Sulfur Dioxide Or Sulfur Trioxide Sorbed Patents (Class 95/137)
  • Publication number: 20080127822
    Abstract: Dry-scrubbing media compositions, methods of preparing same, and methods of use are provided. The compositions contain activated alumina and potassium carbonate. Optionally, activated carbon and other impregnates, such as sulfates of group 1A metals, are included in the compositions. The compositions exhibit improved efficiency and capacity for the removal of compounds such as chlorine or sulfur dioxide from an air-stream. The compositions are particularly useful for reducing or preventing the release of toxic gaseous compounds from the areas such as petroleum storage areas, refineries, drinking water systems, sewage treatment facilities, swimming pools, hospital morgues, animal rooms, and pulp and paper production sites.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 5, 2008
    Applicant: Purafil, Inc.
    Inventor: William G. England
  • Patent number: 7241430
    Abstract: An activated carbon-metal oxide matrix is disclosed. The activated carbon-metal oxide matrix may be obtained by a method including the steps of: preoxidizing a carbon material, grinding the preoxidized carbon material; mixing the ground preoxidized material with a metal oxide to form a carbon mixture; extruding the carbon mixture; carbonizing and activating the extrudate. The activated carbon-metal oxide matrix may be used to remove odorous compounds, acidic gases, and volatile organic compounds from a gas.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: July 10, 2007
    Assignee: Siemens Water Technologies Holding Corp.
    Inventors: James Richard Graham, Jianyuan Cheng
  • Patent number: 7238223
    Abstract: An apparatus for removing constituents from a fluid stream is provided. The apparatus includes a duct, a collection device, a sorbent injector, and an acoustic generator. The duct has a fluid passageway to receive a fluid stream having constituents. The collection device filters the fluid stream. The sorbent injector injects a sorbent in the fluid passageway of the duct. The acoustic generator generates an acoustic field in the fluid passageway of the duct to promote sorption of the constituents for collection by the collection device. Additionally, a method is provided for removing constituents from a fluid stream.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: July 3, 2007
    Assignee: Board of the Regents, The University of Texas System
    Inventor: G. Douglas Meegan, Jr.
  • Patent number: 7153345
    Abstract: High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn—OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: December 26, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, David L. King
  • Patent number: 7141093
    Abstract: A method of scrubbing a gas stream with re-circulated kiln dust when the kiln dust is hydrated to form a sorbent. The sorbent is re-circulated with un-reacted flue gas stream for scrubbing.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: November 28, 2006
    Assignee: Graymont QC Inc.
    Inventor: Alain Charette
  • Patent number: 7101416
    Abstract: A method and composition for the removal of contaminants in a gas stream used in the contamination sensitive processes of photolithography and metrology are described. The synergistic effect of a combination of an electropositive metal component, a high silica zeolite, and a late transition metal compound effects removal or reduction of the contaminates in the gas which interfere with light transmittance to the ppb or ppt levels necessary for the gas to be suitable for these uses. The removal of neutral polar molecules, neutral polar aprotic molecules, protic and aprotic alkaline molecules, acidic polar species, and neutral non-polar aprotic molecules is accomplished with the claimed composition. Depending on the type of contaminant, the composition components are each varied from 10 to 80 parts by volume, with the total composition limited to 100 parts by volume.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: September 5, 2006
    Assignee: Mykrolis Corporation
    Inventors: Daniel Alvarez, Jr., Jeffrey J. Spiegelman
  • Patent number: 7014831
    Abstract: Sulfuryl fluoride, which is useful as a fumigant, may be contaminated with sulfur dioxide and possibly other impurities such as sulfuryl chloride, depending on the way it is produced. According to the invention, sulfur dioxide and, if applicable, sulfuryl chloride fluoride are removed from a contaminated sulfuryl fluoride product by using aluminum oxide as an adsorbing agent. The method of the invention is highly advantageous because it eliminates the need to use activated carbon as an additional adsorbent.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: March 21, 2006
    Assignee: Solway Fluor und Derivate GmbH
    Inventors: Johannes Eicher, Matthias Marek, Lore Hirsch
  • Patent number: 6962616
    Abstract: A method of making an adsorbent which includes: a) thermally drying dewatered sewage sludge to form granulated organic fertilizer; b) treating the fertilizer with mineral oil; and c) pyrolyzing the treated fertilizer at temperatures between about 600° C. and about 1000° C. The disclosure is also directed to adsorbents made by this method and to the processes of removing acidic gas or gases from wet gas streams by putting an adsorbent in contact with the wet gas stream and allowing the adsorbent to adsorb the acidic gas or gases.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: November 8, 2005
    Assignee: Research Foundation of The City University of New York
    Inventors: Teresa J. Bandosz, Andriy Bahryeyev
  • Patent number: 6911064
    Abstract: A method and apparatus for preventing contamination of a substrate or a substrate surface, and particularly relates to prevention of contamination of raw materials, semi-finished products, base materials of products and substrate surface in a high-tech industry such as an in the production of semiconductors and liquid crystals. A gas coming into contact with a base material or substrate is purified by dust removing apparatus and adsorption and/or absorption apparatus so that the concentration of fine particles in the gas is below class 1,000 and a non-methane hydrocarbon concentration is below 0.2 ppm. Thereafter, the base material or the substrate surface is exposed to this gas.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: June 28, 2005
    Assignee: Ebara Research Co., Ltd.
