Stepped Pressure Reduction Patents (Class 95/103)
  • Patent number: 6171370
    Abstract: An adsorbent for separating gases, which comprises a binder and a crystalline low-silica faujasite type zeolite with a SiO2/Al2O3 molar ratio of from 1.9 to 2.1, wherein the average pore diameter of the macropores is equal to or larger than the mean free path of an adsorbable component when desorbing the adsorbable component from the adsorbent, and at least 70% of the total volume of the macropores is occupied by macropores having a diameter equal to or larger than the mean free path of the adsorbable component.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: January 9, 2001
    Assignee: Tosoh Corporation
    Inventors: Shigeru Hirano, Taizo Kawamoto, Toru Nishimura, Keiji Yoshimura
  • Patent number: 6113672
    Abstract: The strongly adsorbed component of a gas mixture is produced in enhanced purity and yield by novel PSA cycles. The basic steps of the cycles include an adsorption vessel prepressurization step, a cocurrent nonadsorbed gas production step, a cocurrent purge step with strongly adsorbed gas product and a countercurrent depressurization step which produces the strongly adsorbed gas product that is used in the cocurrent purge step. In addition to the basic steps, a first depressurization equalization step precedes or follows the cocurrent purge step and a corresponding first pressurization equalization step follows the countercurrent depressurization step. The cycle optionally includes one or two depressurization equalization steps before the cocurrent purge step and one or two corresponding pressurization equalization steps after the first pressurization equalization step.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: September 5, 2000
    Assignee: The BOC Group, Inc.
    Inventors: Akhilesh Kapoor, YuDong Chen, Ravi Kumar, Robert M. Thorogood, Simon Davies
  • Patent number: 6083299
    Abstract: A high pressure purge is incorporated into the cycle of a PSA process designed for the recovery of strongly adsorbed product gas from a gas mixture. The high pressure purge stream is obtained by compressing the low pressure cocurrent purge step that precedes the countercurrent depressurization or evacuation step. The high pressure purge step is included in the cycle following the adsorption step of the process.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: July 4, 2000
    Assignee: The BOC Group, Inc.
    Inventors: Akhilesh Kapoor, YuDong Chen, Ravi Kumar, Robert M. Thorogood, Simon Davies
  • Patent number: 6080226
    Abstract: A feedstream comprising nitrous oxide is purified by a pressure swing adsorption process employing a copurge with an oxygen-lean stream to produce a high purity nitrous oxide stream. The high purity nitrous oxide stream can be incorporated in a complex for the production of adipic acid to recover nitrous oxide from a dilute waste stream and pass the recovered nitrous oxide to a process for the production of phenol from an aromatic hydrocarbon. Unreacted nitrous oxide from the phenol production step acid can be recovered in a second, or vent PSA step, and combined with the recovery of byproduct nitrous oxide waste streams from the production of adipic for the overall recovery of nitrous oxide, thereby significantly reducing nitrous oxide emissions from the production of adipic acid.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: June 27, 2000
    Assignee: UOP LLC
    Inventors: William B. Dolan, Andrew S. Zarchy, Kirit M. Patel, Timothy M. Cowan, Mark M. Davis
  • Patent number: 6063161
    Abstract: Pressure swing adsorption (PSA) separation of a gas mixture is performed in an apparatus with a plurality of adsorbent beds. The invention provides rotary multiport distributor valves to control the timing sequence of the PSA cycle steps between the beds, with flow controls cooperating with the rotary distributor valves to control the volume rates of gas flows to and from the adsorbent beds in blowdown, purge, equalization and repressurization steps.
    Type: Grant
    Filed: April 24, 1996
    Date of Patent: May 16, 2000
    Assignee: SoFinoy Societte Financiere d'Innovation Inc.
    Inventors: Bowie Gordon Keefer, David George Doman
  • Patent number: 6045603
    Abstract: High purity strongly adsorbed gas, e. g., carbon monoxide, is separated from a gas mixture containing one or more other gas components, e. g., hydrogen carbon dioxide, methane, nitrogen and possibly other impurities, by a two-phase pressure swing adsorption process carried out in one or more adsorption vessels arranged in parallel and containing adsorbent which adsorbs the strongly adsorbed gas more readily than the other components of the gas mixture. The process includes two evacuation steps and two or more purge steps.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: April 4, 2000
    Assignee: The BOC Group, Inc.
