallic iron material has a furnace housing 11 with a drying/preheat zone 12 capable of providing a drying/preheat atmosphere for reducible material, a conversion zone 13 capable of providing a reducing atmosphere for reducible material, a fusion zone 14 capable of providing an atmosphere to at least partially reduced metallic iron material, and optionally a cooling zone 15 capable of providing a cooling atmosphere for reduced material containing metallic iron material. A hearth 20 is movable within the furnace housing 11 in a direction through the drying/preheat zone 12, then the conversion zone 13, then the fusion zone 14, and then the cooling zone 15.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: May 15, 2012
    Assignee: Nu-Iron Technology, LLC
    Inventors: David Englund, Rodney Bleifuss, Iwao Iwasaki, Donald Fosnacht, Mark Brandon, Bradford True
  • Publication number: 20120055287
    Abstract: An alternative ironmaking process for simultaneously producing a highly metalized iron/steel product, coke from coal, an iron/steel product from an iron rich feedstock, and, optionally, energy using heat recovery. The simultaneous process is performed in the environment of a non-recovery or heat recovery coke oven. The iron rich feedstock is layered on top of a coal bed. The iron rich feedstock and coal bed are heated in the presence of a reducing gas to reduce the iron oxides of the iron rich feedstock into the iron/steel product and to devolatilize the coal into coke. After quenching the iron/steel product and coke, the iron/steel product is separated from the coke.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 8, 2012
    Applicant: FOREST VUE RESEARCH, LLC
    Inventor: Michael P. Barkdoll
  • Patent number: 8097065
    Abstract: A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 17, 2012
    Assignee: Nu-Iron Technology, LLC
    Inventors: Rodney L. Bleifuss, David J. Englund, Iwao Iwasaki, Donald R. Fosnacht, Mark M. Brandon, Bradford G. True
  • Patent number: 8088195
    Abstract: The present invention provides a method for efficiently manufacturing a titanium oxide-containing slag from a material including titanium oxide and iron oxide, wherein a reduction of titanium dioxide is suppressed and the electric power consumption is minimized. The method includes the steps of: heating a raw material mixture including titanium oxide, iron oxide, and a carbonaceous reductant, or the raw material mixture further including a calcium oxide source, in a reducing furnace; reducing the iron oxide in the mixture to form reduced iron; feeding the resultant mixture to a heating melting furnace; heating the resultant mixture in the heating melting furnace to melt the reduced iron and separate the reduced iron from a titanium oxide-containing slag; and discharging and recovering the titanium oxide-containing slag out of the furnace.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: January 3, 2012
    Assignee: Kobe Steel Ltd.
    Inventors: Hidetoshi Tanaka, Itsuo Miyahara, Hiroshi Uemura, Takao Harada, Hiroshi Sugitatsu, Isao Kobayashi
  • Patent number: 8025711
    Abstract: A battery of stationary hearth furnaces, and method for using, for producing metallic iron nodules having a furnace having a stationary hearth, an inlet and an outlet; a heating chamber beneath the stationary hearth having heated fluids circulated thereto and heating reducible material on the stationary hearth; passageways circulating fluids, through ports from the furnace housing above the reducible material to the heating chamber beneath; burners and air inlets in the furnace and optionally in at least one passageway and a heating chamber for drying and heating the reducible material, driving off and burning volatile material, and forming metallic iron nodules; a loading device for loading reducible material and optionally hearth material onto the stationary hearth through the inlet; and a discharging device capable of discharging metallic iron nodules and optionally related material from the stationary hearth through the outlet.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 27, 2011
    Assignee: Nu-Iron Technology, LLC
    Inventor: Narayan Govindaswami
  • Publication number: 20110100162
    Abstract: A method and system for producing metallic iron nuggets may include providing multiple layers of agglomerates, such as briquettes, balls and extrusions, of a reducible mixture of reducing material (such as carbonaceous material) and of a reducible iron bearing material (such as iron oxide) on a hearth material layer (such as carbonaceous material) and providing a coarse overlayer of carbonaceous material over at least some of the agglomerates. Heating the agglomerates of reducible mixture to 1425° C. or 1400° C. or 1375° C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 5, 2011
    Applicant: NU-IRON TECHNOLOGY, LLC
    Inventors: Iwao Iwasaki, Richard F. Kiesel, David J. Englund, Dave Hendrickson
  • Patent number: 7914601
    Abstract: A method of cold starting a molten bath-based direct smelting process for producing molten iron in a vessel (3) is disclosed. The method includes a step of preheating the vessel before supplying solid feed materials into the vessel. The method also includes a subsequent step of supplying an oxygen-containing gas and solid feed materials including material for forming slag, iron-containing feed material, and carbonaceous material into the vessel and generating heat and forming a bath of molten material that includes molten iron and molten slag in the vessel. This step includes supplying feed materials to promote formation of molten slag over molten iron in an early stage of developing the molten bath.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: March 29, 2011
    Assignee: Technological Resources Pty. Limited
    Inventors: Iain William Farr, Rodney James Dry
  • Publication number: 20110030507
    Abstract: A process and an apparatus for producing liquid pig iron or liquid primary steel products from charge materials formed by iron ores and additions. The charge materials are subjected to a further reduction in a reducing zone (1) and are then fed to a smelting zone or a smelting unit (2), in particular a fusion gasifier, for smelting with the addition of carbon carriers and oxygen-containing gas to form a fixed bed. A CO- and H2-containing reduction gas is formed, which gas is introduced into the reducing zone converted there and drawn off as top gas. The hot top gas, laden with solid matter, after separation of the solids, is subjected at least to a dry coarse separation and at least parts of the hot solids segregated by the separation are returned into the smelting zone or the smelting unit (2) or the reducing unit (1). In addition, the top gas is treated in a further fine separation stage (13A).
