Noble Gas Sorbed Patents (Class 95/127)
  • Patent number: 6923844
    Abstract: A gas separation method and apparatus that recovers efficiently principal gas components from a feed gas that includes a plurality of components, and enables supplying the product gases continuously at a stable flow rate and component concentration. A first separation step using a first adsorption column and a second separation step using a second adsorption column are provided, a circulating feed gas, consisting of the recovered exhaust gases discharged in each of the steps and the feed gas, is used as a gas to be separated. The outflow rate and component concentration of a second gas product are maintained constant by controlling the outflow rate of the first gas product.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 2, 2005
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Tatsushi Urakami, Tooru Nagasaka, Masato Kawai, Akihiro Nakamura
  • Patent number: 6863713
    Abstract: An adsorbent composition containing a modified carbonaceous material capable of adsorbing an adsorbate is disclosed, wherein at least one organic group is attached to the carbonaceous material. Furthermore, methods to increase the adsorption capacity of a carbonaceous material capable of adsorbing an adsorbate and methods to adsorb an adsorbate using the above-described adsorbent composition are also disclosed.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: March 8, 2005
    Assignee: Cabot Corporation
    Inventors: Ranjan Ghosal, James A. Belmont, Douglas M. Smith, Jameel Menashi
  • Patent number: 6848269
    Abstract: Krypton and/or xenon is separated crudely from a mixture comprising oxygen and at least one rare gas selected from the group consisting of krypton and xenon in a process comprising feeding said mixture or a mixture derived therefrom to a rare gas recovery system and separating said mixture feed in said rare gas recovery system into rare gas-lean gaseous oxygen (“GOX”) and rare gas-enriched product. The process is characterized in that at least about 50 mol % of said mixture is fed to the rare gas recovery system in the gaseous phase provided that, when said mixture feed is separated by selective adsorption, the concentration of xenon in the mixture feed is no greater than 50 times the concentration of xenon in air. One advantage of a preferred embodiment of the present invention is that it can easily be retrofitted to existing pumped LOX cycle ASUs.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: February 1, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Paul Higginbotham, Kelvin Graham Hayes, Declan Patrick O'Connor
  • Patent number: 6752851
    Abstract: The gas separation and purification process can recover efficiently a valuable gas such as krypton and xenon to be used as an atmospheric gas in a semiconductor manufacturing equipment etc. by means of PSA process. In the process for separating a valuable gas in the form of purified product from a mixed gas, used as a raw gas, containing the valuable gas by means of pressure swing adsorption process, the valuable gas is separated and purified by using as the pressure swing adsorption process a combination of equilibrium pressure swing adsorption process for separating gas components based on the difference in equilibrium adsorption and rate-dependent pressure swing adsorption process for separating the gas components based on the difference in adsorption rates.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: June 22, 2004
    Assignee: Nippon Sanso Corporation
    Inventors: Masato Kawai, Akihiro Nakamura, Tooru Nagasaka, Shigeru Hayashida
  • Patent number: 6660064
    Abstract: A pressure swing adsorption process for recovering a product gas from a feed gas, includes: supplying a pressure swing adsorption apparatus including an adsorbent composition containing activated carbon as a major ingredient, wherein the adsorbent composition and the apparatus are substantially free of zeolite adsorbents; feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 20 seconds; and recovering the product gas from the pressure swing adsorption apparatus. The process and apparatus are particularly suitable for use with fuel cells and other applications requiring compact, rapid cycling systems for producing high purity hydrogen.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: December 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist
  • Patent number: 6544318
    Abstract: Pressure swing adsorption process for the recovery of high purity oxygen from a feed gas comprising oxygen, nitrogen, and argon. The process includes a forward flow stage which comprises (a) passing the feed gas into a first adsorption zone containing an adsorbent selective for the adsorption of nitrogen over oxygen and argon, and withdrawing therefrom a nitrogen-depleted intermediate gas; (b) passing the nitrogen-depleted intermediate gas into a second adsorption zone containing an adsorbent which is selective for the adsorption of nitrogen over argon and selective for the adsorption of argon over oxygen; (c) withdrawing an oxygen-enriched product gas from the second adsorption zone; and (d) terminating the passing of feed gas into the first adsorption zone and withdrawing an oxygen-enriched depressurization gas from the second adsorption zone in the same flow direction as (c).
