Chromium(cr), Molybdenum(mo), Or Tungsten(w), Singly Or In Combination Patents (Class 75/623)
-
Patent number: 12146350Abstract: A door locking control system includes an armature coupled to a door or a door frame around which the door is opened or closed, a magnetic module provided on the door or the door frame to face the armature and operated to be fixedly brought into contact with or separated from the armature by a magnetic force induced from a change in a magnetic circuit occurring due to the rotation of a first magnetic body provided inside of the magnetic module, a detector configured to detect an open state or a closed state of the door, and a controller electrically connected to the detector and configured to control the operation of the magnetic module according to the open state or the closed state of the door detected by the detector.Type: GrantFiled: July 27, 2022Date of Patent: November 19, 2024Assignees: Hyundai Motor Company, Kia CorporationInventors: Jin Ho Hwang, Dong Eun Cha, Sang Heon Lee
-
Patent number: 10006362Abstract: The invention provides a vapor cracking catalyst, an application of the vapor cracking catalyst, and a preparation method of the vapor cracking catalyst. In addition, the invention also provides a direct combustion method of a hydrogen gas obtained by vapor cracking. A plenty of cheap raw materials are adopted to prepare the catalyst provided by the invention and it leads to lower cost for production. In addition, the catalyst provided by the invention is capable of controlling the vapor cracking speed steadily so that the hydrogen gas is produced steadily and occurrence of explosion accidents is avoided effectively. The direct combustion method of a hydrogen gas obtained by vapor cracking provided by the invention truly achieves for the first time the fancy of producing hydrogen energy by water.Type: GrantFiled: September 22, 2013Date of Patent: June 26, 2018Inventor: Huaichao Chen
-
Patent number: 9689067Abstract: Provided is a method by which a low-oxygen and high-density molybdenum target can be efficiently obtained, while fully utilizing the characteristics of each molybdenum (Mo) starting material powder. The present invention provides a method for producing a molybdenum target, wherein a mixed powder that is obtained by mixing a molybdenum powder A, which is prepared by reducing molybdenum oxide and then crushing the resulting so as to have an average particle diameter of 2-15 ?m, and a molybdenum powder B, which is prepared by crushing a molybdenum bulk starting material having a density of not less than 6.64×10 (kg/m3) so as to have an average particle diameter of 50-2,000 ?m, is sintered under pressure.Type: GrantFiled: September 14, 2011Date of Patent: June 27, 2017Assignee: HITACHI METALS, LTD.Inventors: Kazuya Saitoh, Tomoyuki Hata, Masashi Kaminada, Hiroshi Takashima
-
Patent number: 8979975Abstract: Disclosed is a method of producing low oxygen-content molybdenum powders by reducing molybdenum trioxide, which includes charging a first reducing agent and the molybdenum trioxide, which are in the direct contact with each other on a micro-sieve on an upper portion of a bracket in a body, charging a second reducing agent in the bracket under the micro-sieve, coupling the body with a cover to close the body, and performing a reduction reaction by raising an internal temperature of the body by performing the first reduction reaction due to direct contact between the first reducing agent and the molybdenum trioxide, and performing the second reduction reaction due to evaporation of the second reducing agent. The first and second reduction reactions are performed at a temperature in a range of 550° C. to 650° C., and a temperature in a range of 1000° C. to 1200° C., respectively.Type: GrantFiled: November 13, 2013Date of Patent: March 17, 2015Assignee: Korea Institute of Geoscience and Mineral ResourcesInventors: Hyung-Seok Kim, Jung-Min Oh, Chang-Youl Suh, Back-Kyu Lee, Jae-Won Lim
-
Publication number: 20150040728Abstract: Carbothermic reduction of magnesium oxide at approximately 2200 degrees Kelvin yields a high temperature mixture of magnesium vapors and carbon monoxide gas. Previous processes have sought to cool or alter the mixture to cause the yield of pure magnesium, which is then used in subsequent processes for its reducing properties. The present invention takes advantage of the stability and inertness of carbon monoxide at elevated temperatures enabling the magnesium vapor/carbon monoxide gas mixture from the carbothermic process to be used directly for the production of other metals at high temperatures. For example, Chromium oxide or chloride, manganese oxide or chloride, zinc oxide or chloride or sulfide, and several other metal compounds can be reduced by the magnesium vapor/carbon monoxide gas mixture at temperatures high enough to prevent the gas mixture from back-reacting to magnesium oxide and carbon.Type: ApplicationFiled: August 29, 2014Publication date: February 12, 2015Inventor: John Joseph Barsa
-
