Temperature Sensed Patents (Class 95/14)
  • Patent number: 11453271
    Abstract: An adsorption system for the production of demineralized water aboard a motor vehicle comprising: a condenser, an evaporator, a first and a second adsorbent bed, each containing adsorbent material. Each adsorbent bed is selectively connectable to the condenser and/or the evaporator by pipes provided with at least one control valve. Each adsorbent bed is selectively and alternately connectable to a supply circuit of a heating source and to a supply circuit of a cooling source via supply valves. The condenser is directly and selectively connectable to the evaporator by a direct branch provided with a relative throttle valve, An inlet valve is arranged along an air inlet branch, and selectively establishes a fluid connection between the air of the environment outside the system and the adsorbent beds, so as to capture water from the external air through an adsorption phenomenon performed by the adsorbent beds and to produce water.
    Type: Grant
    Filed: March 14, 2020
    Date of Patent: September 27, 2022
    Assignee: MARELLI EUROPE S.P.A.
    Inventors: Enrico Brugnoni, Matteo De Cesare
  • Patent number: 11428180
    Abstract: A method for controlling a vehicle propulsion system. More particularly, the method estimates a future, upcoming driving condition and controls the vehicle propulsion system to operate the prime mover in a specific operation mode based on a determined regeneration level of a particle filter for the estimated future, upcoming driving condition.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: August 30, 2022
    Assignee: VOLVO TRUCK CORPORATION
    Inventors: Björn Lundstedt, Anders Eriksson
  • Patent number: 11300358
    Abstract: A machine learning method and system for predictive maintenance of a dryer. The method includes obtaining over a communication network, an information associated with the dryer and receiving measurements of a vibration level of one of a process blower, a cassette motor and a regeneration blower associated with the dryer. Further, an anomaly is determined based on at least one of a back pressure and a fault and balance of at least one of the process blower and the regeneration blower is tracked. An alarm for maintenance is raised when one of an anomaly and an off-balance is detected.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 12, 2022
    Assignee: Prophecy Sensorlytics, LLC
    Inventors: Biplab Pal, Steve Gillmeister
  • Patent number: 11162681
    Abstract: An integrated ITM micromixer burner shell and tube design for clean combustion in gas turbines includes an oxy-fuel micromixer burner for separating oxygen from air within the burner to perform oxy-combustion, resulting in an exhaust stream that consists of CO2 and H2O. The shell and tube combustion chamber is designed so that preheated air enters a headend having an array of ion transfer membrane (ITM) tubes that separate oxygen from the preheated air and anchor flamelets on the shell side. The combustion products of the oxy-fuel flamelets expand through a turbine for power generation, before H2O is separated from CO2 by condensation. A portion of the effluent CO2 is compressed back into the burner system, while the remainder is captured for sequestration/utilization.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 2, 2021
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Medhat A. Nemitallah, Ahmed Abdelhafez, Mohamed A. Habib
  • Patent number: 10894870
    Abstract: Methods of recovery of pristine polymers and hydrocarbon mixtures from a sorted waste feedstock or mixtures of waste feedstock, which are with or without organic additives are disclosed. The methods include Sequential Selective Extraction and Adsorption (SSEA), Hydrothermal Processing (HTP), and a combination of SSEA and HTP. Exemplarily, SSEA includes selecting a first solvent (S1), inputting the S1 and a sorted feedstock free of organic additives into an extractor, heating, waiting, and separating insolubles forming a pristine polymer solution. Exemplarily, HTP includes inputting a hydrothermal solvent and a sorted feedstock free of organic additives into a reactor, heating to form subcritical or supercritical H2O, waiting, causing thermal depolymerization to produce a slurry, cooling, venting formed gases and separating the hydrocarbon mixture.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: January 19, 2021
    Assignee: Purdue Research Foundation
    Inventors: Wan-Ting Chen, Nien-hwa L Wang, Kai Jin
  • Patent number: 10722839
    Abstract: A system for drying compressed gas discharged from a gas compressor is disclosed herein. The dryer system includes a desiccant drying circuit and a refrigeration drying circuit configured to transport the compressed gas in parallel through the dryer system. The desiccant drying circuit and a refrigeration drying circuit are operable for removing moisture from the compressed gas and supplying a dried gas to an end user.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: July 28, 2020
    Assignee: Ingersoll-Rand Industrial U.S., Inc.