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: April 8, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Douglas Paul Dee, Robert Ling Chiang, Edwin John Miller, Roger Dean Whitley
  • Patent number: 6461410
    Abstract: A raw gas containing a gas component A with low affinity with an adsorbent and a gas component C with high affinity with the adsorbent are sequentially supplied to at least three adsorption columns, while a desorption gas containing a gas component D which differs from the gas components A and C is supplied to each of the adsorption columns other than the one to which the raw gas is being supplied. When the raw gas is supplied to the adsorption columns, the gas component A having lower affinity with the adsorbent exits the adsorption columns earlier than the gas component C having higher affinity. The gas components A and C can thus be separated from each other. When a gas including an enriched gas component A is discharged from the outlet of each adsorption column, the full amount is extracted out of the system. When a gas including an enriched gas component C is discharged from the outlet of each adsorption column, the full amount is extracted out of the system.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: October 8, 2002
    Assignee: Organo Corporation
    Inventors: Tetsuya Abe, Sadamitsu Tanzawa, Takayuki Masuda
  • Patent number: 6440196
    Abstract: A method for purifying a minority constituent and concentrating it in a majority constituent of a gas mixture that also contains one or more other minority constituent(s) employs (i) a selective permeation step, (ii) next, a purification step, and (iii) finally a concentration step. In the selective permeation step, an initial gas mixture is passed through a membrane to yield a gas mixture that is enriched in the first minority constituent. In the purifying step, the first minority constituent is absorbed by a solid adsorbent which has a strong affinity for the first minority constituent, then following an elution step, a gas mixture that contains essentially only the majority constituent and the first minority constituent is formed.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: August 27, 2002
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Remo Chiappini, Jean-Pierre Fontaine, Michel Hamonet, Michel Thouard
  • Publication number: 20020108495
    Abstract: An AgX-type zeolite having a silver exchange level of 20-70% and a Ar/O2 Henry's law selectivity ratio at 23° C. of 1.05 or greater has an optimum combination of selectivity for argon over oxygen at lower cost than higher silver exchange levels. This material can be used in oxygen VSA/PSA processes to produce oxygen at purities above 97%.
    Type: Application
    Filed: February 13, 2001
    Publication date: August 15, 2002
    Inventors: Robert Ling Chiang, Roger Dean Whitley, Jane Elizabeth Ostroski, Douglas Paul Dee
  • Patent number: 6432170
    Abstract: An AgX-type zeolite having a silver exchange level of 20-70% and a Ar/O2 Henry's law selectivity ratio at 23° C. of 1.05 or greater has an optimum combination of selectivity for argon over oxygen at lower cost than higher silver exchange levels. This material can be used in oxygen VSA/PSA processes to produce oxygen at purities above 97%.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: August 13, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Ling Chiang, Roger Dean Whitley, Jane Elizabeth Ostroski, Douglas Paul Dee
  • Patent number: 6293995
    Abstract: A chromatograph includes an inlet for receiving a sample and a pressurized hydrogen gas flow and in response providing a sample/fluid mixture; a separation column located in a temperature-controlled zone for receiving the sample/fluid mixture and for providing a column effluent stream; a detector for receiving the effluent stream and for providing a detector output stream; and a gas storage system for receiving the detector output stream (and optionally a split flow and a septum purge flow in the instance of a split/splitless inlet) and for storing the received gas stream for subsequent reuse. In the preferred embodiments of the gas storage system, a plurality of metal hydride storage (MHS) systems are used.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: September 25, 2001
    Assignee: Agilent Technologies, Inc.
    Inventor: William H. Wilson
  • Patent number: 6261343
    Abstract: The present invention provides a pressure swing adsorption process. The process includes providing a pressure swing adsorption apparatus having a discharge end adsorption layer of activated carbon, feeding through the apparatus a feed gas including hydrogen, carbon monoxide and at least one of argon and oxygen, and collecting a product gas from the apparatus, wherein the product gas is high purity hydrogen. Also provided is a method for decreasing an amount of impurities in a product gas from a pressure swing adsorption process for separating hydrogen from impurities including carbon monoxide, and at least one of argon and oxygen.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: July 17, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Thomas Stephen Farris, Robin Joyce Maliszewskyj, Tracey A Cook
  • Patent number: 6217633
    Abstract: A process and an apparatus for recovering a noble gas, which can recover a noble gas exhausted from a noble gas employing system efficiently and also can supply the noble gas of a predetermined purity to the noble gas employing system and which can reduce consumption of the noble gas. In the process and apparatus for recovering a noble gas, when a noble gas contained in an exhaust gas exhausted from a noble gas employing system operated under reduced pressure is recovered, switching between introduction of the exhaust gas to a recovery system and exhaustion of the exhaust gas to an exhaust system is carried out under reduced pressure, and this switching operation is carried out depending on the content of impurity components contained in the exhaust gas or on the running state of the noble gas employing system.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: April 17, 2001
    Assignees: Nippon Sanso Corporation
    Inventors: Tadahiro Ohmi, Yoshio Ishihara
  • Patent number: 6143057
    Abstract: Adsorbent composites composed of microparticulate zeolites at least 90% of whose particles have a characteristic particle dimension not greater than about 0.6 micron and a macropore inert binder. The composites are useful for separating strongly adsorbed gas components from gas mixtures. Microparticulate type X zeolites composites are particularly useful for separating nitrogen or carbon dioxide from air.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: November 7, 2000
    Assignee: The BOC Group, Inc.
