And Regeneration Patents (Class 95/148)
  • Publication number: 20120118009
    Abstract: A system for isolating a greenhouse gas from an exhaust gas includes a vessel having an inlet to receive an exhaust gas, and an outlet to discharge a process stream, an adsorbent contained in the vessel to selectively adsorb the greenhouse gas from the exhaust gas under suitable conditions, and a heat source to heat the adsorbent and desorb the adsorbed greenhouse gas therefrom to produce a process stream of greenhouse gas for release through the outlet.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 17, 2012
    Inventors: Bhupender S. MINHAS, Ian A. CODY
  • Patent number: 8167977
    Abstract: A method of purifying a gaseous mixture rich in hydrogen and in carbon monoxide, commonly termed an H2/CO mixture or syngas, by adsorption prior to treating it cryogenically with a view to producing a CO-rich fraction, and/or one or more H2/CO mixtures of determined content, such as a mixture of 50 mol % H2/50 mol % CO and generally a hydrogen-rich fraction is provided.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: May 1, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, Guillaume Rodrigues, Ingrid Bellec, François Demoisy
  • Patent number: 8167978
    Abstract: A gas generator includes a high pressure gas-generation system that is capable of generating a product gas stream at a non-ambient, elevated nominal pressure. A thermal swing absorber has a first configuration and a second configuration relative to being connected with the product gas stream. In the first configuration, the thermal swing absorber is connected with the high pressure gas-generation system to receive the product gas stream and remove a constituent gas from the stream. In the second configuration, the thermal swing absorber is disconnected from the product gas stream and releases the constituent gas at a pressure that is substantially equal to the elevated nominal pressure. In the second configuration, the thermal swing absorber is an input source to provide the released constituent gas into the high pressure gas-generation system, which permits more efficient use of materials within the system.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: May 1, 2012
    Assignee: Pratt & Whitney Rocketdyne, Inc.
    Inventors: Albert E. Stewart, Jeffrey A. Mays
  • Publication number: 20120097030
    Abstract: A device for drying fuel, e.g., in a motor vehicle, has a storage reservoir for a desiccant which absorbs moisture at temperatures below a regeneration temperature, and releases it again at temperatures above the regeneration temperature. Furthermore, a connection between the storage reservoir and a fuel tank storing the fuel is provided, the air situated above the fuel coming into operative connection with the desiccant via the connection. Using a heating device for heating the desiccant to a temperature above the regeneration temperature, the desiccant is able to be regenerated. The device for drying fuel enables removal of water contained in the fuel.
    Type: Application
    Filed: January 29, 2010
    Publication date: April 26, 2012
    Applicant: ROBERT BOSCH GMBH
    Inventors: Volker Haas, Robert Barunovic
  • Patent number: 8158545
    Abstract: A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: April 17, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, David L. King, Jun Liu, Qisheng Huo
  • Patent number: 8142727
    Abstract: A System for reducing organic contaminates from the condensate discharge of a closed loop industrial drying process. The system includes a dryer, a regenerative thermal oxidizer (RTO) in flow communication with the dryer, and an energy recovery unit in flow communication with the RTO.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: March 27, 2012
    Assignee: Eisenmann Corporation
    Inventors: Brian Schmidt, Bradley Ginger
  • Patent number: 8142555
    Abstract: The invention aims at making a volatile organic compound harmless, and in addition comprehensively improving the energy efficiency within a facility where treatment of the volatile organic compound is necessary. In the invention, in order to achieve this aim, a solution means is adopted where, a discharge gas containing a volatile organic compound is supplied to an adsorption apparatus to adsorb the volatile organic compound in an adsorbent. The volatile organic compound is desorbed from the adsorbent with pressurized steam and mixed with the steam. The steam containing the volatile organic compound is supplied, in the pressurized state, to the combustion chamber of a gas turbine, and burned together with a fuel gas.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: March 27, 2012
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventor: Shigekazu Uji
  • Publication number: 20120068119
    Abstract: A fluid treatment method reduces a concentration of a first component included in a fluid-to-be-treated. A fluid treatment apparatus reduces a concentration of a first component included in a fluid-to-be-treated. A concentration of a second component differing from the first component is reduced in the fluid-to-be-treated in order to obtain a first fluid. The first fluid passes through at least part of an adsorption unit in order to obtain a second fluid. The adsorption unit is capable of adsorbing both the first component and the second component and has at least an ability to adsorb the first component that is temperature dependent. A third fluid pass through a portion of the adsorption unit through which the first fluid has passed. The third fluid has a concentration of the second component that is lower than in the fluid-to-be-treated and a temperature that is higher than the fluid-to-be-treated.