    Type: Application
    Filed: January 30, 2009
    Publication date: February 10, 2011
    Inventors: Georg Aichinger, Thomas Eder, Hado Heckmann, Robert Millner, Johannes Leopold Schenk, Martin Schmidt, Kurt Wieder, Johann Wurm
  • Patent number: 7846235
    Abstract: A method for producing metallic iron in which a mixture including a carbonaceous reducing agent and iron oxide is fed onto a hearth of a moving hearth reducing-melting furnace and is then heated so that the iron oxide is reduced and melted. Metallic iron to be obtained is cooled and is then discharged outside the furnace for recovery. Prior to the feed of raw agglomerates, a granular hearth material is bedded on the moving hearth for forming a layered renewable hearth which can be renewed. Part or the entirety of the renewable hearth which was degraded during operation is renewed, and the hearth material for forming a new renewable hearth is fed. The surface of the newly formed hearth is then leveled and mixture is subsequently fed.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: December 7, 2010
    Assignee: Kobe Steel, Ltd.
    Inventors: Shoichi Kikuchi, Osamu Tsuge, Gilbert Yould Whitten, Brian William Voelker
  • Publication number: 20100263487
    Abstract: A method for producing char and fuel gas includes degasifying a carbonaceous material with oxygen-containing gases in a fluidized bed reactor at a temperature of more than about 1000° C. and at a pressure of from about 1 bar to about 40 bar. A supply of oxygen within the fluidized bed reactor is adjusted so as to recover more than 60% of fixed carbon in the carbonaceous material in a char product, and an oxygen availability in a lower or bottom region of the fluidized bed reactor is less than 80% of an oxygen availability in an upper region of the fluidized bed reactor.
    Type: Application
    Filed: December 12, 2007
    Publication date: October 21, 2010
    Applicant: OUTOTEC OYJ
    Inventor: Andreas Orth
  • Patent number: 7806959
    Abstract: Metallic iron nuggets made by reducing-melt of a material containing a carbonaceous reductant and a metal-oxide-containing material, the metallic iron nuggets comprising at least 94% by mass, hereinafter denoted as “%”, of Fe and 1.0 to 4.5% of C, and having a diameter of 1 to 30 mm are disclosed.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: October 5, 2010
    Assignee: Midrex International B.V. Zurich Branch
    Inventors: Shuzo Ito, Yasuhiro Tanigaki, Isao Kobayashi, Osamu Tsuge, Keisuke Honda, Koji Tokuda, Shoichi Kikuchi
  • Patent number: 7695544
    Abstract: Method and system for producing metallic nuggets includes providing reducible mixture (e.g., reducible micro-agglomerates; reducing material and reducible iron bearing material; reducible mixture including additives such as a fluxing agent; compacts, etc.) on at least a portion of a hearth material layer. In one embodiment, a plurality of channel openings extend at least partially through a layer of the reducible mixture to define a plurality of nugget forming reducible material regions. Such channel openings may be at least partially filled with nugget separation fill material (e.g., carbonaceous material). Thermally treating the layer of reducible mixture results in formation of one or more metallic iron nuggets. In other embodiments, various compositions of the reducible mixture and the formation of the reducible mixture provide one or more beneficial characteristics.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 13, 2010
    Assignee: Nu-Iron Technology, LLC
    Inventors: Iwao Iwasaki, Michael J. Lalich, Robert C. Beaudin, Richard F. Kiesel, Andrew J. Lindgren, Rodney L. Bleifuss
  • Patent number: 7662210
    Abstract: The present invention relates to an apparatus for manufacturing molten irons by injecting fine carbonaceous materials into a melter-gasifier and a method for manufacturing molten irons using the same.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 16, 2010
    Assignee: POSCO
    Inventors: Young-Chul Kwon, Nam-Suk Hur, Young-Do Park, Hak-Dong Kim
  • Patent number: 7628839
    Abstract: Method and system for producing metallic nuggets includes providing reducible mixture (e.g., reducible micro-agglomerates; reducing material and reducible iron bearing material; reducible mixture including additives such as a fluxing agent; compacts, etc.) on at least a portion of a hearth material layer. In one embodiment, a plurality of channel openings extend at least partially through a layer of the reducible mixture to define a plurality of nugget forming reducible material regions. Such channel openings may be at least partially filled with nugget separation fill material (e.g., carbonaceous material). Thermally treating the layer of reducible mixture results in formation of one or more metallic iron nuggets. In other embodiments, various compositions of the reducible mixture and the formation of the reducible mixture provide one or more beneficial characteristics.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: December 8, 2009
