Silver(ag) Patents (Class 75/634)
-
Patent number: 11426795Abstract: The present invention relates to silver particles capable of having a uniform particle distribution, preventing agglomeration of a powder, and significantly improving dispersibility, the silver particles each having pores therein, and to a manufacturing method therefor and, more specifically, to a manufacturing method for silver particles, the method comprising a silver-complex forming step, a silver slurry preparing step, and a silver particle obtaining step, and to silver particles manufactured therefrom.Type: GrantFiled: June 4, 2018Date of Patent: August 30, 2022Assignee: DAE JOO ELECTRONIC MATERIALS CO., LTD.Inventors: Sangwoo Kim, Chiho Yoon, Youngho Lee, Jong Chan Lim, Moohyun Lim, Wonjun Jo
-
Patent number: 8377166Abstract: A method of recovering silver from a silver chloride mixture in which hydrogen gas is passed through the mixture to produce a metal chloride hydride which is then heated to dissociate the metal and to release hydrogen chloride gas.Type: GrantFiled: December 9, 2008Date of Patent: February 19, 2013Assignee: Prior Engineering Services AGInventors: Philippus Jacobus Mostert, Adalbert Prior
-
Publication number: 20130004363Abstract: A new nickel-free sterling silver alloy with superior tarnish resistant, yet substantially similar cold working and mechanical properties is disclosed using a specified mixture of zinc, copper, silicon, iridium, and indium with pure silver. A new and improved method of manufacture involving a four-step process whereby the non-silver components are fabricated in an inert gas or reducing atmosphere into a master alloy of pre-determined composition, and in a final step mixed with a predetermined mass of pure silver to produce the new alloy.Type: ApplicationFiled: July 2, 2012Publication date: January 3, 2013Inventors: Arthur Taylor, Bernard Madden
-
Publication number: 20120301383Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.Type: ApplicationFiled: March 20, 2012Publication date: November 29, 2012Inventor: Christopher J. Nagel
-
Patent number: 8287804Abstract: In the method for recovering a metal from a target that contains a metal and a metal oxide, the target contains a sintered body of the metal oxide after being heated under a condition of melting the metal without melting or decomposing the metal oxide. The target is heated in an upper crucible of a two-level crucible that includes the upper crucible with a through hole-formed in a bottom surface thereof, and a lower crucible disposed below the through hole, the size of the through hole being set such that it does not allow the sintered body of the metal oxide contained in the target to pass therethrough, and the melted metal is caused to flow into the lower crucible, so that the metal is separated from the metal oxide.Type: GrantFiled: December 8, 2009Date of Patent: October 16, 2012Assignee: Tanaka Holdings Co., LtdInventors: Toshiya Yamamoto, Takanobu Miyashita, Kiyoshi Higuchi, Yasuyuki Goto
-
Publication number: 20120011966Abstract: The present invention relates to the use of liquid-crystal displays (LCDs), and to processes for the recycling thereof. The processes according to the invention are characterised in that the LCDs are employed at least partly as replacement for other raw materials. In general, the LCDs are thermally treated here at a temperature in the range from 900 to 1700° C.Type: ApplicationFiled: September 22, 2011Publication date: January 19, 2012Inventor: Roland MARTIN
-
Publication number: 20110243784Abstract: In the method for recovering a metal from a target that contains a metal and a metal oxide, the target contains a sintered body of the metal oxide after being heated under a condition of melting the metal without melting or decomposing the metal oxide. The target is heated in an upper crucible of a two-level crucible that includes the upper crucible with a through hole-formed in a bottom surface thereof, and a lower crucible disposed below the through hole, the size of the through hole being set such that it does not allow the sintered body of the metal oxide contained in the target to pass therethrough, and the melted metal is caused to flow into the lower crucible, so that the metal is separated from the metal oxide.Type: ApplicationFiled: December 8, 2009Publication date: October 6, 2011Applicant: TANAKA HOLDINGS CO., LTD.Inventors: Toshiya Yamamoto, Takanobu Miyashita, Kiyoshi Higuchi, Yasuyuki Goto