    Inventors: Martin Bulow, Frank R. Fitch, Adeola Florence Ojo
  • Patent number: 6113673
    Abstract: This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: September 5, 2000
    Assignee: Materials and Electrochemical Research (MER) Corporation
    Inventors: Raouf O. Loutfy, Xiao-Chun Lu, Weijiong Li, Michael G. Mikhael
  • Patent number: 6036753
    Abstract: A method and apparatus for testing and remediating the effects of radon infiltration in buildings. The method of this invention places fiber glass materials over radon-emitting surfaces in order to entrap radon and radon progeny. The fiber glass materials can be formed into mats having a packed geometry. Each mat has fiber bundles having several thousand individual fibers. Each fiber has an approximate diameter size of about 50 microns. The glass fiber consists of a silicon oxide glass that may be doped, for example, with trivalent cerium ions. The mats can be of any geometrical configuration, such as rectangular.
    Type: Grant
    Filed: August 19, 1998
    Date of Patent: March 14, 2000
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Alan Appleby, George H. Sigel, Jr., Il Sik Kim
  • Patent number: 5958098
    Abstract: A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: September 28, 1999
    Assignee: Westinghouse Savannah River Company
    Inventor: Leung K. Heung
  • Patent number: 5895769
    Abstract: Applicant has discovered a new zeolite containing composition and a process for preparing the same. The composition is unique in that the zeolite crystals making up one layer of the composition pack in a manner such that the composition is essentially continuous with no large scale voids even when the zeolite layer is <10 .mu.m thick. Thus, the present invention is directed toward a composition comprised of a porous substrate and a layer of zeolite crystals wherein said layer of zeolite crystals is a polycrystalline layer with at least 99% of said zeolite crystals having at least one point between adjacent crystals that is .ltoreq.20 .ANG. and wherein at least 90% of said crystals have widths of from about 0.2 to about 100 microns (preferably about 2 to about 50 microns) and wherein at least 75% of said crystals have a thickness of within 20% of the average crystal thickness. Preferably the composition has at most 1 Volume % voids in the zeolite layer. Use of the composition is also described.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: April 20, 1999
    Assignee: Exxon Research and Engineering Company
    Inventor: Wenyih Frank Lai
  • Patent number: 5833737
    Abstract: Krypton present in a trace amount in a gaseous oxygen/nitrogen mixture is effectively enriched by an adsorption/desorption process of the pressure variation mode using a system including at least three fixed bed adsorption columns packed with hydrogenated mordenite. At the end of adsorption operation in one column, a desorbed gas from another column is fed to the one column under substantially the same pressure as the pressure during adsorption operation for fully washing the one column. Thereafter, the one column is subject to desorption operation.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: November 10, 1998
    Assignee: Institute of Research and Innovation
    Inventors: Takaaki Tamura, Mikio Kumagai
  • Patent number: 5707424
    Abstract: A process system with an integrated gas storage and delivery unit comprising an adsorption-desorption apparatus, for storage and dispensing of a gas wherein the gas is dispensed by pressure differential desorption of the sorbate gas from the sorbent material. A motive fluid driver, e.g., a pump, blower, compressor, eductor, or the like, is arranged for flowing the dispensed gas to a gas-utilizing unit, such as an ion-implant unit, wastewater treatment unit, gas-liquid contacting chamber, chemical vapor deposition reactor, gas laser assembly, etc.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: January 13, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, James V. McManus
  • Patent number: 5683492
    Abstract: A process for the recovery of carbon monoxide from a purge gas from acetic acid synthetic containing at least carbon monoxide, nitrogen and hydrogen, wherein the purge gas (6) containing at least carbon monoxide, nitrogen and hydrogen is separated into a gas fraction (11) rich in carbon monoxide and a residual gas fraction (12, 13) rich in nitrogen and hydrogen by an adsorption process (G), preferably by a pressure change absorption process, and the gas fraction (11) rich in carbon monoxide is returned upstream of the acetic acid.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: November 4, 1997
    Assignee: Linde Aktiengesellschaft
    Inventors: Peter Hesse, Siegfried Michel, Horst Weiss
  • Patent number: 5676735
    Abstract: A system for recovery of adsorbed gas remaining in a used storage and dispensing vessel containing sorbent material having residual sorbate gas thereon, when the vessel is taken out of service, in which the used storage and dispensing vessel is coupled in flow communication with at least one fresh storage and dispensing vessel containing sorbent material therein having sorptive capacity for the residual sorbate gas. The fresh vessel is maintained in a first zone and the used vessel is maintained in a second zone, at temperature and/or pressure conditions relative to one another that cause the residual sorbate gas to desorb from the sorbent material in the used storage and dispensing vessel and flow into the fresh storage and dispensing vessel for sorption of the residual sorbate gas on the sorbent material in the fresh storage and dispensing vessel.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: October 14, 1997
    Assignee: Advanced Technology Materials, Inc.