    Type: Application
    Filed: May 11, 2010
    Publication date: March 22, 2012
    Inventors: Keiichirou Kametani, Morimasa Watanabe, Osamu Tanaka
  • Patent number: 8137435
    Abstract: A system and method of purifying gaseous carbon dioxide from a gaseous mixture obtained at low pressure from a flue gas by passing the gaseous mixture through a vacuum swing adsorption unit and then a gas purification unit to produce carbon dioxide having a purity of approximately 97% by volume or more.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: March 20, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Yudong Chen
  • Patent number: 8133302
    Abstract: The present invention relates to a process for the removal of sulfur contaminants from a hydrocarbon stream comprising: (a) providing a gaseous hydrocarbon stream having sulfur contaminants, but having less than 10 ppmw of said sulfur contaminants as thiophenes, to a bed of adsorbent material, said material having at least one Group VIII metal compound with at least one Group VI, IA, IIA, IB metal compound on an inorganic metal oxide support material, without substantial added hydrogen, to absorb said contaminants; (b) periodically stopping said providing of said gaseous hydrocarbon feed stream of (a); (c) then, regenerating said adsorbent bed by introducing at least one regenerant, in any order, in the place of said stream; and, (d) continuing to alternate (a) and (b) plus (c) as needed.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 13, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul S. Northrop, Narasimhan Sundaram
  • Publication number: 20120055334
    Abstract: A method for removing negatively-charged gas molecules includes the steps of: adsorbing negatively-charged gas molecules by a substrate carrying a positively-charged substance or a positively-charged substance and a negatively-charged substance on the surface of the substrate or in a surface layer of the substrate; and desorbing the aforementioned negatively-charged gas molecules adsorbed on the aforementioned substrate, from the substrate using a fluid. According to the present invention, negatively-charged gas molecules are removed or detoxified by adsorbing the same by a substrate carrying a positively-charged substance, or a positively-charged substance and a negatively-charged substance, on the surface of the substrate. Thereby, it is possible to provide a simple process by which negatively-charged gas molecules are able to be effectively and economically removed or detoxified.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Applicant: Sustainable Titania Technology Inc.
    Inventors: Shiro Ogata, Yoshimitsu Matsui
  • Publication number: 20110311761
    Abstract: A parallel passage fluid contactor structure for chemical reaction processes has one or more segments, where each segment has a plurality of substantially parallel fluid flow passages oriented in an axial direction; cell walls between each adjacent fluid flow passages and each cell wall has at least two opposite cell wall surfaces. The structure also includes at least one active compound in the cell walls and multiple axially continuous conductive filaments either embedded within the cell walls or situated between the cell wall surfaces. The conductive filaments are at least one of thermally and electrically conductive, are oriented in axially, and are in direct contact with the active compound, and are operable to transfer thermal energy between the active material and the conductive filaments. Heating of the conductive filaments may be used to transfer heat to the active material in the cell walls. Methods of manufacturing the structure are discussed.