-
Publication number: 20100326237Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.Type: ApplicationFiled: February 23, 2010Publication date: December 30, 2010Inventor: Christopher J. Nagel
-
Patent number: 7033415Abstract: The invention provides new types of plasmon-driven growth mechanism for silver nanostructures involving the fusion of triangular nanoprisms. This mechanism, which is plasmon excitation-driven and highly cooperative, produces bimodal particle size distributions. In these methods, the growth process can be selectively switched between bimodal and unimodal distributions using dual beam illumination of the nanoparticles. This type of cooperative photo-control over nanostructure growth enables synthesis of monodisperse nanoprisms with a preselected edge length in the 30–120 nm range simply by using one beam to turn off bimodal growth and the other (varied over the 450–700 nm range) for controlling particle size.Type: GrantFiled: April 2, 2004Date of Patent: April 25, 2006Assignee: Northwestern UniversityInventors: Chad A. Mirkin, Gabriella S. Métraux, Rongchao Jin, YunWei Charles Cao
-
Patent number: 6827837Abstract: The present invention is directed to a method for the recovery of one or more trace elements including gold and one or more platinum group elements from coal. More particularly, the present invention may specify parameters for the selection of coal for combustion, the parameters for combustion of the pre-selected coal, the parameters for the preparation and mixing of a charge for a furnace including ash from the combustion of the coal with an inquart and a fluxing agent, the parameters for the heating of the charge and casting of a dore bar and the parameters for the production of an anode slime from the dore bar. The method of the present invention may also specify parameters for the recovery of silver, gold and one or more trace platinum group elements from the anode slimes.Type: GrantFiled: November 22, 2002Date of Patent: December 7, 2004Inventor: Bruce E. Minter
-
Publication number: 20030154821Abstract: The present invention concerns a process for refining silver bullion, i.e. raw silver containing generally more than 90% silver besides Se, Pb, Au, Cu and platinum group metals (PGM) as main impurities.Type: ApplicationFiled: October 4, 2002Publication date: August 21, 2003Inventors: Dirk Vanhoutte, Sybolt Brouwer
-
Patent number: 6602319Abstract: The present invention relates to a process for the recovery of gold and silver from the used refractory bricks of Dore furnace. This invention particularly relates to a process for the recovery of gold and silver from the used refractory bricks generated during the processing of the anode slimes of copper industry, through a non-cyanide route. The invention is useful for gold producing, gold refining and copper producing industries.Type: GrantFiled: April 1, 2002Date of Patent: August 5, 2003Assignee: Council of Scientific and Industrial ResearchInventors: Daita S. R. Murthy, Vinod Kumar
-
Patent number: 6555010Abstract: A process is disclosed for obtaining colloid-forming metal particles from an aqueous mine waste solution containing that metal in ionic form. In accordance with this process, an aqueous mine waste solution containing that metal in ionic form is provided having a pH value of about 4.0 to about 6.5. The solution is electrified with direct current a about 1.2 to about 2.0 volts to reduce the desired metal ions to colloidal metal particles. A slurry of cellulose particles is agitatingly added to the colloid composition followed by a flocculant to form a solid phase cellulosic floc containing the colloid. The solid and liquid phases are separated, and the solid phase is dried, fluxed and heated to a temperature sufficient to melt the flux and colloid and form larger metal particles that can then be recovered. The colloid-forming metal is preferably gold.Type: GrantFiled: February 14, 2001Date of Patent: April 29, 2003Inventor: Keith Barrett
-