Publication number: 20150013496Abstract: The invention relates to a pelletising feed containing chromite ore, at least one nickel salt, and silicon carbide as the only carbonaceous material and the only reducing agent. The invention also relates to process for manufacturing the pelletising feed comprising the steps providing chromite, at least one nickel salt and silicon carbide, and mixing chromite, at least one nickel salt and silicon carbide. The invention also relates to use of the pelletising feed as a starting material for the manufacture of sintering feed. The invention also relates to a sintering feed in the form of pellets containing the pelletising feed. The invention also relates to sintered pellets containing the sintering feed. The invention also relates to process for manufacturing the sintered pellets. The invention also relates to use of the sintered pellets as a component of smelting feed. The invention also relates to smelting feed comprising sintered pellets.Type: ApplicationFiled: November 15, 2011Publication date: January 15, 2015Inventors: Helge Krogerus, Pasi Mäkelä
-
Patent number: 8920535Abstract: A separation and recovery method that enables titanium and tungsten to be separated and recovered from a used DeNOx catalyst in high yield. Specifically, a method of separating and recovering metal elements that includes a first heating step of heating a DeNOx catalyst containing titanium, tungsten, vanadium and iron in a chlorine atmosphere, thereby removing the vanadium and the iron from the DeNOx catalyst, and a second heating step, performed after the first heating step, of heating the DeNOx catalyst in a chlorine atmosphere while the catalyst is exposed to a gas of a hydrocarbon compound (excluding CH4) or an oxygen-containing carbon compound, thereby volatilizing the tungsten and the titanium from the DeNOx catalyst, and recovering the tungsten and the titanium from the DeNOx catalyst.Type: GrantFiled: April 23, 2013Date of Patent: December 30, 2014Assignees: Mitsubishi Heavy Industries, Ltd., National University Corporation Akita UniversityInventors: Masashi Kiyosawa, Katsumi Nochi, Norihisa Kobayashi, Kozo Iida, Katsuyasu Sugawara, Yuuki Mochizuki
-
Publication number: 20140363331Abstract: A ductile alloy is provided comprising molybdenum, chromium and aluminum, wherein the alloy has a ductile to brittle transition temperature of about 300 C after radiation exposure. The invention also provides a method for producing a ductile alloy, the method comprising purifying a base metal defining a lattice; and combining the base metal with chromium and aluminum, whereas the weight percent of chromium is sufficient to provide solute sites within the lattice for point defect annihilation.Type: ApplicationFiled: February 27, 2014Publication date: December 11, 2014Applicant: United States Department of EnergyInventor: Brian V. Cockeram
-
Publication number: 20140251084Abstract: A method for reducing a chromium containing material, comprising: combining the chromium containing material comprising chromium oxide with a carbonaceous reductant to form a chromium containing mixture; delivering the chromium containing mixture to a moving hearth furnace and reducing the chromium containing mixture to form a reduced chromium containing mixture; delivering the reduced chromium containing mixture to a smelting furnace; and separating the reduced chromium containing mixture into chromium metal and slag. The method also comprises agglomerating the chromium containing mixture in a granulator or the like. The chromium containing mixture has an average particle size of less than about 200 mesh (about 75 ?m).Type: ApplicationFiled: March 6, 2014Publication date: September 11, 2014Applicant: MIDREX TECHNOLOGIES, INC.Inventors: Vincent F. CHEVRIER, Russell KAKALEY
-
Patent number: 8685137Abstract: The invention relates to a process for producing an iron-and/or tungsten containing powder or powder agglomerate including the steps of: a) mixing at least a first powder fraction comprising a tungsten carbide containing powder, and at least a second powder fraction comprising an iron oxide powder and/or a tungsten oxide containing powder and optionally an iron powder, the weight of the first fraction being in the range of 50-90% by weight of the mix and the weight of the second fraction being in the range of 10-50% by weight of the mix, b) heating the mix of step a) to a temperature in the range of 400-1300° C., preferably 1000-1200° C. The invention also relates to an iron-and/or tungsten containing powder or powder agglomerate.Type: GrantFiled: October 26, 2010Date of Patent: April 1, 2014Assignee: Minpro AktiebolagInventor: Johan Arvidsson
-
