Abstract: A non-visual wearable display device, the device comprises a body, a peltier matrix display disposed on a front surface of the body, an optical sensor disposed on a top surface of the body, a processing unit disposed within the body, the processing unit comprising a processor, a memory, and a set of instructions stored on the memory, wherein when the instructions are executed by the processor cause the device to: scan a physical environment using the optical sensor, obtain physical environment data, create an environment data set from the physical environment data obtained by the optical sensor, convert the environment data set to an input voltage set, input the input voltage set into the peltier matrix, and actuate the peltier matrix to produce a thermal image of the physical environment that is felt on a body part of a user.
Abstract: A holographic structure, system and method project a grey-scale image in a narrow IR spectral band that is related to a broadband thermal signature of an object. The projected grey-scale image, when integrated over the broadband, forms either a decoy that approximates the thermal signature of the object or a mask that obscures the thermal signature of the object. The projected image is a tuned phase recording of a desired far field projection. In different embodiments, the projected image is a “positive” or a “negative” image of the object's thermal signature, a difference image between the thermal signatures of a false object and the object or a camouflage image of random features having approximately the same spatial frequency as the object's thermal signature. The goal being to confuse or fool, even for a short period of time, the warfighting or surveillance system or human observer that uses a broadband IR sensor to acquire and view thermal images of the scene.
Abstract: A system for reducing the effects of a blast wave includes armor plating configured to face a supersonic blast wave. The armor plating has a surface consisting of alternating tall and short peaks with valleys between the peaks. The peaks and valleys are positioned such that the supersonic blast wave reflects from the side surfaces of the tall peaks as a regular reflection that at least partially suppresses Mach reflection of the supersonic wave caused by the short peaks and the valleys. The surface may also be designed to not trap reflected waves. The valleys can be parabolic shaped to deflect and/or dissipate transonic flow that follows the blast wave front.
Abstract: A propelled lance provides a wounding non-lethal anti-insurgent action when stepped on by piercing an enemy insurgent's foot with a lance penetrator. The lance penetrator lodges in the foot and further penetration is impeded by a stop plate. The lance penetrator may insert an RFID or other identifiable device or other payload into the insurgent. The lance penetrator provides anti-personnel, anti-vehicle and anti-robot action.
Type:
Application
Filed:
February 13, 2012
Publication date:
August 15, 2013
Inventors:
Robert Van Burdine, Dorothy Devine Burdine
Abstract: A UV camouflaging substance, in the form of a solid, powder, paste, film, or liquid, can be applied to objects such as fabrics to match the ultraviolet reflectivity of the objects with their immediate surroundings. Embodiments are transparent to visible and IR light, and can be applied without changing the visible appearance of the objects. Other embodiments visibly match the surrounding environment, such as a white substance used near snow. Different embodiments can be layered on top of each other to form UV camouflage textures and to adapt to changing environments. Some embodiments can be washed off, to avoid a build-up of camouflage layers. Embodiments include UV-interactive micro- or nano-particles suspended in a binding agent which transmit, reflect, absorb and/or scatter ultraviolet rays. Some particles are absorbent, while others are approximately one-quarter wavelength thick, and suppress UV light by inducing half-wavelength phase shifts between light reflected from opposing surfaces.
Abstract: Designs and methods are provided for a multi-range camouflage. In one exemplary embodiment, the camouflage comprises an array of tiles creating a micro camouflage pattern discernable at a first distance. The camouflage design further comprises a macro camouflage pattern discernable at a second distance that is substantially greater than the first distance. The macro camouflage pattern is inherent in the arrangement of tiles forming the micro camouflage pattern, and based on a predefined source image.
Abstract: Methods and apparatus are provided for a three-dimensional camouflage applied to the exterior of a man-made article. The camouflage comprises a surface with a visible topography defined by a predetermined arrangement of three-dimensional elements.
Abstract: Systems and assemblies for simultaneous adaptive camouflage, concealment and deception are provided. The assemblies that can be used in the systems include a vinyl substrate layer and a miniaturized thermoelectric device array secured to the vinyl substrate layer. The miniaturized thermoelectric device array is configured to provide an adaptive thermal signature to a side of the miniaturized thermoelectric device array that faces outward from the vinyl substrate layer. A flexible image display matrix can be secured on the vinyl substrate layer. The flexible image display matrix can be configured to display visual images. A laminate layer can be secured over the vinyl substrate layer covering the flexible image display matrix and the miniaturized thermoelectric device array to provide protection and strengthen the assemblies. One or more nanomaterials can be disposed on the vinyl substrate layer or the laminate layer to provide thermal or radar suppression.
Type:
Grant
Filed:
May 6, 2009
Date of Patent:
December 13, 2011
Assignee:
Military Wraps Research and Development, Inc.
Abstract: A cover for camouflage against electromagnetic radiation. According to the invention, the cover includes a random set of puckered features in relief, these being formed by a camouflage net associated with a flexible dielectric mesh.
Abstract: In the structure for providing protection for the human body from ballistic projectiles which includes one or more ballistic resistant panels overlying at least a portion of the body, wherein the improvement comprising one or more electronic devices integrated into at least one of the ballistic resistant panels.
Type:
Application
Filed:
May 27, 2010
Publication date:
June 2, 2011
Inventors:
Eric C. Hoenes, Michael McLeroy, Allister McNeish, Alvaro D. Lewin, Kenneth G. Grove
Abstract: Systems and assemblies for simultaneous adaptive camouflage, concealment and deception are provided. The assemblies that can be used in the systems include a vinyl substrate layer and a miniaturized thermoelectric device array secured to the vinyl substrate layer. The miniaturized thermoelectric device array is configured to provide an adaptive thermal signature to a side of the miniaturized thermoelectric device array that faces outward from the vinyl substrate layer. A flexible image display matrix can be secured on the vinyl substrate layer. The flexible image display matrix can be configured to display visual images. A laminate layer can be secured over the vinyl substrate layer covering the flexible image display matrix and the miniaturized thermoelectric device array to provide protection and strengthen the assemblies. One or more nanomaterials can be disposed on the vinyl substrate layer or the laminate layer to provide thermal or radar suppression.