    Inventors: Janez Jakop, Henry Y. Mark
  • Patent number: 10322369
    Abstract: A dryer is provided with a pressure vessel with a drying zone and regeneration zone. The regeneration zone comprises a first subzone and a second subzone. The dryer comprises a rotatable drum in the pressure vessel with a drying agent, and the outlet of the regeneration zone is connected to the drying zone via a connecting pipe with a cooler and condensate separator. A tap-off pipe is connected to the outlet of the drying zone and is also connected to the inlet of the second subzone. A blower is provided to realize a regeneration flow from the drying zone to the second subzone.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: June 18, 2019
    Assignee: ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP
    Inventor: Ewan Van Minnebruggen
  • Patent number: 10301034
    Abstract: A purge system includes an airflow source to provide an airflow, and a fuel tank, including: a tank volume including a tank ullage, at least one inlet, wherein the at least one inlet is in fluid communication with the tank ullage and the airflow source to provide the airflow as an inbound airflow to the tank ullage, and at least one outlet, wherein the at least one outlet is in fluid communication with the tank ullage and an overboard location outside the aircraft to direct the inbound airflow as an outbound airflow from the tank ullage to the overboard location.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: May 28, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Stephen E. Tongue, Jonathan Rheaume, Haralambos Cordatos
  • Patent number: 9694314
    Abstract: A controller for controlling an on-board inert gas generation system (OBIGGS) having an air separation module (ASM) dynamically modulates a temperature setpoint for air inlet temperature to the ASM to provide a minimum temperature setpoint that produces a prescribed oxygen concentration at an output of the ASM.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: July 4, 2017
    Assignee: Parker-Hannifin Corporation
    Inventor: Stephen Christopher Metrulas
  • Patent number: 9506605
    Abstract: The present invention relates to the production of biomethane intended for supplying a natural gas network from n biogas production plants Ii, with i varying from 1 to n, in which each of the plants produces and stores the biogas which is collected at each of the plants via a mobile collection device and the collected biogas is purified so as to produce biomethane which is subsequently injected into a natural gas network. The invention also makes provision for storing the biogas, partially purified biogas, or biomethane in order to ensure the continuity of the supply of biomethane to the network during the collection round.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: November 29, 2016
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Nicolas Paget, Pierre Roux
  • Patent number: 9114344
    Abstract: A method for implementing particulate filter regeneration management is provided. The method includes determining a presumptive deviation between a particulate model and actual particulate level conditions of the particulate filter. The presumptive deviation is determined from identification of an occurrence of extended parking, a passive regeneration, residual particulates, and a pressure signal. Each of the extended parking, passive regeneration, residual particulate, and pressure signal is specified by a respective particulate model deviation type. The method also includes selectively controlling current to at least one zone of a plurality of zones of an electric heater to initiate a regeneration event based on the presumptive deviation, and estimating the particulate level in the particulate filter once the regeneration event is complete.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: August 25, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Michelangelo Ardanese, Raffaello Ardanese, Michael J. Paratore, Jr., Eugene V. Gonze
  • Publication number: 20150110911
    Abstract: Environmental control units are disclosed. In an aspect, an environmental control unit for use with additive manufacturing and other VOC and particle emitting processes are disclosed. In an aspect, an environmental control unit comprising one or more filters, an air handler, a temperature control device, one or more sensors and a control unit is disclosed.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Applicant: MADE IN SPACE, INC.
    Inventor: Michael Snyder
  • Publication number: 20150075372
    Abstract: This technology relates to the enlargement by water condensation in a laminar flow of airborne particles with diameters of the order of a few nanometers to hundreds of nanometers to form droplets with diameters of the order of several micrometers. The technology presents several advanced designs, including the use of double-stage condensers. It has application to measuring the number concentration of particles suspended in air or other gas, to collecting these particles, or to focusing these particles.