    Inventors: Toshiaki Fujii, Tsukuru Suzuki, Hidetomo Suzuki, Kazuhiko Sakamoto
  • Patent number: 6858192
    Abstract: An activated carbon-metal oxide matrix is disclosed. The activated carbon-metal oxide matrix may by obtained by a method including the steps of: preoxidizing a carbon material, grinding the preoxidized carbon material; mixing the ground preoxidized material with a metal oxide to form a carbon mixture; extruding the carbon mixture; carbonizing and activating the extrudate. The activated carbon-metal oxide matrix may be used to remove odorous compounds, acidic gases, and volatile organic compounds from a gas.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: February 22, 2005
    Assignee: USFilter Corporation
    Inventors: James Richard Graham, Cheng Jian Yuan
  • Patent number: 6824589
    Abstract: Regenerable gas purifier materials are provided capable of reducing the level of contaminants such as oxygen and water in an inert, nonreactive or reactive gas stream to parts-per-billion levels or sub-parts-per-billion levels. The purifier materials of this invention comprise a thin layer of one or more reduced forms of a metal oxide coated on the surface of a nonreactive substrate. The thin layer may further contain the completely reduced form of the metal.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: November 30, 2004
    Assignee: Matheson Tri-Gas
    Inventors: Tadaharu Watanabe, Dan Fraenkel, Robert Torres, Jr.
  • Patent number: 6773490
    Abstract: A process for reversible sorption of sulfur trioxide onto a sorbent comprising a) contacting from about 15% to 100% sulfur trioxide with the sorbent under anhydrous conditions at a temperature of from about 35° C. to about 150° C. thereby sorbing the sulfur trioxide onto the sorbent, b) desorbing sulfur trioxide from the sorbent at a temperature of from about 150° C. to about 350° C. at about atmospheric pressure, or under a vacuum pressure, and c) recycling said sorbent by continuously repeating steps a) and b), wherein said sorbent consists essentially of silica or zeolite having a silicon to aluminum ratio in the ranges of from about 1 to about 4.4 or greater than about 5.1, and having a pore size of at least 0.5 nm is disclosed.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 10, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Stephen Ernest Jacobson, Howard M. Blank, David Richard Corbin
  • Patent number: 6743271
    Abstract: An air filter for gasoline and diesel engines that drastically improves the burning efficiency of gasoline and diesel engines is provided. The air filter includes a, replaceable filtering member made of natural fibres or synthetic fibres inside an outer box. The natural or synthetic fibres are adhered with naturally radioactive rare earth element minerals that release negative ions. The element minerals are in the form of fine powders with average diameter of 0.1 &mgr;m˜100 &mgr;m, such that when air passes through the filtering member, it is purified by the released negative ions and becomes oxygen-rich air for use in the combustion chambers of gasoline or diesel engines.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: June 1, 2004
    Assignee: Yi-Ting Hsu
    Inventor: Kawaji Takimoto
  • Patent number: 6733570
    Abstract: A method and apparatus for preventing contamination of a substrate or a substrate surface, and particularly relates to prevention of contamination of raw materials, semi-finished products, base materials of products and substrate surface in a high-tech industry such as in the production of semiconductors and liquid crystals. A gas coming into contact with a base material or substrate is purified by dust removing apparatus and adsorption and/or absorption apparatus so that the concentration of fine particles in the gas is below class 1,000 and a non-methane hydrocarbon concentration is below 0.2 ppm. Thereafter, the base material or the substrate surface is exposed to this gas.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: May 11, 2004
    Assignee: Ebara Research Co., Ltd.