Publication number: 20130125707Abstract: Process for melting scrap metal in a furnace comprising the steps of feeding a charge of solid scrap metal to the furnace, supplying fuel and an oxygen-rich oxidant to the furnace and combusting the fuel with the oxidant to generate heat inside the furnace, melting the charge of solid scrap metal in the furnace by means of the heat, withdrawing the molten metal from the furnace. Following the step of feeding the charge of solid scrap metal to the furnace, the fuel is combusted with the oxidant so as to generate one or more visible flames in the furnace above the charge and before the step of withdrawing the molten metal from the furnace, the fuel is combusted with the oxidant so as to generate flameless combustion in the furnace above the molten metal.Type: ApplicationFiled: July 28, 2011Publication date: May 23, 2013Applicant: L'Air Liquide Societe Anonyme Pour L'Elide Et L'Exploitation Des Procedes Georges ClaudeInventors: Luc Jarry, Remi Tsiava
-
Publication number: 20120301383Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.Type: ApplicationFiled: March 20, 2012Publication date: November 29, 2012Inventor: Christopher J. Nagel
-
Patent number: 8287804Abstract: In the method for recovering a metal from a target that contains a metal and a metal oxide, the target contains a sintered body of the metal oxide after being heated under a condition of melting the metal without melting or decomposing the metal oxide. The target is heated in an upper crucible of a two-level crucible that includes the upper crucible with a through hole-formed in a bottom surface thereof, and a lower crucible disposed below the through hole, the size of the through hole being set such that it does not allow the sintered body of the metal oxide contained in the target to pass therethrough, and the melted metal is caused to flow into the lower crucible, so that the metal is separated from the metal oxide.Type: GrantFiled: December 8, 2009Date of Patent: October 16, 2012Assignee: Tanaka Holdings Co., LtdInventors: Toshiya Yamamoto, Takanobu Miyashita, Kiyoshi Higuchi, Yasuyuki Goto
-
Publication number: 20120174709Abstract: Provided is a manufacturing method of ferromolybdenum from molybdenite concentrate, and more particularly, a manufacturing method of ferromolybdenum with copper content of 0.5% or less from molybdenite with high copper content without carrying out a separate copper removing process by putting molybdenite, aluminum metal and iron metal, in a heating furnace and reacting them at high temperature to manufacture the ferro molybdenum at the lower portion thereof, forming a slag using aluminum sulfide and iron sulfide as the main components at the upper portion thereof, and putting most of the copper (80 to 95%) existing in the molybdenite in a slag layer. The exemplary embodiment can shorten a process as compared to a metallothermic reduction (Thermit) method of the related art and reduce the consumption of a reducing agent, i.e., aluminum.Type: ApplicationFiled: October 20, 2010Publication date: July 12, 2012Applicant: Korea Institute of Geoscience and Mineral Resources (KIGAM)Inventors: Young Yoon Choi, Sang Bae Kim, Chang Youl Suh, Chul Woo Nam
-
Publication number: 20120111150Abstract: A process for the selective recovery of Mo, V, Ni, Co and Al from spent hydroprocessing catalysts includes the steps of treating the spent catalysts to recovery metals, support as well as chemicals. The process steps include deoiling, decoking, washing, dissolving, complexing agent treatment, acid treatment and solvent extraction. This process uses limited steps than conventional processes by the use of ultrasonic agitation for metal extraction and the presence of a chelating agent particularly Ethylene Diamine Tetra-Acetic Acid (EDTA). The process also discloses the compete recovery of the extracting agent EDTA with high purity for reuse.Type: ApplicationFiled: November 10, 2010Publication date: May 10, 2012Inventor: Meena Marafi
-
Patent number: 8147586Abstract: Method for producing molybdenum metal powder. The invention includes introducing a supply of ammonium molybdate precursor material into a furnace in a first direction and introducing a reducing gas into a cooling zone in a second direction opposite to the first direction. The ammonium molybdate precursor material is heated at an initial temperature in the presence of the reducing gas to produce an intermediate product that is heated at a final temperature in the presence of the reducing gas, thereby creating the molybdenum metal powder comprising particles having a surface area to mass ratio of between about 1 m2/g and about 4 m2/g, as determined by BET analysis, and a flowability of between about 29 s/50 g and 86 s/50 g as determined by a Hall Flowmeter. The molybdenum metal powder is moved through the cooling zone.Type: GrantFiled: December 18, 2008Date of Patent: April 3, 2012Assignee: Climax Engineered Materials, LLCInventors: Loyal M. Johnson, Jr., Sunil Chandra Jha, Patrick Ansel Thompson
-
Patent number: 8137654Abstract: Provided is a roasting method capable of reducing both C and S components in minerals down to 0.5% or less, respectively, and securing a yield ratio of 90% or more for the Mo component. In a rotary kiln 7, a V, Mo and Ni containing material containing C and S components is subjected to oxidizing roasting to remove the C and S components from the material before reducing the material by means of a reducing agent in order to recover valuable metals composed of V, Mo and Ni. The rotary kiln is equipped with a burner 11 disposed on a material charge side 8a of the roasting furnace 8 to which the material is charged. In the roasting furnace, a direction along which the material moves and a flow of oxygen-containing gas introduced into the roasting furnace 8 are set to be parallel with each other.Type: GrantFiled: February 21, 2006Date of Patent: March 20, 2012Assignees: JFE Material Co., Ltd., Sumitomo Heavy Industries, Ltd.Inventors: Kenji Takahashi, Hiroichi Sugimori, Nobuo Ehara