Publication number: 20010015113Abstract: The novel apparatus for producing high-purity silver comprises an electric furnace 1, an outer cylinder 3 contained in the furnace in such a way that it can be evacuated with a vacuum pump 2, a feed crucible 5 placed within the outer cylinder 3 and fixed onto an aspiration table 9 provided in the center of a recovery mold 6, a cooling trap 8 and a water-cooled flange 7 that are detachably connected to the other parts including an inner cylinder 4 located over the crucible 5. When a silver feed is heated within the crucible at 3a specified temperature and pressure, the silver evaporates and condenses on the ceiling of the inner cylinder to yield silver particles, which are collected in the recovery mold; gold, copper and other impurities having higher vapor pressures than silver are left within the crucible whereas sulfur, sodium and other impurities having higher vapor pressures are withdrawn by means of the vacuum pump to be introduced into the cooling trap and hereafter solidified.Type: ApplicationFiled: March 13, 2001Publication date: August 23, 2001Applicant: DOWA MINING CO., LTD.Inventors: Kishio Tayama, Takashi Ohgami, Hiroshi Miura
-
Patent number: 6231637Abstract: A process for producing a high-purity silver material comprising placing a silver feed in a crucible disposed in a furnace comprising an inner cylinder which encloses the crucible and an outer cylinder which encloses the inner cylinder; heating the silver feed at a temperature not lower than 1065° C. and at a pressure not higher than 0.1 Pa such that the silver evaporates and condenses on the ceiling of the inner cylinder to yield silver particles; and collecting silver particles in a recovery mold disposed beneath the crucible and within the inner cylinder, such that gold, copper and other impurities having a lower vapor pressure than silver remain within the crucible, whereas sulfur, sodium and the other impurities having a higher vapor pressure than silver are withdrawn by a vacuum pump and are then introduced into a cooling trap disposed beneath the recovery mold, such that the higher vapor pressure impurities are solidified in the cooling trap.Type: GrantFiled: February 24, 1999Date of Patent: May 15, 2001Assignee: Dowa Mining Co., Ltd.Inventors: Kishio Tayama, Takashi Ohgami, Hiroshi Miura
-
Patent number: 5403380Abstract: The invention relates to a method for producing zinc, cadmium, lead and other easily volatile metals from sulfidic raw materials in a pyrometallurgical process. In the method, zinc sulfide concentrate is fed into molten copper in atmospheric conditions, at a temperature of 1,450.degree.-1,800.degree. C., so that the zinc, lead and cadmium are volatilized, and the iron and copper remain in the molten metal or in the metal sulfide matte created in the furnace.Type: GrantFiled: May 13, 1993Date of Patent: April 4, 1995Assignee: Outokumpu Research OyInventors: Timo T. Talonen, Heikki J. Eerola
-
Patent number: 5279644Abstract: A new environmentally safe fire refining precious metal assay method is provided wherein bismuth oxide is used with a special flux composition as the precious metal collector and the cupelling procedure is performed in a controlled temperature range.Type: GrantFiled: February 18, 1993Date of Patent: January 18, 1994Assignee: ASARCO IncorporatedInventor: David W. Francisco
-
Patent number: 5232486Abstract: A process of treating argentiferous alloy variously called "zinc crust" or "silver crust", obtained in the separation of silver from lead, removes sufficient zinc in one apparatus and process step to ensure the product is suitable as feed to cupellation. Suitable feed is defined as material, when partially oxidized in a cupel to remove impurities from silver, results in a litharge that is liquid at typical cupellation temperatures. The process requires that care be taken to avoid excessive oxidation of the crust during its formation. No preliminary step to upgrade the crust is necessary, avoiding the associated expense and effort.Type: GrantFiled: December 17, 1991Date of Patent: August 3, 1993Assignee: Brunswick Mining and Smelting Corporation LimitedInventors: Philip G. Evans, Peter J. Hancock, Cameron L. Harris, Ralph L. Harris
-
Patent number: 5221325Abstract: A process for recovering silver oxide and metals from a spent silver oxide button cell. The process relates to a physical process which consists of a heating and a cooling process to separate the shell and the content (silver, silver oxide) of the spent silver oxide cell, so that silver oxide, silver and other metals such as zinc, iron and nickel can be recovered and reused.Type: GrantFiled: March 3, 1992Date of Patent: June 22, 1993Assignee: Industrial Technology Research InstituteInventors: Tyngbin Onlin, Bih-Shyang Huang, Pak-Hing Lee, Tei-Chih Cheau