    Inventors: Toshiaki Fujii, Tsukuru Suzuki, Hidetomo Suzuki, Kazuhiko Sakamoto
  • Patent number: 6602324
    Abstract: A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, pSO2*, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: August 5, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Robin Edward Richards, David Douglas Brengel, Michael Francis Carolan
  • Patent number: 6576044
    Abstract: A gas mixture comprised of nitric oxide and one or more impurities selected from nitrous oxide, nitrogen dioxide, nitrous acid, sulfur dioxide, carbonyl sulfide, water vapor and carbon dioxide is purified by pressure swing adsorption or temperature swing adsorption using a porous, metal-free polymer adsorbent that does not promote the disproportionation of nitric oxide to nitrogen dioxide and nitrogen or nitrous oxide. The adsorption step is preferably carried out at tempereatures in the range of about −120 to about 0° C.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: June 10, 2003
    Assignee: The BOC Group, Inc.
    Inventors: Dustin Wenpin Ho, Deming Tang, Walter H. Whitlock
  • Publication number: 20020197198
    Abstract: A process for reversible sorption of sulfur trioxide onto a sorbent comprising a) contacting from about 15% to 100% sulfur trioxide with the sorbent under anhydrous conditions at a temperature of from about 35° C. to about 150° C. thereby sorbing the sulfur trioxide onto the sorbent, b) desorbing sulfur trioxide from the sorbent at a temperature of from about 150° C. to about 350° C. at about atmospheric pressure, or under a vacuum pressure, and c) recycling said sorbent by continuously repeating steps a) and b), wherein said sorbent consists essentially of silica or zeolite having a silicon to aluminum ratio in the ranges of from about 1 to about 4.4 or greater than about 5.1, and having a pore size of at least 0.5 nm is disclosed.
    Type: Application
    Filed: May 4, 2001
    Publication date: December 26, 2002
    Inventors: Stephen Ernest Jacobson, Howard M. Blank, David Richard Corbin
  • Patent number: 6464757
    Abstract: The filter contains about 1-15% lithium hydroxide and about 85-99% hopcalite material, having a particle size of approximately 20 to 100 mesh, and can be used in combination with a chemical oxygen generator for removing chlorine gas and carbon monoxide.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: October 15, 2002
    Assignee: BE Intellectual Property, Inc.
    Inventors: Yunchang Zhang, Michael J. Brumely, James C. Cannon, John E. Ellison, Girish S. Kshirsagar
  • Publication number: 20020100367
    Abstract: The invention is directed to an adsorbent comprising: a) 20-30% porous carbon with incorporated organic nitrogen species; and b) 70-80% inorganic matter. The invention is directed to a method of making an adsorbent which comprises: a) thermally drying dewatered sewage sludge to form granulated organic fertilizer; and b) pyrolyzing said the organic fertilizer at temperatures between 600 and 1000° C. The invention is additionally directed to the process of removing acidic gases from wet air streams comprising putting an adsorbent in contact with the wet air stream and allowing the adsorbent to adsorb the acidic gases.
    Type: Application
    Filed: November 29, 2001
    Publication date: August 1, 2002
    Applicant: The Research Foundation of the City Universtiy of New York
    Inventors: Teresa J. Bandosz, Andriy Bahryeyev, David C. Locke
  • Patent number: 6402819
    Abstract: The present invention relates to a fresh air filter that comprises a highly air-permissive two- or three-dimensional support made of a cross-linked polymeric foam which includes pores of large dimensions. The support comprises joining portions which are coated with a layer of ion-exchange globules.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: June 11, 2002
    Assignee: MHB Filtration GmbH & Co. KG
    Inventors: Ernest De Ruiter, Jonas Toernblom
  • Patent number: 6391090
    Abstract: A method and composition for the removal of contaminants in a gas stream used in the contamination sensitive processes of photolithography and metrology are described. The synergistic effect of a combination of an electropositive metal component, a high silica zeolite, and a late transition metal compound effects removal or reduction of the contaminates in the gas which interfere with light transmittance to the ppb or ppt levels necessary for the gas to be suitable for these uses. The removal of neutral polar molecules, neutral polar aprotic molecules, protic and aprotic alkaline molecules, acidic polar species, and neutral non-polar aprotic molecules is accomplished with the claimed composition. Depending on the type of contaminant, the composition components are each varied from 10 to 80 parts by volume, with the total composition limited to 100 parts by volume.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: May 21, 2002
    Assignee: Aeronex, Inc.