    Type: Application
    Filed: June 27, 2014
    Publication date: March 19, 2015
    Inventors: Susanne V. Hering, Gregory S. Lewis, Steven R. Spielman
  • Patent number: 8894742
    Abstract: A hybrid operating apparatus including an absolute humidity sensing unit configured to sense an absolute humidity of air supplied to a dehumidifying rotor; a dew point temperature sensing unit configured to sense a dew point temperature of air returned from a dry room; a regeneration exhaust temperature sensing unit configured to sense a temperature of exhaust air regenerated in the dehumidifying rotor; a control unit configured to operate the regenerative heater to a regeneration temperature corresponding to the sensed absolute humidity; and a memory unit configured to store the regeneration temperature of the regenerative heater.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 25, 2014
    Assignee: CK Solution Co., Ltd.
    Inventors: Yu Gon Kim, Jin Seok Oh
  • Patent number: 8871005
    Abstract: A method of regenerating a desiccant in a breather communicating with a vessel includes creating a temperature signal that is a temperature associated with at least one of the vessel and the breather for a plurality of cycles, each cycle having a predetermined duration, and regenerating the desiccant when the second derivative of the temperature signal reaches a peak value.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: October 28, 2014
    Assignee: Qualitrol Company, LLC
    Inventor: Joshua J. Herz
  • Publication number: 20140208943
    Abstract: A fuel vapor removal method for an aircraft includes removing an ullage mixture from ullage of a fuel tank of an aircraft, exposing the ullage mixture to adsorption media on the aircraft to reduce its fuel-air ratio, and returning the reduced fuel-air ratio ullage mixture to the fuel tank. A fuel vapor removal system onboard an aircraft includes a fuel tank, having ullage containing an ullage mixture, a pumping device, configured to pump the ullage mixture in a closed loop from the fuel tank ullage and back, an adsorption system, interposed in the closed loop, and a controller, including a microprocessor and system memory. The adsorption system includes an adsorber having adsorption media capable of adsorbing fuel vapor from the ullage mixture, and the controller is programmed to activate the pumping device, to pump the ullage mixture from the ullage, through the adsorption system, and return a reduced fuel-air ratio ullage mixture back to the ullage.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 31, 2014
    Applicant: The Boeing Company
    Inventor: Alankar Gupta
  • Publication number: 20140182452
    Abstract: A method of regenerating a desiccant in a breather communicating with a vessel includes creating a temperature signal that is a temperature associated with at least one of the vessel and the breather for a plurality of cycles, each cycle having a predetermined duration, and regenerating the desiccant when the second derivative of the temperature signal reaches a peak value.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: QUALITROL COMPANY, LLC
    Inventor: Joshua J. Herz
  • Publication number: 20140174289
    Abstract: A dehumidifier is disclosed comprising a base, a fast coupler disposed on the base, a water receiving tray, a water collection tank disposed below the water receiving tray, a water discharging tank connected to the water receiving tray, and a pump having an outlet connected to the fast coupler and an inlet connected to the water discharging tank, wherein a water level switch is provided in the water discharging tank and comprises a floater and a closed hollow rod, wherein the floater has a hole for passing through of the rod and a magnet, and the rod has a magnetic field response switch electrically connected with the pump.
    Type: Application
    Filed: April 8, 2013
    Publication date: June 26, 2014
    Applicants: Guangdong Kelon Air Conditioner Co. Ltd., Hisense Kelon Electrical Holdings Co. Ltd.
    Inventors: Yufeng TAN, Wei Tang, Xiaoqin Wei, Minzhu Huang, Bingxiang Liang, Zhongmin Liu
  • Publication number: 20140161699
    Abstract: An apparatus for recycling exhaust gas includes a vessel containing a reversible ammonia sorber material which is exothermic when sorbing (“loading”) ammonia and which is endothermic when releasing (“unloading”) ammonia. A first valve selectively couples a source of exhaust gas including ammonia to a first port of the vessel, a second valve selectively couples a vacuum pump to the vessel, and a third valve selectively coupling a second port of the vessel to an output. A controller opens and closes the first valve, the second valve and the third valve to implement a loading phase, an intermediate venting phase and an unloading phase for the vessel.
    Type: Application
    Filed: November 20, 2013
    Publication date: June 12, 2014
    Applicant: SAES Pure Gas, Inc.
