Treating Molten Titanium(ti), Zirconium(zr), Or Hafnium(hf) Patents (Class 75/621)
  • Publication number: 20150053313
    Abstract: A class of alloys is provided that form metallic glass upon cooling below the glass transition temperature Tg at a rate below 100° K/sec. The alloys have a high value of temperature difference (DT) between the crystallization temperature (Tx) and the glass transition temperature (Tg) of the intermetallic alloy. Such alloys comprise zirconium in the range of 70 to 80 weight percent, beryllium in the range of 0.8 to 5 weight percent, copper in the range of 1 to 15 weight percent, nickel in the range of 1 to 15 weight percent, aluminum in the range of 1 to 5 weight percent and niobium in the range of 0.5 to 3 weight percent, or narrower ranges depending on other alloying elements and the critical cooling rate and value of DT desired. Furthermore, methods are provided for making such metallic glasses.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Inventors: Hans Jürgen WACHTER, Frank KRÜGER, Bernd KUNKEL, Xiaoyun WANG, Doug SHEARER
  • Publication number: 20150021174
    Abstract: Provided is a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more, wherein at least one nonmetallic element selected from S, P, and B is contained in a total amount of 0.1 to 100 mass ppm as the additive component and the variation in the content of the nonmetallic element between the top, middle, and bottom portions of the ingot is within ±200%. Provided is a method of manufacturing a titanium ingot containing a nonmetallic element in an amount of 0.1 to 100 mass ppm, wherein S, P, or B, which is a nonmetallic element, is added to molten titanium as an intermetallic compound or a master alloy to produce a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 22, 2015
    Inventors: Kazuto Yagi, Eiji Hino, Yuichiro Shindo
  • Patent number: 8613789
    Abstract: A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: December 24, 2013
    Assignee: Purdue Research Foundation
    Inventors: Qingyou Han, Zhiwei Liu
  • Publication number: 20120301383
    Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.
    Type: Application
    Filed: March 20, 2012
    Publication date: November 29, 2012
    Inventor: Christopher J. Nagel
  • Publication number: 20120115708
    Abstract: A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 10, 2012
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Qingyou Han, Zhiwei Liu
  • Publication number: 20100326237
    Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.
    Type: Application
    Filed: February 23, 2010
    Publication date: December 30, 2010
    Inventor: Christopher J. Nagel
  • Publication number: 20090202386
    Abstract: An alloy having a formula: (Zr1Ti)100-x-u(Cu100-aNia)XAlu wherein X, U and a are in atomic percentages in the following ranges: 37?x?48, 3?u?14, and 3?a?30.
    Type: Application
    Filed: June 28, 2006
    Publication date: August 13, 2009
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Li Yi, Irene Lee, Dong Wang
  • Publication number: 20080250901
    Abstract: A TiCl4 gas is supplied to a molten CaCl2 liquid held in a reactor vessel 6 through a raw material feed pipe 11, TiCl4 is reduced to produce granular metallic Ti by Ca melted in the CaCl2 liquid. The molten CaCl2 liquid in which Ti granules taken out downward from the reactor vessel 6 is mixed is delivered to a separation process 12, the molten CaCl2 liquid is heated in a heating vessel 15, and separation is generated by a difference in specific gravity, whereby the molten CaCl2 liquid 16 is located in an upper layer while a metallic Ti 17 is located in a lower layer. The metallic Ti 17 in the lower layer is taken out from a high-melting-point metal discharge port 18, and the metallic Ti 17 is solidified to yield an ingot. The molten CaCl2 liquid 16 in the upper layer is delivered to an electrolysis process 13 along with the molten CaCl2 liquid taken out from the reactor vessel 6, and Ca generated by the electrolysis and CaCl2 are returned into the reactor vessel 6.
    Type: Application
    Filed: March 8, 2006
    Publication date: October 16, 2008
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Katsunori Dakeshita, Masahiko Hori
  • Publication number: 20080087139
    Abstract: A process for producing titanium metal sponge from an exothermic reaction between titanium tetrachloride vapor and molten magnesium vapor, and reclaiming reactive metals from by-products of the exothermic reaction.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 17, 2008
    Inventor: Sheldon A. Spachner
  • Patent number: 6340536
    Abstract: An alloy of zirconium and niobium that includes erbium as a consumable neutron poison, its method of preparation and a component comprising said alloy are provided. This invention relates to an alloy of zirconium and niobium that includes erbium as a consumable neutron poison. The invention also relates to a method for the preparation and conversion of said alloy and a component comprising said alloy. Such an alloy is particularly intended for the manufacture of cladding and/or other elements or structural components of fuel assemblies for nuclear reactors using water as coolant.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: January 22, 2002
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Maxy Noe, Pierre Beslu, Jean-Christophe Brachet, Philippe Parmentier, Jacques Porta
  • Patent number: 6210461
    Abstract: This invention provides improved production, continuous or batch, especially of metals which have been produced by versions of the Kroll and Ames processses. This list includes titanium, zirconium, hafnium, vanadium, niobium, tantalum, rhenium, molybdenum, tungsten, and uranium. It also offers a process for growing particular shapes of metallic crystals, e.g., needlelike. This invention is intended to be less expensive to operate and to provide a superior product than from Kroll batch processing, as often used: For the continuous metal production, circulating molten salt supports two principal reaction stages, which together allow continuous metal production: Titanium powder production with one possible set of reactants may be used as an example for the group of metals listed: In Stage 1 a pumped solution of titanium ions (Ti++) dissolved in molten salt (e.g., MgCl2—KCl) flows onto, then down beside, molten magnesium that floats on molten salt below.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: April 3, 2001