    Inventors: Iwao Iwasaki, Michael J. Lalich, Robert C. Beaudin, Richard F. Kiesel, Andrew J. Lindgren, Rodney L. Bleifuss
  • Publication number: 20090175753
    Abstract: Method and system for producing metallic nuggets includes providing reducible mixture of reducing material (such as carbonaceous material) and reducible iron bearing material (such as iron oxide) that may be arranged in discrete portions, such as mounds or briquettes, on at least a portion of a hearth material layer (such as carbonaceous material). A coarse overlayer of carbonaceous material may be provided over at least some of the discrete portions. Heating the reducible mixture to 1425° C. or 1400° C. or 1375° C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 9, 2009
    Applicant: Nu-Iron Technology, LLC
    Inventors: Iwao Iwasaki, Andrew J. Lindgren, Richard F. Kiesel
  • Patent number: 7384450
    Abstract: In a method of producing metallic iron by reducing and melting a raw material, which contains an iron oxide-containing material and a carbonaceous reducing agent, by heating, the raw material for producing metallic iron is supplied after a powder and granular atmosphere control carbonaceous material is spread on a hearth of a heat-reducing furnace. In this case, a non-resolidificable carbonaceous material is used as the atmosphere control carbonaceous material, and thus a phenomenon that the powder and granular carbonaceous material is resolidified into a rice-cracker-like shape can be suppressed, thereby permitting solid-phase reduction with high efficiency and stable operationality.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: June 10, 2008
    Assignee: Kobe Steel, Ltd.
    Inventor: Shoichi Kikuchi
  • Patent number: 7198658
    Abstract: The prevent invention provides a method for producing a feed material for molten metal production and a method for producing a molten metal capable of sufficiently carbonizing biomass and effectively using carbonized biomass as a reducing agent. In the method for producing a feed material for molten metal production, a mixture containing an iron oxide-containing material and biomass is heated in a heating furnace substantially isolated from oxygen to carbonize the biomass in the mixture and obtain a feed material for molten metal production, or the mixture is charged in a reducing furnace to reduce the iron oxide-containing material after being heated in the heating furnace. In the method for producing a molten metal, the feed material for molten metal production obtained by the method for producing a feed material for molten metal production is charged in a melting furnace to obtain a molten metal.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: April 3, 2007
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Sugitatsu, Takao Harada, Hidetoshi Tanaka, Masaharu Kohno
  • Patent number: 7037356
    Abstract: The present invention provides a method of operation and a facility for the same suppressing the generation of dioxins in the combustion exhaust gas and efficiently reclaiming heat from high temperature combustion exhaust gas when firing and reducing fines of chromium ore, iron ore, or other ore or pellets formed from dust sludge, etc. containing iron oxide or other metal oxides generated in the metal industry in a reducing rotary hearth furnace. This treats the combustion gas generated in the reducing rotary hearth furnace to make the temperature of the gas 800° C. or higher for at least a certain time, to make the concentration of the carbon monoxide not more than 200 ppm in terms of volume ratio and to achieve a sufficiently well developed turbulent state at least at one of the inside of the exhaust gas outlet duct and the vicinity of the exhaust gas outlet duct for at least a certain time, then rapidly cooling the gas.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: May 2, 2006
    Assignee: Nippon Steel Corporation
    Inventors: Tetuharu Ibaraki, Hiroshi Oda, Masaharu Takahashi
  • Patent number: 6802886
    Abstract: The invention is a method of making metallized iron agglomerates by combining iron/steel particles and a reductant material with a cellulose fiber binder material, compacting the combination to form a solid agglomerate, and reducing the iron portions of the agglomerate in a direct reduction furnace. The cellulose fiber binder material provides an agglomerate having improved strength and lower overall cost than comparable agglomerates using binders known in the art.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: October 12, 2004
    Assignee: Midrex Technologies, Inc.