    Inventors: Charles Applegarth, Lawrence A. Rabellino, Sarah Vogt, Marco Succi, Cristian Landoni
  • Patent number: 8741028
    Abstract: In one embodiment, a carbon dioxide separating and recovering system includes an absorption tower to cause carbon dioxide to be absorbed in an absorbing solution, a regeneration tower to release the carbon dioxide from the absorbing solution, and at least one measuring apparatus to measure an ultrasound propagation speed in the absorbing solution. Each of the at least one measuring apparatus calculates a dissolved carbon dioxide concentration in the absorbing solution, based on a temperature measured by a temperature measuring unit, the ultrasound propagation speed measured by an ultrasound propagation speed measuring unit, and a correlation expression which shows a relationship between the dissolved carbon dioxide concentration and the ultrasound propagation speed in the absorbing solution, and is changed according to the temperature of the absorbing solution.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daigo Muraoka, Koshito Fujita, Takashi Ogawa, Hideo Kitamura, Satoshi Saito, Masatoshi Hodotsuka
  • Patent number: 8728199
    Abstract: Provided is a novel hydrogen separation membrane formed of a Nb—W—Mo-based alloy. A method for separating hydrogen using the hydrogen separation membrane and hydrogen separation conditions are selected by a particular procedure. A hydrogen separation membrane formed of the Nb—W—Mo-based alloy membrane.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 20, 2014
    Assignees: Tokyo Gas Co., Ltd., National University Corporation Nagoya University, Institute of National Colleges of Technology, Japan
    Inventors: Hideto Kurokawa, Takumi Nishii, Yoshinori Shirasaki, Isamu Yasuda, Masahiko Morinaga, Hiroshi Yukawa, Tomonori Nanbu, Yoshihisa Matsumoto
  • Patent number: 8679234
    Abstract: An object of the present invention is to provide a heavy metal removing apparatus which can efficiently remove the heavy metal contained in the dust produced by burning of the raw material containing the heavy metal, and a cement production system comprising the heavy metal removing apparatus. The heavy metal removing apparatus 10 comprises a cyclone separator 11 which separates exhaust gas containing the heavy metal from a part of the dust heated to a temperature equal to or more than a temperature at which the heavy metal can volatilize, a bag filter 13 which is connected to the subsequent stage of the cyclone separator 11 and separates the exhaust gas containing the heavy metal from the remainder of the dust, and a heavy metal removal tower 14 which is connected to the subsequent stage of the bag filter and removes the heavy metal from the exhaust gas.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: March 25, 2014
    Assignee: Taiheiyo Cement Corporation
    Inventors: Kazuhiko Soma, Takahiro Kawano, Tokuhiko Shirasaka, Hidenori Isoda, Osamu Yamaguchi
  • Patent number: 8663363
    Abstract: A CO2 recovering apparatus includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbent to reduce the CO2 contained in the flue gas; a regenerator that reduces CO2 contained in rich solvent that has absorbed CO2 in the CO2 absorber to regenerate the rich solvent, so that the CO2 absorbent that is lean solvent having CO2 reduced in the regenerator is reused in the CO2 absorber; and a controller that controls to detect the absorbent concentration in the CO2 absorbent, to increase the volume of CO2 absorbent to be circulated based on a decrease in the absorbent concentration, and to adjust the volume of steam to be supplied in the regenerator based on the volume of the CO2 absorbent to be circulated.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 4, 2014
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Hiroshi Tanaka, Yoshiki Sorimachi, Masahiko Tatsumi, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8657919
    Abstract: High molecular weight (HMW) gases are separated from an exhaust gas of a combustion source using a blower and an interior vent within the exhaust stack. The interior vent includes a vent wall having a top portion attached to the interior surface of the exhaust stack along the entire inner perimeter of the exhaust stack and a lower portion that extends downward into the exhaust stack to form an annular space or gap between the vent wall and the interior surface of the exhaust stack, and at least one opening in the interior surface of the exhaust stack between the top and bottom portions of the vent wall. The blower creates a tangential flow of the exhaust gas with sufficient centrifugal force to concentrate substantially all of the HMW gases along the inner surface of the exhaust stack. A transfer pipe removes the HMW gases from the interior vent.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 25, 2014
    Inventors: Jerry Lang, David Scott
  • Patent number: 8652234
    Abstract: High molecular weight (HMW) gases are separated from an exhaust gas of a combustion source using a blower and an interior vent within the exhaust stack. The interior vent includes a vent wall having a top portion attached to the interior surface of the exhaust stack along the entire inner perimeter of the exhaust stack and a lower portion that extends downward into the exhaust stack to form an annular space or gap between the vent wall and the interior surface of the exhaust stack, and at least one opening in the interior surface of the exhaust stack between the top and bottom portions of the vent wall. The blower creates a tangential flow of the exhaust gas with sufficient centrifugal force to concentrate substantially all of the HMW gases along the inner surface of the exhaust stack. A transfer pipe removes the HMW gases from the interior vent.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: February 18, 2014