    Inventors: Daniel Alvarez, Jr., Jeffrey J. Spiegelman
  • Patent number: 6340381
    Abstract: A method and apparatus for preventing contamination of a substrate or a substrate surface, and particularly relates to prevention of contamination of raw materials, semi-finished products, base materials of products and substrate surface in a high-tech industry such as in the production of semiconductors and liquid crystals. A gas coming into contact with a base material or substrate is purified by dust removing apparatus and adsorption and/or absorption apparatus so that the concentration of fine particles in the gas is below class 1,000 and a non-methane hydrocarbon concentration is below 0.2 ppm. Thereafter, the base material or the substrate surface is exposed to this gas.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: January 22, 2002
    Assignee: Ebara Research Co., Ltd.
    Inventors: Toshiaki Fujii, Tsukuru Suzuki, Hidetomo Suzuki, Kazuhiko Sakamoto
  • Patent number: 6296689
    Abstract: The filer contains about 1-15% lithium hydroxide and about 85-99% hopcalite material, having a particle size approximately 20 to 100 mesh, and can be used in combination with a chemical oxygen generator for removing chlorine gas and carbon monoxide.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: October 2, 2001
    Assignee: BE Intellectual Property, Inc.
    Inventors: Yunchang Zhang, Michael J. Brumely, James C. Cannon, John E. Ellison, Girish S. Kshirsagar
  • Publication number: 20010005981
    Abstract: A process for removing hydrogen sulfide from a gas stream wherein the filtering media consists essentially of calcined diatomite and between 5% and 30% by weight of ferric ions bonded to the calcined diatomite. This process is particularly efficient due to the fact that the removal of hydrogen sulfide from the gas stream is effected with a single pass adsorption performance of up to 45 mg of H2S per gram of filtering media. Other advantages include the fact that the process has the ability to remove H2S form a gaseous mixture, from a concentration of 30,000 ppm down to non-detectable levels in a single pass. Repeated in-situ regeneration of the filtering media has been proven to be a simple matter of blowing ambient air through the filtering media.
    Type: Application
    Filed: February 7, 2001
    Publication date: July 5, 2001
    Inventors: Eric L. Winchester, Michael J. McMullin, Jeffrey K. Hum
  • Patent number: 6221241
    Abstract: A process for the purification of a fluid stream containing a sulphur contaminant, such as hydrogen sulphide, and mercury, phosphine, stibine, and/or arsenic compounds as a second contaminant wherein said fluid stream is passed through a bed of a particulate absorbent containing a sulphide of a variable valency metal, especially copper, that is more electropositive than mercury, to remove said second contaminant and then the sulphur contaminant is removed from at least part of the effluent from that bed by passing that part of the effluent through a bed of a particulate sulphur absorbent comprising a compound selected from oxides, hydroxides, carbonates and basic carbonates of said variable valency metal is disclosed. The removal of the sulphur contaminant converts said variable valency metal compound to the corresponding sulphide. The resulting bed of variable valency metal sulphide is subsequently used for the removal of the second contaminant.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: April 24, 2001
    Assignee: Imperial Chemical Industries PLC
    Inventors: Peter John Herbert Carnell, Edwin Stephen Willis
  • Patent number: 6210466
    Abstract: According to the present invention, a process is provided which overcomes historical limitations to the capacity of PSA units for a wide variety of gas separations. Capacities in excess of about 110 thousand normal cubic meters per hour (100 million standard cubic feet per day) can now be achieved in a single integrated process train. The corresponding significant equipment reduction results from a departure from the accepted principle in the PSA arts that the length of the purge step must be equal to or less than the length of the adsorption step.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: April 3, 2001
    Assignee: UOP LLC
    Inventors: Michael Whysall, Ludovicus Jan Marie Wagemans
  • Patent number: 6203598
    Abstract: This invention relates to a flue gas treating process including a heat recovery step for recovering heat from flue gas by means of a heat exchanger (4) and thereby cooling the flue gas, and a subsequent absorption step for bringing the flue gas into gas-liquid contact with an absorbing fluid (D) in absorption towers (12, 13) so as to remove at least SO2 present in the flue gas by absorption into the absorbing fluid (D), which is characterized, for example, in that a powder addition step for spraying a powder collectable in the absorption step into the flue gas is provided prior to the heat recovery step. This invention makes it possible to provide a flue gas treating process in which a countermeasure against SO3 present in flue gas can be easily achieved without resorting to ammonia injection and the flue gas can further be purified without the disadvantage of causing the injected substance to remain in the treated flue gas.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: March 20, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shigeo Hasegawa, Naohiko Ukawa, Susumu Okino, Koichiro Iwashita, Kazuaki Kimura, Atsushi Yoshioka, Yoshimitsu Kawanishi, Shoichi Onishi, Toru Takashina, Toyoshi Nakagawa
  • Patent number: 6174510