-
Publication number: 20120006157Abstract: A simple, compact burner achieves a more optimal melting of a solid charge followed by performance of combustion under distributed combustion conditions. The burner achieves this by fluidically bending the flame towards the solid charge during a melting phase with an actuating jet of oxidant, redirecting the flame in a direction away from the charge, and staging injection of oxidant among primary and secondary portions during a distributed combustion phase.Type: ApplicationFiled: December 31, 2010Publication date: January 12, 2012Inventors: Vivek GAUTAM, Kenneth KAISER, Luc JARRY, Remi Pierre TSIAVA
-
Publication number: 20110243784Abstract: In the method for recovering a metal from a target that contains a metal and a metal oxide, the target contains a sintered body of the metal oxide after being heated under a condition of melting the metal without melting or decomposing the metal oxide. The target is heated in an upper crucible of a two-level crucible that includes the upper crucible with a through hole-formed in a bottom surface thereof, and a lower crucible disposed below the through hole, the size of the through hole being set such that it does not allow the sintered body of the metal oxide contained in the target to pass therethrough, and the melted metal is caused to flow into the lower crucible, so that the metal is separated from the metal oxide.Type: ApplicationFiled: December 8, 2009Publication date: October 6, 2011Applicant: TANAKA HOLDINGS CO., LTD.Inventors: Toshiya Yamamoto, Takanobu Miyashita, Kiyoshi Higuchi, Yasuyuki Goto
-
Patent number: 7988760Abstract: There is described a method of making a nanocrystalline tungsten powder that comprises: (a) heating a tungsten-containing material in a reducing atmosphere at an intermediate temperature of from about 600° C. to about 700° C. for an intermediate time period; the tungsten-containing material being selected from ammonium paratungstate, ammonium metatungstate or a tungsten oxide; and (b) increasing the temperature to a final temperature of about 800° C. to about 1000° C. for a final time period.Type: GrantFiled: February 25, 2008Date of Patent: August 2, 2011Assignee: Global Tungsten & Powders Corp.Inventors: Hans-Joachim Lunk, Henry J. Stevens
-
Publication number: 20100326237Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.Type: ApplicationFiled: February 23, 2010Publication date: December 30, 2010Inventor: Christopher J. Nagel
-
Patent number: 7785390Abstract: Molybdenum metal powder has surface-area-to-mass-ratios in a range of between about 1.0 meters2/gram (m2/g) and about 3.0 m2/g, as determined by BET analysis, in combination with a particle size wherein at least 30% of the particles are larger than a size +100 standard Tyler mesh sieve. A method for producing molybdenum metal powder includes providing a supply of ammonium molybdate and a reducing gas; causing an exothermic reaction between the ammonium molybdate and the reducing gas at a first temperature to produce an intermediate reaction product and a supplemental reducing gas; causing an endothermic reaction between the intermediate reaction product and the reducing gas at a final temperature to produce the molybdenum metal powder.Type: GrantFiled: August 14, 2007Date of Patent: August 31, 2010Assignee: Climax Engineered Materials, LLCInventors: Loyal M. Johnson, Jr., Sunil Chandra Jha, Carl Cox, Patrick Ansel Thompson
-
Patent number: 7722804Abstract: In a method of manufacturing a pressed scandate dispenser cathode, firstly, scandium nitrate, barium nitrate, calcium nitrate, aluminum nitrate and ammonium metatungstate (AMT) are dissolved in de-ionized water, respectively, and then mixed with a solution of a cross-link agent such as citric acid and H2O2. After water bathing, the mixed aqueous solution turns into gel, and the powders are obtained after the gel calcination. Secondly, the calcined powders are reduced by hydrogen. Finally, the reduced powders are pressed into shapes and then sintered in the furnace with the atmosphere of hydrogen or by Spark Plasma Sintering (SPS 3.202-MK-V) in vacuum.Type: GrantFiled: August 8, 2007Date of Patent: May 25, 2010Assignee: Beijing University of TechnologyInventors: Jinshu Wang, Wei Liu, Meiling Zhou, Yiman Wang, Hongyi Li, Tieyong Zuo
-