    Inventors: Jerry Lang, David Scott
  • Patent number: 8652233
    Abstract: A fluid degasification system for a hydraulic circuit includes a gas/fluid separation tank, a fluid entry passage directing fluid into a small foam generating cup containing foam and a small amount of additional fluid, thereby stimulating foam formation. A separation screen is positioned below the foam generating cup to receive bubbles formed in the cup and to allow liquid to pass through the screen to a degasified-fluid collecting chamber below the screen as the bubbles resting on the separation screen decompose.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 18, 2014
    Assignee: The United States of America, as represented by the Administrator of the U.S. Environmental Protection Agency
    Inventors: Dustin Kramer, David Williams, Sterling Imfeld
  • Patent number: 8647408
    Abstract: An indicator device for a filter includes a filter replacement indicator that is actuatable by thermal expansion. The indicator device can be included in a filter. Also, a vacuum cleaner including a filter having the indicator device.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 11, 2014
    Assignee: Miele & Cie. KG
    Inventors: Seyfettin Kara, Monika Seifert, Stefan Tiekoetter, Cornelius Wolf
  • Publication number: 20130327213
    Abstract: A baghouse cleaning system comprises an elongated air accumulator configured to retain pressurized air and extend over a row of filter bags. An elongated air tube extends along the air accumulator and venturis extend from the air tube. The venturis blow pressurized air streams down into the filter bags to remove particles attached to an outside filter bag surface. A valve fluidly couples the air accumulator to the air tube and an actuator is configured to move the cleaning arm linearly over different rows of the filter bags. A sensor may determine when the filter bags need to be cleaned based on a measured air pressure. A controller can actuate the cleaning arm to clean the filter bags based on preprogrammed cleaning patterns, the amount of measured air pressure, and/or other detected environmental conditions.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: CSL Industrial Systems
    Inventor: Richard Daniel Boatwright Jr., JR.
  • Patent number: 8591633
    Abstract: An exhaust gas treatment system treats a mixed gas containing at least hydrogen and monosilane discharged from a semiconductor fabrication equipment. The exhaust gas treatment system includes a pump unit which emits the mixed gas discharged from the semiconductor fabrication equipment, a compressor which compresses the mixed gas emitted by the pump unit and sends the mixed gas to a rear stage, a gas accommodation unit which collects and accommodates the compressed mixed gas, a flow rate control unit which controls a flow rate of the mixed gas supplied from the gas accommodation unit, and a membrane separation unit which causes the hydrogen to selectively permeate therethrough and separates the monosilane and the hydrogen from the mixed gas. Accordingly, the exhaust gas treatment system may be stably operated in a state where a change in pressure of the mixed gas discharged from the semiconductor fabrication equipment is alleviated.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 26, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Tai Ohuchi, Takashi Okabe, Tsuyoshi Asano
  • Patent number: 8585800
    Abstract: An apparatus is configured for filtering a cooling duct of a battery for an electric vehicle. More specifically, a dust sensor is installed in the cooling duct through which cooling air is introduced into the battery for the vehicle and a variable filter is installed in the cooling duct to filter the cooling air and open/close the cooling duct via a driving unit. A control unit configured to control the driving unit according to a signal or sensing value from the dust sensor and a measured temperature of the battery. In particular, when dust is not detected, the cooling duct is fully opened by folding the variable filter. If, however, dust is detected an opening degree of the variable filter is adjusted to close or at least partially close the cooling duct according to the temperature of the battery.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: November 19, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Hae Kyu Lim
  • Patent number: 8585810
    Abstract: Provided is an apparatus for regenerating a carbon dioxide absorption solution that regenerates an absorption solution for absorbing carbon dioxide contained in a combustion exhaust gas emitted during a combustion process of a vehicle, thereby reducing energy costs while simplifying its configuration.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 19, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Yoon Ji Lee
  • Publication number: 20130298763
    Abstract: A process and an apparatus are described, which remove acid gas from a gas stream in a manner that generates a product gas stream at a higher temperature while consuming less energy than the existing technology. The process requires maintaining a positive product gas temperature differential. The apparatus enables the positive gas temperature differential to be maintained by manipulating the absorber column operating conditions and/or the solvent chemistry to increase the amount of absorption and reaction in the absorber.