    Abstract: A process for the absorbing of a hot, dry gas stream of sulfur trioxide (SO3) in a stream of strong sulfuric acid. The process includes the steps of passing the hot, dry gas stream of SO3 into a sulfuric acid absorption tower above a packed bed held within the tower and below a liquid collection floor. A stream of strong sulfuric acid is introduced into the tower above the packed bed and allowed to pass cocurrently downwardly through the packed bed with the stream of SO3, thereby allowing the SO3 to be absorbed in the stream of strong sulfuric acid. The resulting concentrated sulfuric acid passes through a packing support into a lower plenum and the spent gas is fed upwardly through a gas conduit to an upper plenum located above the liquid collection floor and from there through a mist eliminator.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: January 16, 2001
    Inventor: Marcos D. Riano
  • Patent number: 6114273
    Abstract: An improved process is provided for the removal of sulfur oxides from gas or vapor media containing oxygen and H.sub.2 O by contacting the media with a catalytically-active carbonaceous char. The improvement is provided by the use of a catalytically-active carbonaceous char prepared by low-temperature carbonization and oxidation of a bituminous coal or bituminous material at temperatures below 700.degree. C., followed by contact of the carbonized, oxidized char with one or more nitrogen-containing compounds at a temperature which is stable at, or is increasing to, temperatures less than 700.degree. C., and then increasing the temperature of the resultant material to or above 700.degree. C.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: September 5, 2000
    Assignee: Calgon Carbon Corporation
    Inventor: Richard A. Hayden
  • Patent number: 6104855
    Abstract: A terminal assembly for an optic cable equipped with terminal connectors is provided with a housing having a small through-hole and a large through-hole. A plug for keeping optical fibers within the housing to prevent the optical fibers from getting entangled with one another is mounted within the housing. Through the use of a nut member fixed to the cable, the housing is fixed to the cable. A flexible cap member for enclosing the optical fibers and the terminal connectors is combined with the housing to enclose them.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: August 15, 2000
    Assignee: Daewoo Telecom Ltd.
    Inventor: Yong Han Jeon
  • Patent number: 6071329
    Abstract: The filter contains about 1-5% lithium hydroxide and about 85-99% hopcalite material, having a particle size of approximately 20 to 100 mesh, and can be used in combination with a chemical oxygen generator for removing chlorine gas and carbon monoxide.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: June 6, 2000
    Assignee: BE Intellectual Property, Inc.
    Inventors: Yunchang Zhang, Michael J. Brumely, James C. Cannon, John E. Ellison, Girish S. Kshirsagar
  • Patent number: 6007706
    Abstract: A process for the purification of a fluid stream containing a sulphur contaminant, such as hydrogen sulphide, and mercury, phosphine, stibine, and/or arsenic compounds as a second contaminant wherein said fluid stream is passed through a bed of a particulate absorbent containing a sulphide of a variable valency metal, especially copper, that is more electropositive than mercury, to remove said second contaminant and then the sulphur contaminant is removed from at least part of the effluent from that bed by passing that part of the effluent through a bed of a particulate sulphur absorbent comprising a compound selected from oxides, hydroxides, carbonates and basic carbonates of said variable valency metal is disclosed. The removal of the sulphur contaminant converts said variable valency metal compound to the corresponding sulphide. The resulting bed of variable valency metal sulphide is subsequently used for the removal of the second contaminant.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: December 28, 1999
    Assignee: Imperial Chemical Industries PLC
    Inventors: Peter John Herbert Carnell, Edwin Stephen Willis
  • Patent number: 6001152
    Abstract: The present invention provides compositions including a salt selected from the group consisting essentially of sodium nitrate, sodium nitrite, ammonium nitrate, lithium nitrate, barium nitrate, cerium nitrate, and mixtures thereof, as flue gas conditioning formulations for use in controlling particulates, hazardous substances, NO.sub.x, and SO.sub.x. For the purpose of obtaining greater yields of particulate and hazardous substance removal, the compositions may further include a polyhydroxy compound, preferably selected from the group consisting essentially of sucrose, fructose, glucose, glycerol, and mixtures thereof. Methods are also provided for adding these compositions to the flue gas stream to control particulate, hazardous substance, NO.sub.x, and SO.sub.x emissions.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: December 14, 1999
    Inventor: Rabindra K. Sinha
  • Patent number: 5944874
    Abstract: A process for separating a feed gas stream containing elemental oxygen and nitrogen to produce a purified nitrogen gas stream by removing oxygen from the feed gas stream using an ion transport membrane to produce a retentate gas stream and a permeate gas stream, wherein the feed gas stream or the retentate gas stream is purified to remove impurities either before or after the separation step to produce the purified nitrogen gas stream.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: August 31, 1999
    Assignee: Praxair Technology, Inc.