    Inventor: Guy R. B. Elliott
  • Patent number: 6136060
    Abstract: A method for refining a titanium metal containing ore such as rutile or illmenite or mixtures to produce titanium ingots or titanium alloys and compounds of titanium involves production of titanium tetrachloride as a molten slag, by processing the ore in a chlorination procedure and removing various impurities by a distillation or other procedure to form a relatively pure titanium tetrachloride (TiCl.sub.4). Thereafter, the titanium tetrachloride is introduced into the plasma focal point of a plasma reactor in a molten sodium environment for the initial reduction of gas phase titanium into titanium molten drops which are collected by a set of skulls. Thereafter, further processing are carried out in higher vacuum and the titanium is heated by electron beam guns in order to maximize titanium purity and, in a final optional stage, alloying compounds are added under yet higher vacuum and high temperature conditions.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: October 24, 2000
    Inventor: Adrian A. Joseph
  • Patent number: 5919283
    Abstract: An inert gas bubble-actuated molten metal pump is located between one section of a metal-melting furnace and a second section to pump molten metal from the one section, wherein the molten metal is at a higher temperature, into the second section, wherein the molten metal is at a lower temperature, and its effluent is directed into contact with metal chips being charged into the second section, thereby assisting in the more rapid melting of the chips into the molten metal mass in the second section. The inert gas employed to actuate the molten metal pump is captured beneath a heat-resistant and flame-resistant cover located above the exit port of the pump and over a substantial portion of the molten metal mass in the second section, thereby providing a non-oxidizing atmosphere at the surface of the molten metal mass or pool beneath said cover.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: July 6, 1999
    Assignee: Premelt Pump, Inc.
    Inventor: Larry D. Areaux
  • Patent number: 5735935
    Abstract: An inert gas bubble-actuated molten metal pump is located in a metal-melting furnace to effect circulation of molten metal throughout the furnace. The inert gas employed to actuate the molten metal pump is captured beneath a heat-resistant and flame-resistant cover located above the exit port of the pump and over a substantial portion of the molten metal, thereby to prevent splashing, spattering, and disruption of a thin protective layer or skin of oxidized metal at the surface of the molten metal as well as to provide a non-oxidizing atmosphere at the surface of the molten metal beneath said cover. In this manner and by this combination, the inert gas is employed most efficiently and economically.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: April 7, 1998
    Assignee: Premelt Pump, Inc.
    Inventor: Larry D. Areaux
  • Patent number: 5503655
    Abstract: A method for refining metal slag containing TiO.sub.2 to produce titanium compound comprising introducing molten slag into a heat vacuum chamber, whereby the heat and vacuum oxidize the slag. The slag is skimmed or further reacted by application of heat and vacuum to remove additional impurities.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: April 2, 1996
    Assignee: Orbit Technologies, Inc.
    Inventor: Adrian A. Joseph
  • Patent number: 5336378
    Abstract: A sputtering target for forming a thin film consisting of high-purity titanium, in which the content of alkali metal is 0.1 ppm or less, the content of radio active elements is 1 ppb or less, and the oxygen content is 100 ppm or less, and, further, the balance of the elements is Ti, is produced by a fused salt electrolysis, in which the members of the electrolytic cell being in contact with the fused salt consist of Ni.
    Type: Grant
    Filed: September 9, 1992
    Date of Patent: August 9, 1994
    Assignee: Japan Energy Corporation
    Inventors: Eiji Nishimura, Masami Kuroki, Naoyuki Kikutake, Yuuichiro Shindou
  • Patent number: 5185031
    Abstract: A method of skull-melting comprises the steps of:a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside;b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process;c. providing a signal energy transducer in signal communication with the waveguide;d. introducing into the vessel a molten working material;e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface;f. activating the signal energy transducer so that a signal is propagated through the waveguide; and,g.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: February 9, 1993
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Robert J. Lauf, Richard L. Heestand
  • Patent number: 5147451
    Abstract: A process is disclosed for recovering high purity refractory product metal such as titanium, hafnium, zirconium, vanadium, niobium or their alloys from the regulus of a reduction reaction mixture of a by-product metal halide, excess reducing metal and product metal, which process includes feeding crushed regulus material into a furnace, heating the regulus at temperatures to melt then remove by vaporizing the metal halide and excess reducing metal, and melting the product metal before recovering it from the furnance pool obviating the steps of vacuum distillation or leaching in the recovering step.
    Type: Grant
    Filed: May 14, 1991
    Date of Patent: September 15, 1992
    Assignee: Teledyne Industries, Inc.
    Inventor: John D. Leland
  • Patent number: 4951735
    Abstract: Improved technology for the melting and casting of a particular class of true beta-type titanium alloys is described. A typical alloy is titanium--35% vanadium--15% chromium. By providing carbon surfaces for contacting molten beta titanium alloys of this type improved melting and casting procedures are effectuated.
    Type: Grant
    Filed: January 2, 1986
    Date of Patent: August 28, 1990
    Assignee: United Technologies Corporation
    Inventor: Douglas M. Berczik