    Type: Application
    Filed: September 16, 2011
    Publication date: November 14, 2013
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, ALSTOM TECHNOLOGY LTD
    Inventors: Frederic Vitse, Craig Norman Schubert
  • Patent number: 8574342
    Abstract: Method and apparatus for a membrane separation system, including process and installation for the separation of air by permeation, using two strategically placed heaters for the production of high purity nitrogen, uniquely designed multi-staged pre-filtration system and a novel method of controlling the nitrogen flow and purity. The system comprises in series an air compressor (1), an air cooler (2) cooled by air or liquid, moisture separator (3), mist removing filter (4), primary heat source (5), coalescing filter (8), carbon tower (9), particle filter (10), secondary heat source (11), membrane separator(s) (14), and control valve (19). The system is to provide and maintain superheated air to the membrane separator(s) using strategically located heaters to eliminate condensation of moisture in the carbon tower or membrane separator(s) eliminating the need for a separate compressed air dryer, or the need for insulation of pipes, vessels and the membrane separator(s).
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: November 5, 2013
    Inventor: Charles M. Flowe
  • Patent number: 8539782
    Abstract: The invention relates to a method for controlling the power of a sorption refrigeration system, comprising an adsorber unit, a condenser (C), and an evaporator (E) through which a cooling carrier fluid (KT) flows, with alternating application of the adsorber unit by a valve unit (HV_IN, HV_OUT) operated via a controller, having a circuit process of at least one sorption phase and at least one heat recovery phase, wherein a measurement of a current cooling carrier outlet temperature (Takt) is carried out in the return of the evaporator, a calculation of an averaged cooling carrier outlet temperature (Tgem) is carried out during the first and second sorption phases with a comparison to the current cooling carrier outlet temperature (Takt), and a control signal is trigger upon completion of the sorption phase as a function of the difference between the averaged cooling carrier outlet temperature (Tgem) and the current cooling carrier outlet temperature (Tgem). The invention provides a corresponding device.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 24, 2013
    Assignee: SorTech AG
    Inventors: Thomas Büttner, Walter Mittelbach
  • Publication number: 20130239800
    Abstract: The systems and methods herein relate the operation of a particle filter which is arranged in an exhaust-gas path of an internal combustion engine, to a device for exhaust-gas aftertreatment which can be operated in accordance with the method that comprises determining a mass flow rate of an exhaust-gas flow flowing in the exhaust-gas path; and supplying ambient air into the exhaust-gas path as a function of the determined mass flow rate. By this method, the spontaneous regeneration of a particle filter within the exhaust system may be abated.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Publication number: 20130220116
    Abstract: Various systems and methods are provided for supplying heat to a passenger compartment during a filter regeneration event. In one example, a first phase of a filter regeneration event is initiated for a filter in an internal combustion engine based on one or more parameters, with heat produced by the engine then supplied to a heater core during the first phase, and the first phase extended if heating is requested. The engine may be operated at reduced efficiency during the filter regeneration event, and in some embodiments, the method may further include injecting an additional amount of fuel during a second phase of the filter regeneration event after the first phase ends to cause soot combustion in the filter.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: FORD GLOBAL TECHNOLOGIES, LLC
  • Patent number: 8506675
    Abstract: A composite desiccant material is formed by a porous, absorbent substrate of PVA foam or non-woven fibrous sheet is soaked in a solution of a hygroscopic desiccant such as CaCl2. The desiccant is held in pores or fibrous entraining areas sized ranging from 50 microns to 1000 microns. Thin sheets are arranged in a stack in a multi-chamber system, while in an absorption state, uses this stack in a main chamber to absorb H20 from atmospheric gas flowing through that chamber. In a regeneration state atmospheric flow is stopped and low-grade energy releases the H20 from the desiccant into that chamber. Fans circulate moist air through the main chamber and into an adjacent chamber for H20 transfer through or past a partially permeable barrier into a cooling/condensing area. Both H20 and dry gas may be produced.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 13, 2013
    Inventor: Joseph Ellsworth
  • Publication number: 20130125745
    Abstract: A particulate filter control system and method for controlling the same is disclosed. The particulate filter load monitoring system may transmit radio frequency signals through the resonant cavity and filter medium across a frequency range sufficient to generate more than one resonant mode. The system may contain additional sensors for monitoring additional exhaust characteristics and parameters. Further, a control unit may be configured to determine the amount of material accumulated in the particulate filter, detect failures and malfunctions of the exhaust after-treatment system and its associated components, and initiate an action based on the amount of material accumulated in the particulate filter, the determination of a system failure or malfunction, or input from one or more exhaust sensors.