    Inventors: Ravi Prasad, Christian Friedrich Gottzmann, Homer Fay
  • Patent number: 5928496
    Abstract: Hydrotalcite-like materials are stable in the crystalline oxide structure and essentially reversible in anion exchange. A novel process of sulfur oxide sorption is provided utilizing these hydrotalcite materials as contact solids. Large crystalline sheet materials having increased sorption of SO.sub.x are provided by incorporation of certain organic acid anionic species to modify the hydrotalcite/brucite structure. Typical industrial applications include sulfur removal from fluid catalyst cracking process, cold-side combustion gas sulfur abatement and cleaner coal gasification.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: July 27, 1999
    Assignee: Contract Materials Processing, Inc.
    Inventors: Edwin W. Albers, Harry W. Burkhead, Jr.
  • Patent number: 5922105
    Abstract: A method and apparatus for preventing contamination of a substrate or a substrate surface, and particularly relates to prevention of contamination of raw materials, semi-finished products, base materials of products and substrate surface in a high-tech industry such as in the production of semiconductors and liquid crystals. A gas coming into contact with a base material or substrate is purified by dust removing apparatus and adsorption and/or absorption apparatus so that the concentration of fine particles in the gas is below class 1,000 and a non-methane hydrocarbon concentration is below 0.2 ppm. Thereafter, the base material or the substrate surface is exposed to this gas.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: July 13, 1999
    Assignee: Ebara Research Co., Ltd.
    Inventors: Toshiaki Fujii, Tsukuru Suzuki, Hidetomo Suzuki, Kazuhiko Sakamoto
  • Patent number: 5906429
    Abstract: An optical illumination device reflects and condenses light from a mercury-arc lamp by a light reflecting and condensing member and then reflects and deflects the light, thereafter the reflected and deflected light is transferred to a relay-lens system through a collimator lens or input lens, band-pass filter and fly-eye lens. Gas from which impurities are removed by a filter is flown around optical elements to separate the optical elements from air containing material causing clouding of the optical elements to thereby restrain clouding of the optical elements. On the other hand, or in addition, the reflectance of the light reflecting and condensing member and/or miller for the light of the absorption band of sulfur dioxide is made small to prevent the optical elements from clouding.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: May 25, 1999
    Assignee: Nikon Corporation
    Inventors: Takashi Mori, Jin Yamada, Jun Nagatsuka, Shinichi Hasegawa, Shigeru Hagiwara
  • Patent number: 5858068
    Abstract: Industrial grade carbon dioxide may contain unacceptable amounts of sulfur-containing materials, oxygen, and organic materials particularly detrimental to food-related uses of CO.sub.2. These can be effectively removed by a bed of silver-exchanged faujasite and an MFI-type molecular sieve. This permits an on-site, on-demand method of purifying CO.sub.2 ranging from laboratory to tank car seals.
    Type: Grant
    Filed: October 9, 1997
    Date of Patent: January 12, 1999
    Assignee: UOP LLC
    Inventors: James R. Lansbarkis, Jon S. Gingrich
  • Patent number: 5733515
    Abstract: The present invention discloses an improved method for filtration of air within enclosed spaces. Improvement is achieved by the use of a high-temperature carbonaceous char that is catalytically active for the removal of certain undesirable constituents from contaminated air under ambient temperature conditions. This carbonaceous char is used as an air filtration medium and incorporated into an air filtration device by any of a number of technologies. Such devices may be used for removal of contaminants such as NO.sub.x, NO.sub.2, SO.sub.x, SO.sub.2, H.sub.2 S, mercaptans, light aliphatic gases such as butane and propane and other compounds such as benzene, hexane, toluene, xylene, amines and the like from enclosed or confined structures such as buildings or vehicles including automobiles, aircraft, trucks, farm equipment, and the like.
    Type: Grant
    Filed: February 28, 1996
    Date of Patent: March 31, 1998
    Assignee: Calgon Carbon Corporation
    Inventors: David T. Doughty, Richard A. Hayden, John W. Cobes, III, Thomas M. Matviya
  • Patent number: 5730781
    Abstract: According to the invention, regeneration is performed by filtering and by regenerating simultaneously the used absorbent; two stages are carried out for the regeneration: one, which is a rough stage, is performed in the presence of a regeneration gas; the other, a free stage, is performed in the presence of a fresh regeneration gas.