    Inventors: Yudong Chen, Akhilesh Kapoor, Narayanan Ramprasad
  • Patent number: 6017382
    Abstract: A method of processing semiconductor manufacturing exhaust gases for recovering at least hexafluoroethane in which a feed stream composed of the exhaust gases is passed through an adsorbent bed selected to adsorb oxygen, and also nitrogen if present, but not to appreciably adsorb the hexafluoroethane. As a result, a product stream, discharged from the adsorbent bed, has a higher concentration of hexafluoroethane than in the feed stream. In one embodiment, only a single adsorbent such as carbon molecular sieve is provided to adsorb the oxygen or a modified 4A zeolite could be used to adsorb both oxygen and nitrogen. When nitrogen is a potential constituent, layers of carbon molecular sieve and zeolite are provided to adsorb the oxygen and then the nitrogen, respectively. A third adsorbent, preferably 5A zeolite may be provided in addition to the foregoing two adsorbents to also adsorb any carbon tetrafluoride produced as a by-product.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: January 25, 2000
    Assignee: The BOC Group, Inc.
    Inventors: Wenchang Ji, Dongmin Shen, Ravi Jain, Arthur I. Shirley, Atul M. Athalye, Piotr J. Sadkowski
  • Patent number: 5997612
    Abstract: A process and apparatus for separating the components of a gas mixture by PSA in a four-vessel adsorption system operated as two pairs of adsorption vessels. The vessels of each pair are operated 180.degree. out of phase, such that one vessel of a pair is in the adsorption mode while the other vessel of the pair is undergoing adsorbent regeneration. The apparatus includes the two pairs of adsorption vessels, an intermediate gas storage reservoir which is used to temporarily store gas removed from the nonadsorbed gas outlet end of the adsorption vessels for use in various steps of the process, one gas blower and a pair of vacuum pumps. The adsorption cycle is such that the pairs of adsorption vessels are operated out of phase relative to each other and the blower and both vacuum pumps are in continuous operation throughout the process. The process and system are particularly well adapted to the separation of nitrogen from oxygen by vacuum swing adsorption.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: December 7, 1999
    Assignee: The BOC Group, Inc.
    Inventor: Shain-Jer Doong
  • Patent number: 5980857
    Abstract: A process for producing hydrogen gas by reacting steam with a gas mixture containing carbon monoxide, carbon dioxide and hydrogen to produce a hydrogen-enriched product gas and subjecting the product gas to pressure swing adsorption to produce a high purity hydrogen product and a hydrogen-depleted waste gas is improved by drying, where necessary, part of the gas mixture and subjecting the dry gas mixture to pressure swing adsorption using a carbon monoxide-selective adsorbent to produce a high purity carbon monoxide product gas and a carbon monoxide-depleted waste gas. Where the gas mixture is produced by endothermic reaction, one or both of the hydrogen-depleted waste gas and the carbon monoxide-depleted waste gas can be used as fuel to supply heat for the endothermic reaction.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: November 9, 1999
    Assignee: The Boc Group, Inc.
    Inventors: Akhilesh Kapoor, Yudong Chen, Simon Paul Davies, Ravi Kumar, Robert Michael Thorogood
  • Patent number: 5924419
    Abstract: An apparatus for passive hypoxic training or therapy provides to a user hypoxic (low-oxygen) gas mixture having carbon dioxide content optimal for breathing stimulation and a comfortable humidity level. The apparatus reduces the oxygen content of the air by passing the ambient air through a pressure-swing adsorption separator which extracts the oxygen therefrom. The air pressurized by compressor is delivered in alternating sequence into cartridges having a molecular-sieve material which adsorbs nitrogen, carbon dioxide and water vapor and allows a dry oxygen-enriched fraction to pass through an to be discharged. Remaining hypoxic (low-oxygen) gas mixture is recovered by depressurization of cartridges and is delivered to a user through a surge tank, filter, breathing bag, and respiratory mask.