    Inventors: Glenn E. Hoffman, James M. McClelland, Jr.
  • Patent number: 6797034
    Abstract: A method of producing reduced metals is disclosed in which a mixture of a metal oxide and a reducing agent is heated by a burner such that the metal oxide is reduced to a reduced metal. Dry-distilled gas generated during carbonization of an organic matter-containing component is used as fuel for the burner. The sensible heat of exhaust gas evolved by the burner is utilized as heat for carbonizing the organic matter-containing component. Carbide derived by carbonizing the organic matter-containing component is used as the above reducing agent. This method yields excellent cost performance. An apparatus for reducing metal oxides is also disclosed.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: September 28, 2004
    Assignee: Kabushiki Kaisha Seiko Sho
    Inventors: Hiroshi Sugitatsu, Hidetoshi Tanaka, Takao Harada
  • Publication number: 20040168550
    Abstract: The present invention is intended to provide a method for accelerating separation of granular metallic iron as an objective product and slag as a by-product when the granular metallic iron is produced with reduction melting of raw-material agglomerates that contain an iron-oxide containing material and a carbonous reducing agent, thereby producing metallic iron of a high iron grade in which slag is satisfactorily separated and removed.
    Type: Application
    Filed: January 22, 2004
    Publication date: September 2, 2004
    Inventors: Osamu Tsuge, Shohei Yoshida
  • Publication number: 20040099094
    Abstract: Apparatus and process for producing a fixed bed in a metallurgical unit, preferably for producing pig iron or primary steel products from iron-containing charge materials, in particular in a melted gasifier, in which a lumpy bulk material, which contains ore-containing and carbon-containing constituents, prereduced iron ore, preferably sponge iron, and preferably lumpy, coal, is charged onto a surface. Through mixing of the ore-containing constituent with the carbon-containing constituent of the bulk material takes place. The entire ore-containing constituent is charged onto an active circumferential or peripheral region of the fixed bed, at which the thorough, preferably uniform mixing of the ore-containing constituent with the carbon-containing constituent of the bulk material takes place preferably outward of the center. A device scatters the stream of bulk material aver the surface and less of the material is scattered at the center, so that heavier grain lumps segregate themselves toward the center.
    Type: Application
    Filed: June 23, 2003
    Publication date: May 27, 2004
    Inventors: Rainer Walter Kastner, Reinhard Pum, Kurt Wieder, Johann Wurm, Hado Heckmann
  • Patent number: 6630010
    Abstract: The present invention is directed to a method of producing granular metallic iron, including: heating a formed raw material comprising a carbonaceous reductant and a substance containing iron oxide in a reduction melting furnace to subject the iron oxide contained in the formed raw material to solid-state reduction; and carburizing reduced iron resulting from the solid-state reduction with carbon contained in the carbonaceous in the formed raw material and causing resulting molten metallic iron to coalesce into the granular metallic iron, wherein an atmospheric gas present in proximity to the formed raw material in the carburizing and melting step has a reduction degree of not less than 0.5. The present invention is also directed to a method of producing metallic iron, including forming a deposit layer containing slag produced in the reduction melting process on hearth refractories, thereby protecting the hearth refractories while producing the metallic iron.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: October 7, 2003
    Assignee: Midrex International B.V. Zurich Branch
    Inventors: Shuzo Ito, Yasuhiro Tanigaki, Shoichi Kikuchi, Osamu Tsuge, Isao Kobayashi, Keisuke Honda, Koji Tokuda, Hidekazu Okamoto
  • Publication number: 20030164066
    Abstract: A molten bath-based direct smelting process for producing ferrous metal from a ferrous feed material is disclosed. The process is characterised by injecting pre-heated air downwardly into metallurgical vessel at an angle of 20 to 90° C. relative to a horizontal axis and at a temperature of 800-1400° C. and at a velocity of 200-600 m/s via at least one lance (27). This step forces molten material in the region of a lower end of the lance away from the lance and forming a “free” space around the lower end of the lance that has a concentration of molten material that is lower than the molten material concentration in the raised bath. The process is further characterised in that the lance is located so that: (i) the lance extends into the vessel a distance that is at least the outer diameter of the lower end of the lance; and (ii) the lower end of the lance is at least 3 times the outer diameter of the lower end of the lance above a quiescent surface of the molten bath.