    Type: Application
    Filed: January 17, 2013
    Publication date: May 23, 2013
    Applicant: FILTER SENSING TECHNOLOGIES, INC.
    Inventor: Filter Sensing Technologies, Inc.
  • Patent number: 8444747
    Abstract: Methods and devices are provided whereby a controlled personal breathing zone is maintained using temperature controlled laminar air flow (TLA) of filtered air. A substantially laminar, descending flow of filtered air is maintained with a velocity determined by the air-temperature difference between the supplied air and the ambient air t at the level of the personal breathing zone. The air-temperature of the filtered supply air can be carefully adjusted to maintain the velocity-determining difference in air-temperature within the optimum range of 0.3 to 1° C. Thus being able to at the same time displace body convection and achieve comfort.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: May 21, 2013
    Assignee: Airsonett AB
    Inventors: Dan Allan Robert Kristensson, Pål Martin Svensson, Niklas Sondén
  • Publication number: 20130101471
    Abstract: The present disclosure relates to an exhaust-gas aftertreatment system for an internal combustion engine, having an exhaust line and having provided therein a filter arrangement which comprises a first particle filter element and a second particle filter element, wherein the first particle filter element is equipped with an active regeneration device for restoring its filtration performance. The disclosure furthermore relates to a method for operating an exhaust-gas aftertreatment system of said type and to the use thereof.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 25, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: FORD GLOBAL TECHNOLOGIES, LLC
  • Patent number: 8414673
    Abstract: A system and apparatus for enhancement of inlet air mass for processes by progressive filtration and intermediate cooling.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: April 9, 2013
    Assignee: Freudenberg Filtration Technologies India Pvt. Ltd.
    Inventors: Atul Raje, Anand Singh
  • Patent number: 8361194
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: January 29, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Publication number: 20120325084
    Abstract: Electrostatic aerosol in vitro exposure systems and methods are disclosed and can be used for collecting and depositing particulate matter onto tissue without pre-concentration, and without any intermediate collection steps such as use in water or on a filter. The system can include an inlet configured to receive air containing particulate matter, a receptacle configured to hold one or more tissue samples, a porous membrane providing support for an air-liquid interface of the tissue sample, and an electrostatic precipitation area. Particulate matter contained in the air received at the inlet can be electrically charged in the electrostatic precipitation area and flowed over the tissue sample, where it can be collected and measured.
    Type: Application
    Filed: July 26, 2012
    Publication date: December 27, 2012
    Inventors: Kenneth G. Sexton, Harvey E. Jeffries, Ilona Jaspers, David H. Leith, Glenn W. Walters, Melanie Lynn Doyle-Eisele, Kim M. Lichtveld, Sandra W. Irwin, James J. Jetter, Seth M. Ebersviller, William Vizuete, Jose Zavala Mendez
  • Publication number: 20120291627
    Abstract: A dispensing assembly for a pressure dispense package includes a connector having separate and distinct liquid and extraction conduits, and having a pressurization gas conduit. A liner fitment adapter may include a longitudinal bore to receive a probe portion of a connector defining a liquid extraction conduit, and may include a lateral bore to enable removal of gas. Insertion of a connector into a dispensing assembly simultaneously makes fluidic connections between (a) a gas extraction conduit and a dispensing volume; (b) a liquid extraction conduit and the dispensing volume, and (c) a pressurization gas conduit and a space to be pressurized within a pressure dispense vessel. Presence of fluid or change in phase of flowing fluid within a fluid circuit may be sensed by comparing outputs of first and second temperature sensing elements, with one sensing element including a heater to increase temperature of the sensing element in exposure to gas but not in exposure to liquid.