    Type: Grant
    Filed: February 8, 1997
    Date of Patent: July 20, 1999
    Inventor: Igor K. Kotliar
  • Patent number: 5922107
    Abstract: A process for the separation of a gas mixture containing oxygen and nitrogen, including bringing the mixture into contact in an adsorption zone with a first selective adsorbent for nitrogen of faujasite type exchanged to at least 80% with lithium, in which the Si/Al ratio is lower than 1.5 and a second selective adsorbent for nitrogen of zeolite type exchanged with divalent cations such as the alkaline-earth metal or transition metal cations. The second adsorbent is characterized by a nitrogen adsorptivity C.sub.2 lower than the nitrogen adsorptivity C.sub.1 characterizing the first adsorbent, and an adsorption selectivity for nitrogen in relation to oxygen (1.times.10.sup.5 Pa, 20.degree. C.) higher than or equal to 3.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: July 13, 1999
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude et L'Explitation des Procedes Georges Claude
    Inventors: Jacques Labasque, Serge Moreau, Dominique Rouge
  • Patent number: 5906673
    Abstract: The invention is a pressure swing adsorption system. The pressure swing adsorption system has a plurality of primary adsorbent beds and at least one secondary adsorbent bed. The feed gas stream is flowed to a primary adsorbent bed loaded with an adsorbent that will preferentially adsorb certain components in the feed gas. Non-preferentially adsorbed components flow from the adsorbent bed during this time. Upon saturation of the adsorbent with the adsorbed components, the flow of feed gas is ceased. The adsorbent is fully loaded with the preferentially adsorbed component and there is feed gas in the void space between the adsorbent particles. This primary adsorbent bed undergoes regeneration by partial depressurization through the secondary adsorbent bed followed by a complete depressurization to a final lower pressure. There can be two or more primary adsorbent beds and there will be at least one secondary adsorbent bed.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: May 25, 1999
    Assignee: Nitrotec Corporation
    Inventors: Herbert W. Reinhold, III, Mark Huber, David R. King
  • Patent number: 5882380
    Abstract: A single-bed PSA system comprising a blower, an adsorber vessel, and a gas product storage tank separates a gas mixture using a three-step cycle comprising adsorption, evacuation, and pressurization. Pressurization is accomplished by introducing gas from the gas product storage tank into both the feed end and the product end of the adsorber vessel. Preferably a portion of the pressurization gas is introduced into the adsorber vessel by the blower, which also is used for providing feed to the adsorber and for withdrawing gas from the adsorber during the evacuation step.
    Type: Grant
    Filed: October 13, 1997
    Date of Patent: March 16, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Shivaji Sircar
  • Patent number: 5876485
    Abstract: This process carries out a cycle on a monoadsorber (1) connected, on the one hand, to at least one container (2, 3) via a line (8, 10) fitted with a variable-opening valve (9, 11) and, on the other hand, to a reversible compression/pumping machine coupled to a speed variator (5). Application in particular to the production of oxygen at a variable flow rate from atmospheric air.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: March 2, 1999
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude et L'Exploitation des Procedes Georges Claude
    Inventor: Philippe Andreani
  • Patent number: 5871565
    Abstract: This invention relates to a VPSA method for the production of a product that is enriched with a more preferred gas from a mixture of the more preferred gas and a less preferred gas and, preferably to a VPSA method for the production of an oxygen-enriched product from air, using an oxygen-preferential adsorbent under equilibrium conditions. In a preferred embodiment the process uses a desorption purge at a nearly constant pressure that is selected to produce a steady stream of oxygen having a purity from 30% to 60% at a pressure in the range of 60 kPa to 20 kPa.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: February 16, 1999
    Assignee: Praxair Technology, Inc.
    Inventor: Frederick Wells Leavitt
  • Patent number: 5863315
    Abstract: Four adsorbers 1 to 4, each operating in a cycle comprising (described for adsorber 2): an adsorption step 1 wherein a feed from adsorber 2 is circulated to adsorber 2; an adsorption step 2 wherein feed is injected to the bottom of adsorber 2 and a product rich in isoparaffins is recovered from the head of adsorber 2; an adsorption step 3 wherein a portion of the fluid leaving adsorber 2 is sent to adsorber 3; an adsorption step 4 wherein the head of adsorber 2 receiving the feed is connected to the bottom of adsorber 3; a first depressurisation step 5 wherein adsorber 2 at high pressure is connected to adsorber 4 at a lower pressure; a second depressurisation step 6 wherein the head of adsorber 2 is closed; a stripping step 7 wherein the bottom of adsorber 2, which receives desorbent overhead, is connected to the top of adsorber 2; two principal stripping steps 8 and 9 wherein adsorber 2 alone is supplied with desorbent; a stripping finishing step 10 wherein adsorber 2 is continued to be supplied with desorb
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: January 26, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Sophie Jullian, Jean-Louis Ambrosino, Alain Chansolme, Valerie Wiss-Henrard
  • Patent number: 5840099
    Abstract: A process is set forth for the selective removal of water, CO.sub.2, ethane and C.sub.3 + hydrocarbons from gas streams, particularly a natural gas stream comprising primarily methane. The process comprises contacting the gas stream with an adsorbent material consisting exclusively of one or more compounds which are basic (i.e. compounds which, when contacted with a pH neutral aqueous solution, cause such solution to have a pH greater than 7.0) and which are mesoporous (i.e. compounds which have moderately small pores providing a surface area less than 500 m.sup.2 /g). The key to the present invention is the use of a single homogenous adsorbent without sacrificing performance. Typical mesoporous adsorbents which are useful in the present invention include zinc oxide, magnesium oxide and, in particular, activated alumina.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: November 24, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Wilbur Clymer Kratz, Timothy Christopher Golden, Mohammad Ali Kalbassi
  • Patent number: 5792239
    Abstract: A natural gas feed stream containing significant quantities of nitrogen and/or carbon dioxide can be increased to a content of greater than 95 percent by volume of natural gas, and preferably greater than about 98 percent, by passing the natural gas feed stream sequentially through three adsorbent beds that are cycled through seven phases comprising: an adsorption phase to adsorb a first gas, a first depressurization phase to remove feed gas from the voids in the adsorbent bed, a recycle phase to remove a second gas from the adsorbent by the passage of a second depressurization gas therethrough and to produce a recycle gas, a second depressurization phase to reduce the adsorbent bed pressure to about ambient and to produce the second depressurization gas, an evacuation phase where the pressure in the adsorbent is further reduced and an enriched primary gas product stream recovered, a pressurization phase where the pressure in the adsorbent bed is increased using secondary product gas from a bed in an adsorpti
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: August 11, 1998
    Assignee: Nitrotec Corporation
    Inventors: Herbert Edward Reinhold, III, Kent S. Knaebel, Mark Huber, David R. King
  • Patent number: 5720797
    Abstract: The present invention relates to a process for recovering sulfur hexafluoride ("SF.sub.6 "). More specifically, the invention provides a pressure swing adsorption--desorption process for recovering SF.sub.6 from a gas stream using zeolites, activated carbons, or silicalites to adsorb the SF.sub.6.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: February 24, 1998
    Assignee: AlliedSignal Inc.