    Type: Application
    Filed: January 27, 2003
    Publication date: September 4, 2003
    Inventors: Rodney J Dry, Peter Burke
  • Publication number: 20030150295
    Abstract: A ferrochrome alloy is produced from an ore or concentrate by smelting the ore or concentrate in the presence of a reductant which is a carbide alone or a carbide in combination with another reductant. The carbide is preferably silicon carbide.
    Type: Application
    Filed: October 18, 2002
    Publication date: August 14, 2003
    Inventor: Orhan Demir
  • Patent number: 6605130
    Abstract: Pellets incorporated with a carbonaceous material of the present invention contain a carbonaceous material and iron ore mainly composed of iron oxide. The maximum fluidity of the carbonaceous material in softening and melting, and the ratio of iron oxide particles of 10 &mgr;m or smaller in the iron ore are within the range above a line which connects in turn points A, B and C shown in FIG. 1, including the line. This permits the production of pellets incorporated with a carbonaceous material having excellent thermal conductivity and high strength. Reduction of the pellets incorporated with a carbonaceous material produces reduced iron having high strength after reduction and a low fines ratio with improved productivity.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: August 12, 2003
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshimichi Takenaka, Shoji Shirouchi, Masakata Shimizu, Kazuya Miyagawa
  • Patent number: 6592648
    Abstract: A process of reduction of iron ore and/or waste oxides in the form of agglomerate containing carbonaceous reductant on the hearth of a furnace includes providing a bed of agglomerates on the hearth of a furnace, the bed having a height of at least about 40 mm and having at least four layers of agglomerates. The carbonaceous reductant contains sufficient volatile matter, the volatile matter having a weight of at least about 10% of the weight of the reductant. The bed of agglomerates is heated with a radiant heat source having a temperature of at least about 1450° C. to cause the top of the bed to reach a temperature in the range of 1350° C. to 1530° C. to 1500° C. to reduce iron oxides in the iron ore and/or waste oxides to metallic iron.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: July 15, 2003
    Assignee: McMaster University
    Inventors: Wei-kao Lu, Dianbing Huang
  • Publication number: 20030110889
    Abstract: A method for manufacturing sponge iron includes heating iron oxide together with a solid reducing agent to reduce the iron oxide into sponge iron, wherein the iron oxide includes a mixture of powdered hematite and powdered iron ore or a mixture of powdered hematite and powdered mill scale, the powdered hematite has a specific surface area of 2.0 m2/g or more, and the content of the powdered hematite is 5-45% by mass with respect to the total quantity of iron oxide.
    Type: Application
    Filed: October 9, 2002
    Publication date: June 19, 2003
    Inventors: Satoshi Uenosono, Akio Sonobe, Hiroshi Sugihara
  • Publication number: 20030071399
    Abstract: A process and apparatus for supplying solid feed materials for a direct smelting process to solids injection lances of a direct smelting vessel is disclosed. The feed materials supply apparatus includes a supply line (L) for conveying iron-containing material and solid carbonaceous material under pressure to solids injection lances (7), and the supply line includes a main feeder line section (15) and a plurality of branch line sections (17) extending from the main feeder line section. Each branch line section is connected to one solids injection lance for supplying iron-containing material and carbonaceous material to that lance. The apparatus further includes an assembly for dispensing iron-containing material under pressure into the main feeder line section of the supply line and an assembly for dispensing carbonaceous material under pressure into the main feeder line section of the supply line.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 17, 2003
    Inventor: David John Leigh
  • Patent number: 6506231
    Abstract: A method of making metallic iron in which a compact, containing iron oxide such as iron ore or the like and a carbonaceous reductant such as coal or the like, is used as material, and the iron oxide is reduced through the application of heat, thereby making metallic iron. In the course of this reduction, a shell composed of metallic iron is generated and grown on the surface of the compact, and slag aggregates inside the shell. This reduction continues until substantially no iron oxide is present within the metallic iron shell. Subsequently, heating is further performed to melt the metallic iron and slag. Molten metallic iron and molten slag are separated one from the other, thereby obtaining metallic iron with a relatively high metallization ratio.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: January 14, 2003
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Takuya Negami, Kazuo Kunii, Shinichi Inaba, Masataka Shimizu, Isao Kobayashi, Yoshimichi Takenaka, Toshihide Matsumura, Akira Uragami, Takashi Kujirai, Osamu Tsuchiya, Kimio Sugiyama, Shuzo Ito, Shoichi Kikuchi