Patent number: 7678326Abstract: An apparatus for manufacturing fine particles includes a reactor; a first inlet part including at least one port introducing a reactive gas flow containing a fine particle source material; a second inlet part including at least one port introducing a diluting gas flow; a heater exciting the fine particle source material in the reactive gas flow; a first plate including through-holes which substantially equalize a flow rate of the reactive gas flow with respect to a cross section of a flow channel; a second plate including through-holes which substantially equalize a flow rate of the diluting gas flow with respect to a cross section of a flow channel; a gas exhaust port provided in a merging region where the reactive gas flow passed through the first plate and the diluting gas flow passed through the second plate are merged; and a collector which collects fine particles.Type: GrantFiled: June 25, 2007Date of Patent: March 16, 2010Assignee: Kabushiki Kaisha ToshibaInventor: Isao Matsui
-
Patent number: 7641713Abstract: A method for reducing the chromium content from a metallurgical slag, in which the slag is charged onto an iron bath in the liquid state and the reduction of Cr is effected by the iron bath having a C content of 2 to 4% by weight, wherein a) the Cr-containing slag having a Cr content of 2 to 20% by weight is charged onto an iron bath having a C content of below 1% by weight, whereupon b) the carbon content of the iron bath is raised to about 2 to 4% by weight by the addition of carbon carriers at the simultaneous supply of energy, c) the liquid slag having a Cr content of about 0.1% by weight is tapped after the reduction of Cr, d) a cooling agent, preferably scrap, is added to the iron melt and the C content of the melt is lowered to below 1% by weight, and e) a portion of the Cr-containing melt is tapped in the liquid state, while the remaining portion is left in the converter in the liquid state for the treatment of the subsequent melt.Type: GrantFiled: May 18, 2005Date of Patent: January 5, 2010Assignee: Holcim Technology Ltd.Inventor: Markus Tschudin
-
Patent number: 7513930Abstract: In the method of producing metals or metal alloys of high purity, in particular metallic chromium, granules of metal containing non-metallic inclusions and a reducing agent are treated under predetermined conditions of temperature and pressure so that the reducing agent reacts on the inclusions. During the treatment, the granules (26) are placed in a crucible (2) having an opening (14), and a wall (4) presenting at least one orifice (24).Type: GrantFiled: January 20, 2003Date of Patent: April 7, 2009Assignee: Delachaux S.A.Inventor: Philippe Liebaert
-
Patent number: 7297323Abstract: A method of manufacturing fine particles of the invention includes introducing a reactive gas flow containing a fine particle source material into a reactor from one side, growing fine particles in a gas phase by heating the fine particle source material in the reactive gas flow, introducing a diluting gas flow into the reactor from another side being almost counter-flow to the reactive gas flow, equalizing flow rates of the reactive gas flow and the diluting gas flow substantially with respect to a cross section of a flow channel, and then stopping growth of the fine particles by merging the reactive gas flow and the diluting gas flow.Type: GrantFiled: September 13, 2002Date of Patent: November 20, 2007Assignee: Kabushiki Kaisha ToshibaInventor: Isao Matsui
-
Patent number: 7192467Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially about 2.1 m2/g to substantially about 4.1 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size.Type: GrantFiled: November 20, 2003Date of Patent: March 20, 2007Assignee: Climax Engineered Materials, LLCInventors: Mohamed Khan, Joel Taube, Loyal M. Johnson, Jr.
-
Patent number: 6855189Abstract: In a method for removing chromium oxide and nickel oxide, and combinations thereof, from liquid slags or slag mixtures, in which the liquid slag is A charged onto a metal bath, in particular an iron bath, and reduced by feeding carbon or carbon carriers, the carbon feed into the metal bath is effected until a decrease of the Cr and/or Ni oxide contents of the slag to a value of between 0.8 wt.-% and 0.2 wt.-%. As the pregiven Cr and/or Ni oxide content range of the slag is reached, reductants having higher reduction potentials such as, e.g., Al, Ca, Si, Fe—Si or Ca—Si are added in order to lower the Cr and/or Ni oxide contents to below 0.15 wt.-%, preferably below 0.08 wt.-%.Type: GrantFiled: January 18, 2001Date of Patent: February 15, 2005Assignee: Holcim Ltd.Inventor: Alfred Edlinger
-
Publication number: 20040112176Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially about 2.1 m2/g to substantially about 4.1 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size.Type: ApplicationFiled: November 20, 2003Publication date: June 17, 2004Inventors: Mohamed Khan, Joel Taube, Loyal M. Johnson
-
Patent number: 6679931Abstract: A method for recovering metallic chromium from slags which contain chromium oxide from converter processes, such as AOD, MRP, AOD-L, MRP-L, CLU, ASM, Conarc stainless steel or vacuum processes, such as VOD, SS-VOD, RH, RH with lanze, includes drawing off the slag which is produced at the end of a blowing or treatment operation in a converter or a vacuum installation in unreduced form. The slag is charged into an electric furnace, which is also charged with a standard charge of scrap and, if appropriate, dust residues. Carbon and, if appropriate, silicon are additionally added to the electric furnace.Type: GrantFiled: April 9, 2002Date of Patent: January 20, 2004Assignee: SMS Demag AGInventors: Karl Götzinger, Jan Reichel