    Inventors: Stephen Frederic Yates, Romulus Gaita, Amar Ramachandra, Robert Morrell
  • Patent number: 5713984
    Abstract: The process comprises a regeneration phase including a co-current depressurization step, in order to participate in the repressurization of another adsorber, a countercurrent depressurization down to the low pressure of the cycle without gas intake, and then a countercurrent elution step at the low pressure of the cycle with oxygen taken off from production. The cycle time does not exceed 20 seconds. The process is particularly application to the production of oxygen having a purity greater than 90% with flow rates of 2 to 6 liters/minute for oxygenotherapy.
    Type: Grant
    Filed: May 1, 1996
    Date of Patent: February 3, 1998
    Assignee: L'Air Liquide, Societe Anonyme pour L'Etude et L'Exploitation des Procedes Georges Claude
    Inventors: Andre Monnot, Marie Helene Renaudin
  • Patent number: 5707425
    Abstract: The present process is directed to the efficient recovery of helium gas from gas streams which contain about 25 percent by volume or more helium. The process comprises two stages of pressure swing adsorption, each stage being comprised of a plurality of interconnected adsorbent beds. In the first stage of pressure swing adsorption which is comprised of about five phases, the helium content of the gas stream is increased to 95 percent by volume or more. A secondary product gas stream from the first stage of pressure swing adsorption is fed to the second stage of pressure swing adsorption. The second stage of pressure swing adsorption increases the helium content of this primarily non-helium product gas to more than about 50 percent by volume. This gas now with a helium content of more than about 50 percent by volume is fed along with the gas stream as the input gas to the first stage of pressure swing adsorption.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: January 13, 1998
    Assignee: Nitrotec Corporation
    Inventors: Joseph S. D'Amico, Herbert Edward Reinhold, III, Kent S. Knaebel
  • Patent number: 5702504
    Abstract: Vacuum pressure swing adsorption (VPSA) processing is carried out employing a processing sequence of ten steps that serves to enhance the productive capacity thereof for air separation and other desirable applications.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: December 30, 1997
    Assignee: Praxair Technology, Inc.
    Inventors: Herbert Raymond Schaub, James Smolarek
  • Patent number: 5679134
    Abstract: A device for the separation of gas by adsorption, of the so-called VSA or MPSA type, comprises, between a utilization line (L) and a source (S) of gaseous mixture to be separated, at least one module (M) comprising in series a reversible rotatable machine (R), typically a Roots, an adsorber (A) and a shut-off valve (V). The rotary machine (R) is alternately actuated, in one direction during a first phase of pressurization and of production and then, in the other direction, during a second phase of depressurization and desorption. Used particularly in the production of small and medium volumes of oxygen in modular installations.
    Type: Grant
    Filed: November 8, 1995
    Date of Patent: October 21, 1997
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Jean-Renaud Brugerolle, Christian Monereau
  • Patent number: 5672197
    Abstract: A process for separating a mixture of gases by selective adsorption, in which pressure swing is used to induce both desorption and the flow of gas through at least one simulated moving chromatographic column.