    Type: Application
    Filed: January 5, 2011
    Publication date: November 22, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Glenn M. Tom, Joseph Patrick Menning, Matthew Kusz, Amy Koland, Donald D. Ware, Richard D. Chism
  • Patent number: 8313555
    Abstract: A method and system for automated control of the operating temperature setpoint of a circulating fluidized bed (CFB) scrubber within a pre-determined range of approach temperatures to the adiabatic saturation temperature of the CFB scrubber exhaust stream to maintain an optimal operating temperature, thereby reducing low temperature sulfuric acid corrosion and deposition of wet materials, and high temperature excess reagent use. A Dewcon® Moisture Analyzer (or equivalent) is connected in the exhaust stream of the CFB scrubber. The Dewcon® Moisture Analyzer transmits adiabatic saturation temperature data of the exhaust stream to the CFB scrubber system controller. Based on pre-programmed parameters, the system controller adjusts the CFB scrubber temperature setpoint.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 20, 2012
    Assignee: Allied Environmental Solutions, Inc.
    Inventor: Paul E. Petty
  • Publication number: 20120247324
    Abstract: A fluid degasification system for a hydraulic circuit includes a gas/fluid separation tank, a fluid entry passage directing fluid into a small foam generating cup containing foam and a small amount of additional fluid, thereby stimulating foam formation. A separation screen is positioned below the foam generating cup to receive bubbles formed in the cup and to allow liquid to pass through the screen to a degasified-fluid collecting chamber below the screen as the bubbles resting on the separation screen decompose.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 4, 2012
    Inventors: Dustin Kramer, David Williams, Sterling Imfeld
  • Publication number: 20120141352
    Abstract: High molecular weight (HMW) gases are separated from an exhaust gas of a combustion source using a blower and an interior vent within the exhaust stack. The interior vent includes a vent wall having a top portion attached to the interior surface of the exhaust stack along the entire inner perimeter of the exhaust stack and a lower portion that extends downward into the exhaust stack to form an annular space or gap between the vent wall and the interior surface of the exhaust stack, and at least one opening in the interior surface of the exhaust stack between the top and bottom portions of the vent wall. The blower creates a tangential flow of the exhaust gas with sufficient centrifugal force to concentrate substantially all of the HMW gases along the inner surface of the exhaust stack. A transfer pipe removes the HMW gases from the interior vent.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 7, 2012
    Inventors: Jerry Lang, David Scott
  • Publication number: 20120118143
    Abstract: An apparatus and method for dehumidifying a desired area using a desiccant dehumidifier. The desiccant dehumidifier of the present invention provides substantial advantages over known desiccant dehumidifiers in terms of simplified manufacture and improved efficiency. The dehumidifier of the present invention includes a single chamber with an intake and an exhaust end, a desiccant, a fan and a heater located in the chamber, and one or more regulators for directing intake and/or output of air in relation to the chamber. This configuration does not require a rotor motor or cycling multichamber apparatus in order to change operation of the apparatus from drying air to reactivating the desiccant.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Inventor: Ronald E. Foreman
  • Patent number: 8157890
    Abstract: An improved filter assembly (1) is disclosed, particularly for electric cabinets, comprising a filter cloth (5), a conveying sump (7) and a fan (9), equipped with at least one thermal-resistive sensor (11) placed next to at least one hole (13) obtained in the conveying sump (7).
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: April 17, 2012
    Assignee: Gianus S.p.A.
    Inventor: Roberto Brioschi
  • Publication number: 20120085231
    Abstract: Methods and devices are provided whereby a controlled personal breathing zone is maintained using temperature controlled laminar air flow (TLA) of filtered air. A substantially laminar, descending flow of filtered air is maintained with a velocity determined by the air-temperature difference between the supplied air and the ambient air at the level of the personal breathing zone. The air-temperature of the filtered supply air can be carefully adjusted to maintain the velocity-determining difference in air-temperature within the optimum range of 0.3 to 1° C. Thus being able to at the same time displace body convection and achieve comfort.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Inventors: Dan Allan Robert Kristensson, Päl Martin Svensson, Niklas Sonden