-
Patent number: 6669755Abstract: A treatment apparatus (10) includes a liquid reactant metal containment vessel (11) for containing a first liquid reactant metal and isolating the reactant metal from the atmosphere. A release chamber (14) is adapted to receive the first liquid reactant metal from the containment vessel (11) and a submerging arrangement (21) is adapted to dunk or submerge a container (46) of feed material into the liquid reactant metal and move the container to a release location within the release chamber (14). Relatively light materials rising from the submerged container (46), including unreacted feed material, intermediate reaction products, and perhaps final reaction products collect in a collection area (60) having an upper surface defined by an upper surface of the release chamber (14).Type: GrantFiled: June 4, 2002Date of Patent: December 30, 2003Assignee: Clean Technologies International CorporationInventor: Anthony S. Wagner
-
Publication number: 20030213338Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially 2.5 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size.Type: ApplicationFiled: June 18, 2003Publication date: November 20, 2003Inventors: Mohamed H. Khan, Joel A. Taube
-
Patent number: 6626976Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially 2.5 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size. Preferred embodiments of the invention may comprise heating a precursor material to a first temperature in the presence of a reducing gas, and increasing the first temperature at least once to reduce the precursor material and form the molybdenum metal product.Type: GrantFiled: November 6, 2001Date of Patent: September 30, 2003Assignee: Cyprus Amax Minerals CompanyInventors: Mohamed H. Khan, Joel A. Taube
-
Patent number: 6582493Abstract: A method for recycling thoriated tungsten objects such as thoriated tungsten scrap resulting from the fabrication of electrodes for lamps. The thoriated tungsten objects are oxidized, homogenized by mixing and chemically reduced under a hydrogen gas atmosphere to form thoriated tungsten. This method eliminates the need to separate the tungsten from its dopants. The thoriated tungsten obtained as the end product is returned to the production process and is preferably used as a raw material for the production of welding electrodes or thoriated tungsten discharge lamp electrodes.Type: GrantFiled: September 28, 2001Date of Patent: June 24, 2003Assignee: Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbHInventor: Dieter Meiss
-
Publication number: 20030110886Abstract: A metal having a high chromium content, characterized in that it is produced in an arc melting furnace and contains Cr in an amount of 85% or more and has an Al content of 0.005% or less, an Si content of 0.1% or less and an S content of 0.002% or less; and a method for producing the metal having a high chromium content which comprises reducing a chromium oxide heated and melted in an arc melting furnace with Si, to thereby prepare a metal melt containing 85% or more of CR, discharging a slag formed by the reduction with Si from the arc melting furnace, adding a fresh basic flux into the arc melting furnace, melting the basic flux with arc, to bring a slag formed by the melting of the basic flux to contact with the above metal melt and thereby refine the metal melt, and then taking out the refined metal melt from the arc melting furnace, followed by casting.Type: ApplicationFiled: September 5, 2002Publication date: June 19, 2003Inventors: Hiroiti Sugimori, Chitoshi Matsumura, Satoaki Kawaguchi, Masanori Kato
-
Patent number: 6569222Abstract: Molybdenum trioxide or ammonium dimolybdate is reduced to molybdenum metal as it passes through an atmosphere of hydrogen in a multi-zoned thermally profiled rotating tube furnace.Type: GrantFiled: May 29, 2001Date of Patent: May 27, 2003Assignee: Harper International CorporationInventor: Edward V. McCormick
-
Patent number: 6409793Abstract: A method for processing steel slags and optionally iron carriers such as, e.g., electric furnace slags, converter slags, dusts derived from steel production, mill scale or secondary metallurgical residues, in which the molten steel slags or iron carriers are supplemented with chromium ores or chromium-containing and/or nickel-containing dusts in order to adjust a slag basicity of 1.2 to 1.6, whereby the bath temperature is maintained at above 1600° C., in particular between 1650° C. and 1800° C., and a carbon-containing iron bath is provided or formed. In addition to environmentally safe slags, a high-grade ferrochromium alloy may be recovered, thus enhancing the economy of the method.Type: GrantFiled: December 22, 2000Date of Patent: June 25, 2002Assignee: “Holderbank” Financiere Glarus AGInventor: Alfred Edlinger
-