    Type: Grant
    Filed: October 11, 1995
    Date of Patent: September 30, 1997
    Inventor: Ronald D. Rothchild
  • Patent number: 5658371
    Abstract: A pressure swing adsorption process for the recovery of oxygen from air improves upon a prior art process by depressurizing the adsorbent bed within an adsorbent vessel to an intermediate pressure by releasing void space gas from the product end of the vessel to a low purity oxygen tank while concurrently evacuating the adsorbent vessel from the feed end. This action enables an increased speed of depressurization and a reduction of the cycle time. Further, the adsorbent bed is repressurized to an intermediate pressure from the product outlet end with gas from the low purity oxygen tank, while concurrently pressurizing the adsorbent vessel from the input feed end. This action increases the load time fraction for a feed/vacuum blower. Further, oxygen is introduced to the product end of the adsorbent bed vessel from a high purity oxygen tank (which provides product to downstream applications) while concurrently, air is introduced to the feed end of the adsorbent bed within the vessel.
    Type: Grant
    Filed: November 6, 1995
    Date of Patent: August 19, 1997
    Assignee: Praxair Technology, Inc.
    Inventors: James Smolarek, Herbert Raymond Schaub, John Harry Fassbaugh, Timothy Mark Aaron
  • Patent number: 5656067
    Abstract: A vacuum swing adsorption process for separating a feed gas mixture into a more strongly adsorbable component and a less strongly adsorbable component in a process employing two vacuum pumps and three adsorbent beds containing an adsorbent selective for the more strongly adsorbable component using countercurrent depressurization and cocurrent ambient feed repressurization simultaneous with product end to product end pressure equalization and a common-shaft machinery arrangement which allows the expansion energy contained in the countercurrent depressurization and cocurrent ambient feed repressurization streams to be recovered and utilized to reduce overall process power consumption. Addition of three valves and an expander element will also allow expansion energy in the product purge and pressure equalization streams to be recovered. Oxygen product can be recovered from air at low cost using the process.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: August 12, 1997
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Charles Franklin Watson, Rakesh Agrawal, Paul Anthony Webley, Joseph Gerard Wehrman
  • Patent number: 5632803
    Abstract: The disclosed hybrid membrane and pressure swing adsorption process can recover helium from source streams of about 0.5 to 5 percent by volume helium and concentrate the helium to a concentration of greater than about 98 percent by volume. The process comprises a membrane separation followed by two stages of pressure swing adsorption which are used in series. The source gas will primarily contain hydrocarbons but will contain some nitrogen. The membrane unit will contain a semipermeable membrane which is permeably selective for helium and will to the extent feasible reject hydrocarbons. The permeate gas will be increased in helium content by 2 to 10 times. Part of the residue gas is used in the regeneration of the adsorbent beds in the first stage of pressure swing adsorption. Each stage of pressure swing adsorption will contain a plurality of adsorbent beds, and will be cycled through multiple phases.
    Type: Grant
    Filed: August 21, 1995
    Date of Patent: May 27, 1997
    Assignee: Nitrotec Corporation
    Inventors: Glenn Stoner, Herbert E. Reingold, III, Joseph S. D'Amico, Kent S. Knaebel
  • Patent number: 5565018
    Abstract: Segregated external gas storage tanks are used to store gases of varying purity for use in the purge and pressure equalization and product repressurization steps of pressure swing adsorption operations, thereby enabling the bed size factor and the power requirements of pressure swing adsorption-gas separation operations to be significantly reduced.
    Type: Grant
    Filed: July 12, 1995
    Date of Patent: October 15, 1996
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed S. A. Baksh, Frank Notaro
  • Patent number: 5562756
    Abstract: The present invention is a composition, a synthesis of the composition and a method of using the composition for selectively adsorptively separating nitrogen from oxygen wherein the composition is a crystalline EMT with a Si/Al ratio less than 2.0 and a lithium cation exchange of at least 80%, preferably including an intergrowth with a crystalline FAU structure, wherein the pure or intergrowth compositions have the chemical formula:(0.2-0.0)M.sub.2/n 0:(0.80-1.0)Li.sub.2 0:X.sub.2 0.sub.3 :(2.0 to <4.0)SiO.sub.2wherein M=a metal cation other than lithium having a valence of n, and X is selected from the group consisting of aluminum, gallium and boron, preferably aluminum.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: October 8, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Charles G. Coe, Thomas R. Gaffney, Hong-Xin Li, Yanliang Xiong, Johan A. Martens, Pierre A. Jacobs
  • Patent number: 5542966
    Abstract: The disclosed pressure swing adsorption processes can recover helium from source streams of less than about 10 percent by volume helium and concentrate the helium to a concentration of greater than about 98 percent by volume. Two stages of pressure swing adsorption are used in series. The source of the helium gas will be natural gas wells. The source gas will contain hydrocarbons but in most instances the primary gas other than helium will be nitrogen. Each stage of pressure swing adsorption will contain a plurality of adsorbent beds, and preferably about four. In each stage the adsorbent beds will be cycled through multiple phases. In the first stage the adsorbent beds will sequentially undergo the phases of adsorption, recycle, depressurization, evacuation, helium pressurization and recycle feed pressurization.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: August 6, 1996
    Assignee: Nitrotec Corporation
    Inventors: Joseph S. D'Amico, Herbert E. Reinhold, III, Kent S. Knaebel
  • Patent number: 5540758
    Abstract: A process for separating a feed gas mixture into a more strongly adsorbable component and a less strongly adsorbable component in a plurality of adsorbent beds containing an adsorbent selective for the more strongly adsorbable component using cocurrent depressurization to provide purge gas and pressurization by product end to product end pressure equalization between beds simultaneous with cocurrent ambient and elevated pressure feed pressurization, and countercurrent evacuation. Oxygen product can be recovered from air at high recovery and adsorbent productivity levels using the process.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: July 30, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rakesh Agrawal, Ravi Kumar, Tarik Naheiri, Charles F. Watson
  • Patent number: 5536299
    Abstract: Process swing adsorption processes for gas separation are carried out using overlapping pressure swing adsorption, feed gas repressurization and desorption steps. The adsorptive capacity of the system employed is increased, unit power consumption is decreased, and the overall efficiency of the operation is enhanced.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: July 16, 1996
    Assignee: Praxair Technology, Inc.