    Type: Grant
    Filed: February 13, 1996
    Date of Patent: March 24, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Gerard Martin, Luc Nougier, Jean-Christophe Dolignier
  • Patent number: 5700436
    Abstract: The present invention discloses an improved method for filtration of air within enclosed spaces. Improvement is achieved by the use of a high-temperature carbonaceous char that is catalytically active for the removal of certain undesirable constituents from contaminated air under ambient temperature conditions. This carbonaceous char is used as an air filtration medium and incorporated into an air filtration device by any of a number of technologies. Such devices may be used for removal of contaminants such as NO.sub.x, NO.sub.2, SO.sub.x, SO.sub.2, H.sub.2 S, mercaptans, light aliphatic gases such as butane and propane and other compounds such as benzene, hexane, toluene, xylene, amines and the like from enclosed or confined structures such as buildings or vehicles including automobiles, aircraft, trucks, farm equipment, and the like.
    Type: Grant
    Filed: June 2, 1994
    Date of Patent: December 23, 1997
    Assignee: Calgon Carbon Corporation
    Inventors: David T. Doughty, Richard A. Hayden, John W. Cobes, III, Thomas M. Matviya
  • Patent number: 5647892
    Abstract: An improved apparatus and process is provided for scrubbing sulphur oxide gas from combustion flue gas with wet limestone particles as a reactive scrubbing agent. The process is carried out in a moving bed reactor having louvered inlet and outlet sides which permit the flue gas to pass through the reactor while the limestone particles move downward. The flue gas may be flowed through the moving bed reactor at a high velocity to permit scrubbing of large volumes of gas in a thorough and efficient manner. The high velocity of flue gas passing through the reactor causes some of the scrubbing particles to be ejected from the outlet side of the reactor. Problems associated with the ejection of the scrubbing particles are avoided by providing a slot alongside the outlet side of the reactor. The slot is sized so that the flue gas passing therethrough will have insufficient velocity to entrain the ejected scrubbing particles therein.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: July 15, 1997
    Assignee: ETS International, Inc.
    Inventors: John D. McKenna, Kenneth W. Appell, John C. Mycock, Joseph F. Szalay
  • Patent number: 5591417
    Abstract: Removing sulfur oxide, carbon monoxide and nitrogen oxide in a flue gas stream by combusting fuel in the combustor with a reduced amount of oxygen to convert all sulfur-containing species in the flue gas stream to sulfur oxide, and to partially convert carbon monoxide therein to carbon dioxide, thus forming a sulfur oxide enriched gas stream having between at least about 500 ppm carbon monoxide and a consequential reduced amount of nitrogen oxide. The sulfur oxide enriched gas stream is contacted with a solid adsorbent bed for adsorbing the sulfur oxides in the form of inorganic sulfates and/or sulfur oxides. The solid adsorbent contains a catalytic oxidation promoter for oxidizing the carbon monoxide gas stream to carbon dioxide, thus forming a sulfur oxide and carbon monoxide depleted stream with the consequential reduced amount of nitrogen oxide for disposal.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: January 7, 1997
    Assignee: Mobil Oil Corporation
    Inventors: John S. Buchanan, Mark F. Mathias, Joseph F. Sodomin, III, Gerald J. Teitman
  • Patent number: 5591418
    Abstract: A collapsed composition is described which is substantially composed of microcrystallites collectively of the formula:m.sub.2m.sup.2+ Al.sub.2-p M.sub.p.sup.3+ T.sub.r O.sub.7+r.multidot.swhere M.sup.2+ is a divalent metal, M.sup.3+ is a trivalent metal, and T is vanadium, tungsten, or molybdenum. The microcrystallites are so small as to be undetectable through conventional x-ray diffraction techniques, yet high resolution electron microscopy reveals that a substantial portion of the microcrystallites are composed of a solid solution having aluminum oxide molecularly dispersed in a divalent metal monoxide crystal structure. Another portion of the microcrystallites are constituted by a spinel phase. The collapsed composition is suitable as a sulfur oxide absorbent, having comparatively high capacity and comparatively fast absorption and desorption rates, and is also suitable as a nitrogen oxide reduction catalyst.