Publication number: 20010049981Abstract: Molybdenum trioxide or ammonium dimolybdate is reduced to molybdenum metal as it passes through an atmosphere of hydrogen in a multi-zoned thermally profiled rotating tube furnace.Type: ApplicationFiled: May 29, 2001Publication date: December 13, 2001Inventor: Edward V. Mccormick
-
Patent number: 6251160Abstract: In a process for dechroming, and/or depleting the MgO content of, steel slags, oxygen is introduced into the liquid steel slag to an extent sufficient for converting iron quantitatively to iron oxide and at least 5% by weight of the iron oxide contained in the slag to iron-III-oxide. The oxidized slag obtained solidifies and is disintegrated, whereupon the paramagnetic portions formed are magnetically isolated and separated from the dechromed slag.Type: GrantFiled: April 23, 1999Date of Patent: June 26, 2001Assignee: “Holderbank” Financiere Glarus AGInventor: Alfred Edlinger
-
Patent number: 6245211Abstract: The present invention relates to a process for obtaining metals from oxides using shuttle alloys, particularly titanium metal from titanium dioxide in the form of illmenite rutile. The process can be adapted to obtain elemental metal or alloys of metals such as zirconium, chronium, molybdenum, tungsten, tantalum, lithium, cobalt and zinc. The process of the present invention comprises two stages, a first stage in which a metal oxide is reduced in the presence of primary shuttle material, which forms a shuttle alloy with the reduced metals, and a second stage wherein the reduced metal is separated from the shuttle alloy as a metal or alloy. Typically the primary shuttle material comprises bismuth or antimony or a mixture of the two and optionally lead. The reduction reaction may be carried out by chemical means or electrochemical means or by a combination of the two.Type: GrantFiled: June 21, 1999Date of Patent: June 12, 2001Inventor: Claude Fortin
-
Patent number: 6210461Abstract: This invention provides improved production, continuous or batch, especially of metals which have been produced by versions of the Kroll and Ames processses. This list includes titanium, zirconium, hafnium, vanadium, niobium, tantalum, rhenium, molybdenum, tungsten, and uranium. It also offers a process for growing particular shapes of metallic crystals, e.g., needlelike. This invention is intended to be less expensive to operate and to provide a superior product than from Kroll batch processing, as often used: For the continuous metal production, circulating molten salt supports two principal reaction stages, which together allow continuous metal production: Titanium powder production with one possible set of reactants may be used as an example for the group of metals listed: In Stage 1 a pumped solution of titanium ions (Ti++) dissolved in molten salt (e.g., MgCl2—KCl) flows onto, then down beside, molten magnesium that floats on molten salt below.Type: GrantFiled: August 10, 1998Date of Patent: April 3, 2001Inventor: Guy R. B. Elliott
-
Patent number: 6068677Abstract: The method for processing waste or waste fractions, such as, for example, household refuse, car shredder light fractions or the like, provides for pyrolysis, gasification and/or combustion, whereupon the residues are melted under reducing conditions. The reduced portions are then are subjected to a stepwise oxidation, with chromium being quantitatively separated in a first oxidation stage. After this, a calcium ferrite slag is formed by further oxidation, whereupon the remaining metal bath is further processed in order to recover nonferrous heavy metals.Type: GrantFiled: August 5, 1997Date of Patent: May 30, 2000Assignee: "Holderbank" Financiere Glarus AGInventor: Alfred Edlinger
-
Patent number: 6039788Abstract: The present invention relates to a method of manufacturing high purity chromium suitable for deposition onto a semiconductor wafer or other substrate by sputtering. The process increases productivity, expands melting capability and provides consistent high purity chromium by reducing contamination by the dissolution of crucible material. The present invention provides for the addition of chromium oxide (Cr.sub.2 O.sub.3) to control oxygen content in chromium thereby producing high purity chromium ingots and protecting the ceramic crucibles from chemical attack by the liquid chromium.Type: GrantFiled: April 9, 1998Date of Patent: March 21, 2000Assignees: Sony Corporation, Materials Research CorporationInventors: Raymond K. F. Lam, Charles E. Melin, Guiseppe Colella
-
Patent number: 6010553Abstract: In a process for producing pig iron, nonferrous heavy metal alloys, ferrochromium carbure or carbon-free ferrochromium and synthetic blast furnace slags, using metal-oxide-containing waste incineration residues or slags, the charging materials of waste burning, e.g., car shredder light fractions and/or metallurgical dusts, are at least partially oxidized and subsequently are reduced while separating nonferrous metals or alloys, whereupon the oxidic slag phase depleted from metals or alloys is mixed with liquid steelworks slag optionally upon further addition of metallurgical dusts, whereupon crude steel is drawn off while lowering the viscosity of the steelworks slag and the remaining slag portion is subjected to further reduction while recovering pig iron and optionally Fe chromium alloys, whereupon the resulting synthetic blast furnace slag is discharged.Type: GrantFiled: September 16, 1997Date of Patent: January 4, 2000Assignee: "Holderbank" Financiere Glarus AGInventors: Alfred Edlinger, Albert Waschnig