    Inventors: Amanda K. Girard, Herbert R. Schaub
  • Patent number: 5531809
    Abstract: The present invention is an apparatus and method for preferentially adsorbing carbon monoxide from a gas stream containing carbon monoxide in the presence of water and potentially ammonia while not adsorbing methane, hydrogen or carbon dioxide which may be present in the gas stream using an adsorbent of a supported cuprous compound situated downstream serially from a pretreatment adsorbent of 3A zeolite which protects the cuprous compound from water. An additional pretreatment layer of a basic metal compound to protect the acid-unstable 3A zeolite layer is also contemplated.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: July 2, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy C. Golden, Paul A. Webley, Steven R. Auvil, Wilbur C. Katz
  • Patent number: 5529607
    Abstract: Oxygen of uniform purity is produced in a two-bed air-fed oxygen pressure swing adsorption process in which the beds are operated out of phase. The steps of the adsorption cycle include a pressurization/production step and a bed regeneration step, with the bed undergoing regeneration being purged with a low pressure stream of the oxygen-enriched gas produced as the nonadsorbed product of the process. The oxygen concentration in the purged gas effluent is continuously periodically monitored, and the maximum oxygen concentration in the effluent during selected purge steps is compared with the maximum oxygen concentration in the effluent during a previous purge step, and the difference is used to adjust the timing and duration of a purge step following the selected purge step in a manner that reduces the difference between the oxygen concentration in the sequential purge steps.
    Type: Grant
    Filed: March 15, 1995
    Date of Patent: June 25, 1996
    Assignee: The BOC Group, Inc.
    Inventor: Ziming Tan
  • Patent number: 5520720
    Abstract: The components of a gas mixture are separated by pressure swing adsorption in a plurality of adsorption vessels. In the first step of the half-cycle adsorption takes place in a first bed while the second bed undergoes countercurrent desorption. At the end of the first step the first bed is vented countercurrently and the first and second beds undergo, as a first bed equalization step, outlet-to-outlet equalization or outlet to both inlet and outlet equalization. The vent step may precede or be concurrent with the first bed equalization step. In a second equalization step the beds simultaneously undergo inlet-to-inlet and outlet-to-outlet equalization. The second bed is then further pressurized with nonadsorbed product gas. The half cycle is then repeated but with the first bed being substituted for the second bed and vice versa.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: May 28, 1996
    Assignee: The BOC Group, Inc.
    Inventor: Norberto O. Lemcoff
  • Patent number: 5518528
    Abstract: An adsorption-desorption apparatus, for storage and dispensing of a gas selected from the group consisting of hydride gases, halide gases, and organometallic Group V gaseous compounds, wherein the gas to be dispensed is adsorbed on a physical sorbent medium and selectively dispensed by pressure differential desorption of the sorbate gas from the sorbent material. The sorbent medium preferably is devoid of concentrations of water, metals, and oxidic transition metal species which decompose the sorbate gas in the storage and dispensing vessel, e.g., containing less than 500 parts-per-million by weight of water and oxidic transition metal species, based on the weight of the physical sorbent medium. A cryopumping gas storage and delivery system is also disclosed for neat, high pressure, high purity delivery of the dispensed product gas.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: May 21, 1996
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, James V. McManus
  • Patent number: 5519122
    Abstract: 16-membered macrolide derivatives represented by the formula (I): ##STR1## wherein R.sup.1 represents a hydrogen atom or a COR.sup.6 group, wherein R.sup.6 represents a straight-chain alkyl group having 1 to 3 carbon atoms; R.sup.2 represents a hydrogen atom or a COR.sup.6 group, wherein R.sup.6 is as defined above; R.sup.3 represents a hydrogen atom or a COR.sup.6 group, wherein R.sup.6 is as defined above; R.sup.4 represents a straight-chain alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted allyl group; and R.sup.5 represents a substituted or unsubstituted, straight-chain or branched alkyl, alkenyl or aralkyl group having 1 to 10 carbon atoms;and pharmaceutically acceptable salts thereof are disclosed. These compounds show excellent and long-acting antimicrobial activities. A novel process for producing these 16-membered macrolide derivatives is further disclosed.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: May 21, 1996
    Assignee: Meiji Seika Kaisha, Ltd.