    Type: Grant
    Filed: June 9, 1995
    Date of Patent: January 7, 1997
    Assignee: Amoco Corporation
    Inventors: Alakananda Bhattacharyya, Michael J. Foral, William J. Reagan
  • Patent number: 5547585
    Abstract: A method for reducing contaminant concentrations in a fluid stream including the steps of forming a metal-complexed material having a surface suitable for exchange with the contaminant, contacting the fluid stream with the metal-complexed material, immobilizing at least a portion of the contaminant on the surface of the metal-complexed material, and regenerating the metal-complexed material so as to remove the contaminant from the surface of the metal-complexed material. The metal-complexed material is formed by the encapsulating of a core of ferromagnetic material with an ion exchange material. The metal-complexed material is magnetically affixed to a metallic mesh retaining surface.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: August 20, 1996
    Inventors: Samuel L. Shepherd, Anthony M. Wachinski
  • Patent number: 5547648
    Abstract: Removing sulfur oxide and carbon monoxide in a flue gas stream by combusting fuel in the combustor with a reduced amount of oxygen to partially convert carbon monoxide therein to carbon dioxide and sufficient to convert all sulfur-containing species in the flue gas stream to sulfur oxide and thus form a sulfur oxide enriched gas stream having between at least about 500 ppm carbon monoxide. The sulfur oxide enriched gas stream is contacted with a solid adsorbent bed for adsorbing the sulfur oxides in the form of inorganic sulfates and/or sulfur oxides. The solid adsorbent contains a catalytic oxidation promoter for oxidizing the carbon monoxide gas stream to carbon dioxide, thus forming a sulfur oxide and carbon monoxide depleted stream for disposal. The adsorbent bed is then contacted with a reducing gas stream for regenerating the adsorbent bed to form a hydrogen sulfide and/or sulfur dioxide bearing stream.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: August 20, 1996
    Assignee: Mobil Oil Corporation
    Inventors: John S. Buchanan, Mark F. Mathias, Joseph F. Sodomin, III, Gerald J. Teitman
  • Patent number: 5538537
    Abstract: A method of desulphurizing flue gases polluted with SO.sub.2 comprising cooling the gases to a temperature of about 0.5 to 20.degree. above the dew point of the gases and flowing the gases through a granular sorbent prepared from a mixture of commercial cement and water.
    Type: Grant
    Filed: January 3, 1995
    Date of Patent: July 23, 1996
    Assignee: Krupp Polysius AG
    Inventors: Michael Schmidt, Detlev Kupper, J urgen Schneberger
  • Patent number: 5527514
    Abstract: A desulfurizing and denitrating apparatus wherein an inner space of a tower body, which has an introduction port for a gas to be processed and a processed gas discharge port formed respectively in opposite side walls, is partitioned in a direction from the side wall having the processed gas introduction port toward the side wall having the processed gas discharge port by an inlet louver, a perforated plate and an outlet louver all extending vertically parallel to each other, a constant-rate discharging device for setting a moving speed of a carbon-base adsorbent in a small chamber defined between the inlet louver and the perforated plate and a constant-rate discharging device for setting a moving speed of a carbon-base adsorbent in a large chamber defined between the perforated plate and the outlet louver are provided, the moving speed of the carbon-base adsorbent in the small chamber is set to be 2 to 4 times greater than an average moving speed, and the distance from the inlet louver to the perforated plate
    Type: Grant
    Filed: October 7, 1994
    Date of Patent: June 18, 1996
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventors: Teruo Watanabe, Hiromi Tanaka, Kouji Kobayashi
  • Patent number: 5500195
    Abstract: A method for reducing gaseous emission of halogen compounds in a fluidized bed reactor in which the fine particles entrained in flue gases are used to form a temporary layer of particles on the baghouse filter to absorb halogen gases.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: March 19, 1996
    Assignee: Foster Wheeler Energy Corporation
    Inventor: Juan A. Garcia-Mallol
  • Patent number: 5482536
    Abstract: An apparatus for containing and scrubbing toxic or corrosive gases from a leaking pipe or cylinder is provided. A gas passageway attaches at one end to a leakage location on a pipe or cylinder, and at the other end to an air operated exhauster. The air operated exhauster, through the input of a non-flammable purge gas, creates an exhaust flow from the leakage location to a drum which is attached to the air operated exhauster. The drum contains a scrubbing media which, when it contacts the leaked gas, cleans or removes the harmful component, thus allowing release to the atmosphere of the cleaned air.
    Type: Grant
    Filed: April 12, 1994
    Date of Patent: January 9, 1996
    Assignee: Solvay Specialty Chemicals, Inc.
    Inventors: Eugene Y. Ngai, Lester S. Gerver