    Inventor: James V. McManus
  • Patent number: 5669961
    Abstract: A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: September 23, 1997
    Assignee: Lockheed Martin Idaho Technologies Company
    Inventors: John D. Baker, David H. Meikrantz, Dale G. Tuggle
  • Patent number: 5658372
    Abstract: A system for adsorbing a plurality of contaminants from a workstream composed of a first stage open-ended activated carbon monolith adsorber, a second stage open ended activated carbon monolith adsorber downstream of the first stage. The first stage activated carbon has an average pore size that is larger than the average pore size of the second stage activated carbon.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: August 19, 1997
    Assignee: Corning Incorporated
    Inventor: Kishor P. Gadkaree
  • Patent number: 5503811
    Abstract: A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: April 2, 1996
    Inventors: R. K. Ahluwalia, K. H. Im
  • Patent number: 5470378
    Abstract: A process for removing argon from a feed gas stream comprising oxygen and argon to yield a high purity oxygen stream and the system for carrying out the process. The process includes the steps of: (a) providing a feed gas of oxygen and argon at a temperature between -30.degree. C. and 100.degree. C. and a pressure between 5 psia and 160 psia; and (b) passing the feed gas over an adsorbent bed comprising a Ag ion exchanged type X zeolite wherein at least 80% of the available ion sites are occupied by Ag such that at least a portion of the argon in the feed gas is adsorbed by the adsorbent bed thereby leaving an oxygen-enriched gas stream.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: November 28, 1995
    Assignee: Arbor Research Corporation
    Inventors: Alexander I. Kandybin, Richard A. Anderson, Daniel L. Reichley
  • Patent number: 5354362
    Abstract: A method of filtering a natural gas stream, at the end user's home, business or the like, in which at least a single gas appliance is located, is described in which natural gas odorants have been concentrated in the stream at sufficient levels to be a significant health hazard and/or an adverse environmental threat, such method comprising the steps of: (a) introducing the stream to a filter selected from a group that includes at least activated charcoal and/or impingement adsorbing media wherein in the odorant in the gas stream at sufficient levels to be a significant health hazard and/or an adverse environmental threat due to aperiodic loading of the network occurring as a result of dampening effects of compressor-driven equipment and multiple customer outlet usage causing the ordorant to become clumped into packets, is filtered from the gas stream and captured irrespective of mode of transport, (b) passing the filtered natural gas stream to the end user's gas appliance wherein safe use of the energy associa
    Type: Grant
    Filed: July 15, 1993
    Date of Patent: October 11, 1994
    Inventor: Richard F. Sowinski
  • Patent number: 5246895
    Abstract: The invention relates to a method for producing ceramic composites obtained by oxidation of a parent metal to form a polycrystalline ceramic material by providing a filler having a coating of a silicon source on at least a portion of the filler different in composition from the primary composition of the filler, said silicon source possessing intrinsic doping properties. A body of molten parent metal, adjacent a mass of the filter material, reacts with an oxidant to form an oxidation reaction product which infiltrates the adjacent mass of filler, thereby forming the ceramic composite.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: September 21, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Harold D. Lesher, Christopher R. Kennedy, Danny R. White, Andrew W. Urquhart
  • Patent number: 5234472
    Abstract: A process for separation of a gas mixture containing three components, e.g. a mixture comprising hydrogen, carbon monoxide and carbon dioxide produced by steam reforming a hydrocarbon, by pressure swing adsorption is disclosed.
    Type: Grant
    Filed: March 11, 1992
    Date of Patent: August 10, 1993
    Assignee: The BOC Group plc
    Inventors: Ramachandran Krishnamurthy, Steven L. Lerner, Yagya Shukla, Alan G. Stokley