    Inventors: Keiichi Ajito, Ken-ichi Kurihara, Akira Shimizu, Shuichi Gomi, Nobue Kikuchi, Minako Araake, Tsuneo Ishizuka, Aiko Miyata, Osamu Hara, Seiji Shibahara
  • Patent number: 5512082
    Abstract: A process claimed for the removal of VOCs from fluid streams. The process comprises a vacuum swing adsorption zone containing at least 2 adsorption beds wherein the adsorbent beds are cocurrently purged with a diluent stream comprising an inert gas prior to a countercurrent evacuation step. In addition, the adsorbent beds may contain a first adsorption layer comprising an adsorbent selective for the adsorption of the inert gas, whereby the inert gas is retained within the VSA system to prevent the creation of an explosive mixture upon the condensation of the desorbed VOCs.
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: April 30, 1996
    Assignee: UOP
    Inventors: Andrew S. Zarchy, Kirit M. Patel
  • Patent number: 5505765
    Abstract: A method of separating nitrogen-enriched gas is performed by PSA with the use of an apparatus which comprises a plurality of adsorbers (1, 2), a balance tank (3), and a product receiver (4). The method is characterized by comprising the steps of (a) passing, at a predetermined flow rate, high-purity nitrogen gas from the balance tank (3) to an outlet of an adsorber (2) undergoing regeneration; (b) establishing communication between the outlets of both adsorbers (1, 2) through a pressure equalization line while opening the inlets of both adsorbers to atmospheric pressure; (c) after the above step (b), causing a predetermined amount of high-purity nitrogen gas in the balance tank (3) to reversely pass via the outlet of the adsorber (2) which is to be switched from regeneration to adsorption while also supplying the crude gas through its inlet.
    Type: Grant
    Filed: March 24, 1995
    Date of Patent: April 9, 1996
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Shinichi Kaji, Kazuo Haruna
  • Patent number: 5503658
    Abstract: A process claimed for the removal of VOCs from fluid streams. The process comprises a vacuum swing adsorption zone containing at least 2 adsorption beds wherein the adsorbent beds are cocurrently purged with a diluent stream comprising an inert gas prior to a countercurrent evacuation step. In addition, the adsorbent beds may contain a first adsorption layer comprising an adsorbent selective for the adsorption of the inert gas, whereby the inert gas is retained within the VSA system to prevent the creation of an explosive mixture upon the recovery of the desorbed VOCs.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: April 2, 1996
    Assignee: UOP
    Inventors: Andrew S. Zarchy, Kirit M. Patel
  • Patent number: 5486226
    Abstract: A nitrogen PSA system uses a back-fill step only on start-up conditions or when a minor fault has caused the plant to temporarily lose purity. The plant utilizes an oxygen analyzer which controls valves allowing the initiation and cancellation of the back-fill step.
    Type: Grant
    Filed: December 8, 1993
    Date of Patent: January 23, 1996
    Assignee: The BOC Group plc
    Inventors: Ian A. Ross, Michael B. Pooley
  • Patent number: 5470378
    Abstract: A process for removing argon from a feed gas stream comprising oxygen and argon to yield a high purity oxygen stream and the system for carrying out the process. The process includes the steps of: (a) providing a feed gas of oxygen and argon at a temperature between -30.degree. C. and 100.degree. C. and a pressure between 5 psia and 160 psia; and (b) passing the feed gas over an adsorbent bed comprising a Ag ion exchanged type X zeolite wherein at least 80% of the available ion sites are occupied by Ag such that at least a portion of the argon in the feed gas is adsorbed by the adsorbent bed thereby leaving an oxygen-enriched gas stream.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: November 28, 1995
    Assignee: Arbor Research Corporation
    Inventors: Alexander I. Kandybin, Richard A. Anderson, Daniel L. Reichley
  • Patent number: 5453112
    Abstract: Waste heat generated within a pressure swing adsorption system is effectively captured and utilized to preheat the feed gas passing to a feed gas blower for compression to the desired adsorption pressure level. The energy efficiency of the system, and overall system performance, are thereby enhanced.