-
Patent number: 6001148Abstract: A process for producing metals in the reduced state from their oxides using a simple and less expensive facility with lower running cost. A metal oxide in the form of particles is supplied into a high temperature flame from an oxygen burner in a reactor furnace to heat and melt the metal oxide. A reducing agent is also supplied into the flame to cause a reducing reaction of the molten metal oxide with the reducing agent. The resulting metal is recovered.Type: GrantFiled: May 7, 1997Date of Patent: December 14, 1999Assignee: Daido Steel Co., Ltd.Inventors: Tetsuo Okamoto, Hideharu Sakai
-
Patent number: 5985000Abstract: To provide a Cu-Cr alloy electrode material, a mixture of Cu and cr materials at a predetermined ratio is heated until the mixture has been entirely melted, and the molten metal obtained is quenched to precipitate fine Cr particles in a Cu base. Since Cr is melted into Cu before quenching, and then Cr precipitates, Cr particles finer than those in the sintering or infiltration method can disperse in a Cu base. This invention prevents defects such as voids in the structure and the weakening of the fusion of Cu and Cr or failure of Cr to precipitate into the Cu base caused by oxide films on the surface of the Cr particles, thereby providing a fine alloy structure.Type: GrantFiled: March 20, 1998Date of Patent: November 16, 1999Assignee: Fuji Electric Co., Ltd.Inventors: Hisaji Shinohara, Katsuro Shiozaki, Kazuro Shibata, Masayuki Furusawa, Shunichi Hatakeyama, Hiromi Iwai, Tatsuo Take, Tsuneki Shinokura
-
Patent number: 5912399Abstract: A new tungsten compound is formed by reacting ammonium metatungstate with guanidine carbonate. Such a compound can be converted to metallic tungsten, tungsten carbide or oxycarbide, and tungsten nitride or oxynitride. One can also make multiphase composite particles based on molybdenum, tungsten or their compounds (such as carbide or nitride), and at least one other metallic phase, such as cobalt, copper, nickel, iron or silver. The process involves first dispersing particles of a refractory metal or its compounds in a liquid medium, followed by inducing a chemical reaction in the liquid phase to generate a new solid phase which coats or mixes with the dispersed particles. The solid phase includes elements required in the final composite. After removing the liquid phase, the remaining solid is converted by hydrogen reduction into the final products.Type: GrantFiled: November 14, 1996Date of Patent: June 15, 1999Assignee: Materials Modification Inc.Inventors: Chunzhe C. Yu, Reshma Kumar
-
Patent number: 5882375Abstract: In a process for the production of hydraulic binders, crude steel and/or alloys, such as, e.g., FeCr or FeV, from basic steel slags containing chromium and/or vanadium, the liquid steel slag is mixed with an additive selected from the group consisting of blast furnace slag, electric arc furnace slag, dusts from steel production, metallic waste substances or refuse incineration residues and/or with acid additives for lowering the viscosity, whereupon steel is sedimented out of the liquid slag and the remaining slag in a first reduction stage is reduced to metallic iron having an iron oxide content of below 5 wt. % and above 1 wt. %, whereupon the remaining slag melt in a second reduction stage having a higher reduction potential as compared to the first reduction stage is further reduced to metallic Cr or V or ferroalloys thereof and the hydraulically active slag is separated.Type: GrantFiled: December 31, 1996Date of Patent: March 16, 1999Assignee: "Holderbank" Financiere Glarus AGInventors: Alfred Edlinger, Andreas Goessnitzer
-
Patent number: 5882377Abstract: In this invention, the smelting reduction operation can be carried out in a high efficiency by charging a carbonaceous material in such an amount that total surface area is not less than 60 m.sup.2 per 1 ton of slag weight. Carbon substance finely particulating through thermal crumbling under a high-temperature atmosphere inside the vessel is used as the carbonaceous material, whereby it is possible to stably conduct the smelting reduction while controlling the scattering of the carbonaceous material, and also the erosion, particularly locally erosion of refractory in the smelting reduction furnace, which was a serious problem in the conventional technique, can considerably be decreased to largely prolong the service life of refractory.Type: GrantFiled: March 5, 1997Date of Patent: March 16, 1999Assignee: Kawasaki Steel CorporationInventors: Kimiharu Aida, Shuji Takeuchi, Nagayasu Bessho, Tomomichi Terabatake, Yasuo Kishimoto, Hiroshi Nishikawa, Fumio Sudo