-
Patent number: 5085836Abstract: A method to reduce dissolved silver present in spent, waste, photographic processing fluids containing thiosulfate, is described. This process involves adjusting the pH to a low level prior to the addition of finely ground steel to the solution. With the pH at the low level, e.g. 2.5, the reaction of dissolved silver to precipitated silver, is facilitated. However, the pH must then be raised or neutralized, e.g. 7-8.5, in order to insure that the dissolved silver is essentially all precipitated. This material can now be safely shipped without treatment as a hazardous material and, after filtering the solids therefrom, can be safely disposed.Type: GrantFiled: December 3, 1990Date of Patent: February 4, 1992Assignee: E. I. du Pont de Nemours and CompanyInventor: Barbara T. Booker
-
Patent number: 5085692Abstract: This invention relates to the recovery of silver values from silver chloride or mixed chlorides including silver chloride. A pyrometallurgical process is provided in which chloride residues are smelted with an agent such as sodium silicate that provides alkali metal oxide without generating gases, such as carbon dioxide, that would result in foaming during smelting to a material extent.Type: GrantFiled: August 27, 1990Date of Patent: February 4, 1992Assignee: Royal Canadian MintInventors: Christopher A. Pickles, James M. Toguri, Hieu Truong, Janet G. Clark
-
Patent number: 5074910Abstract: The present invention is a process to recover precious metals from sulfide ores. It involves chlorinating a mixture of an ore concentrate and salt to form a liquid melt. The salt preferably contains potassium chloride. This chlorination is carried out at a temperature between 300.degree. and 600.degree. C. while stirring. The process converts precious metals in the elemental and sulfide forms into precious metal chlorides which are recovered by subsequent processing steps.Type: GrantFiled: February 28, 1990Date of Patent: December 24, 1991Assignee: Chevron Research and Technology CompanyInventor: Michael Dubrovsky
-
Patent number: 5067987Abstract: The present invention relates to manufacturing a silver alloy which is blackened throughout its bulk and used, for example, in jewelry. The method of manufacturing this material comprises putting the silver alloy into contact with sulfur in the form of sulfur vapor. The thickness of the wires or foils used in the method lies between about 1/10th of a millimeter and a few millimeters, and the time during which the silver alloy is exposed in the atmosphere of sulfur vapor is calculated as a function of this thickness. The silver alloy blackens due to sulfur/silver diffusion, and according to the present invention the silver alloy is heated to a predetermined temperature in order to optimize this diffusion as well as the microstructure of the resulting material.Type: GrantFiled: November 3, 1989Date of Patent: November 26, 1991Inventor: Lucien Vachey
-
Patent number: 4955482Abstract: In carbon-in-pulp (CIP) and carbon-in-leach (CIL) processes, especially those utilizing pure oxygen instead of normal air to increase the overall efficiency of the cyanide leaching-adsorption process in the recovery of gold and/or silver from ores, the screen within each tank which surrounds the slurry outlet is kept clean. The cleaning action is accomplished by linearly reciprocating the screen first slowly in one direction, and then quickly in another (to cause back flushing); or by rotating a cleaning rotor on the inside of a cylindrical screen. The cleaning rotor may be connected to the same shaft as an agitator disposed above a draft tube within the tank. The screen surface is tapered in its direction of movement, and during movement has a tendency to transport and concentrate the carbon (charcoal) particles at the far end of the slow stroke, and the concentrated particles can be withdrawn and recirculated to other tanks in the system.Type: GrantFiled: September 20, 1989Date of Patent: September 11, 1990Assignee: Kamyr, Inc.Inventors: Carl L. Elmore, Phillip Mitchell