    Type: Grant
    Filed: February 2, 1994
    Date of Patent: September 26, 1995
    Assignee: Praxair Technology, Inc.
    Inventors: Michael J. Sinicropi, Timothy M. Aaron, Frederick W. Leavitt, Herbert R. Schaub, James Smolarek
  • Patent number: 5451248
    Abstract: A system for controlling the atmosphere of a container for use in the storage and/or transportation of perishable goods which includes adsorption apparatus for the selective adsorption in whole or in part and in a predeterminded order of any water vapor, carbon dioxide, oxygen or ethylene contained within the atmosphere, a blower for urging the atmosphere to the adsorption apparatus, and a conduiting for returning the controlled atmosphere to the container.
    Type: Grant
    Filed: March 10, 1994
    Date of Patent: September 19, 1995
    Assignee: The BOC Group plc
    Inventors: Piotr J. Sadkowski, Michael E. Garrett, Alberto LaCava, Norberto Lemcoff, Dimitrios Psaras, Shigeki Hayashi
  • Patent number: 5441558
    Abstract: The present invention is a nitrogen pressure swing adsorption process for separating gas mixtures containing nitrogen and oxygen, such as air, using a unique gas transfer process step, continuous feed gas introduction and an appropriate isolation step with continued product purge/repressurization to achieve high purity nitrogen product of 99.9% or greater by volume nitrogen, preferably 99.99% or greater by volume of nitrogen.
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: August 15, 1995
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Sang K. Lee, Andrew W. Wang, Robert Paul
  • Patent number: 5433770
    Abstract: A pressure swing adsorption (PSA) process is provided for the size-selective separation of a feedstream into an adsorbate fraction employing a rapid blowdown step to induce a state of disequilibrium within an adsorbent bed and thereby increase the weight hourly space velocity of the process. The selective separation mechanism explored in the PSA process may also include equilibrium separation. The benefits include a reduced adsorbent bed size for new installations or increased feed rates for existing facilities. In one aspect of the invention the feedstream to be separated comprises iso and normal pentane.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: July 18, 1995
    Assignee: UOP
    Inventors: Lawrence T. Kass, William B. Dolan
  • Patent number: 5429666
    Abstract: A process for separating a feed gas mixture into a more strongly adsorbable component and a less strongly adsorbable component in a plurality of adsorbent beds containing an adsorbent selective for the more strongly adsorbable component using pressurization by product end to product end pressure equalization between beds simultaneous with cocurrent ambient and elevated pressure feed pressurization, coproduction of product and purge gas, and cocurrent depressurization for pressure equalization gas simultaneous with countercurrent evacuation. Oxygen product can be recovered from air at high recovery using the process.
    Type: Grant
    Filed: February 3, 1994
    Date of Patent: July 4, 1995
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rakesh Agrawal, Ravi Kumar, Tarik Naheiri, Charles F. Watson
  • Patent number: 5429664
    Abstract: The present invention is a pressure swing adsorption process for separating a more strongly adsorbed gas component from a less strongly adsorbed gas component in a feed gas mixture at higher recoveries and productivity and less capital cost by the use of void space gas recycle, membrane based nitrogen enrichment of feed gas and the elimination of pressure equalization steps. The process is particularly amenable to air separation wherein nitrogen product is recovered and an oxygen byproduct is removed.
    Type: Grant
    Filed: February 16, 1994
    Date of Patent: July 4, 1995
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Sang K. Lee
  • Patent number: 5415682
    Abstract: A process claimed for the removal of VOCs from fluid streams. The process comprises a vacuum swing adsorption zone containing at least 2 adsorption beds wherein the adsorbent beds are cocurrently purged with at diluent stream comprising an inert gas prior to a countercurrent evacuation step. In addition, the adsorbent beds may contain a first adsorption layer comprising an adsorbent selective for the adsorption of the inert gas, whereby the inert gas is retained within the VSA system to prevent the creation of an explosive mixture upon the condensation of the desorbed VOCs.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: May 16, 1995
    Assignee: UOP
    Inventors: Andrew S. Zarchy, Kirit M. Patel
  • Patent number: 5413625
    Abstract: Lithium/alkaline earth metal X zeolites in which the lithium:alkaline earth metal equivalent ratio is from about 95:5 to about 50:50 and lithium/alkaline earth metal A zeolites in which the lithium:alkaline earth metal equivalent ratio is from about 10:90 to about 70:30 are useful for separating oxygen and nitrogen from mixtures because they combine high adsorption capacity with high thermal stability.
    Type: Grant
    Filed: December 17, 1992
    Date of Patent: May 9, 1995
    Assignee: Praxair, Inc.
    Inventors: Chien C. Chao, John D. Sherman, Joseph T. Mullhaupt, Cornelius M. Bolinger