    Type: Application
    Filed: February 26, 2010
    Publication date: December 22, 2011
    Inventors: Andre Boulet, Soheil Khiavi
  • Patent number: 8075677
    Abstract: A carbon canister with a valve activated by the weight of nearly saturated or saturated carbon communicates with piping from an underground tank. The invention includes carbon within a casing inside a canister, a weight actuated valve, and piping in communication with the atmosphere. When an ORVR vehicle refuels, the pressure lowers in the tank that draws air into the canister. After refueling, the tank remains subject to conditions that generate hydrocarbon vapors. Those vapors then return to the canister and adhere to the surface of the carbon. The carbon, heavier with hydrocarbons, lowers the canister and closes the weight actuated valve. Closing the valve returns pressure control to an external pressure vacuum relief valve. The next refueling draws in atmospheric air to purge the hydrocarbons in the canister and thus lighten it. A secondary purge valve also removes hydrocarbons from the canister. Once the carbon lightens, the inlet valve opens and the vapors return to the canister for adsorption.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: December 13, 2011
    Assignee: Husky Corporation
    Inventors: Timothy Schroeder, Darrell Vilmer, Arthur C. Fink, Jr.
  • Publication number: 20110290114
    Abstract: This invention provides methods for separating gas components from a gas stream. The methods are particularly advantageous in that an environmentally friendly biomass absorbent is used to assist in the separation process. The invention is particularly suited to separate water soluble gas components from a gas stream. The water soluble gas components can be used to condition the biomass for additional use, such as a conditioned feed for a biofuel. In general, the conditioned biomass will have increased enzyme digestibility, making the conditioned biomass highly suitable as feedstock for biofuel production.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 1, 2011
    Applicant: MBI International
    Inventors: Timothy J. Campbell, Farzaneh Teymouri, David K. Jones
  • Publication number: 20110271833
    Abstract: An adsorbent vessel and process for using the adsorbent vessel subject to thermal swing expansion/contraction is disclosed where the adsorbent vessel comprises a support screen affixed to the adsorption vessel subject to thermal swing expansion/contraction and where a first section of the support screen extends along a portion of the length of the adsorption vessel subject to thermal swing expansion/contraction in the axial direction and comprises apertures permitting gas permeation and where the first section of the support screen has a cross-section in the axial direction that is arcuate.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 10, 2011
    Inventors: Stephen Clyde Tentarelli, Stephen John Gibbon
  • Patent number: 8052783
    Abstract: A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: November 8, 2011
    Assignee: UT-Battelle LLC
    Inventor: Frederick S. Baker
  • Patent number: 8052777
    Abstract: One exemplary embodiment can be a pressure swing adsorber vessel. The pressure swing adsorber vessel can include one or more walls. Generally, the one or more walls contain an adsorbent bed having a first side and a second side and at least one spacer forming a cusp. Usually, the one or more walls and the adsorbent bed define at least one void volume adjacent to the adsorbent bed, and the cusp of the at least one spacer may be positioned in the at least one void volume. The cusp can be positioned opposing an incoming feed stream or a desorbent stream.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Patent number: 8043414
    Abstract: A method and an apparatus for desorption and a dehumidifier are provided in the present invention, in which an electrical potential is applied to electrodes disposed on both ends of an absorbing material so as to desorb the substances absorbed within the absorbing material whereby the absorbing material is capable of being maintained for cycling the absorbing operation. By means of the method and the apparatus of the present invention, the desorbing efficiency can be enhanced and the energy consumption can be reduced during desorption.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: October 25, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Shan Jeng, Ming-Shiann Shih, Jau-Chyn Huang, Yu-Li Lin, Ya-Wen Chou, Ting-Wei Huang, Yu-Ming Chang
  • Patent number: 8038771
    Abstract: Pressure swing adsorption (PSA) assemblies with purge control systems, and hydrogen-generation assemblies and/or fuel cell systems containing the same. The PSA assemblies are operated according to a PSA cycle to produce a product hydrogen stream and a byproduct stream from a mixed gas stream. The byproduct stream may be delivered as a fuel stream to a heating assembly, which may heat the hydrogen-producing region that produces the mixed gas stream. The PSA assemblies may be adapted to regulate the flow of purge gas utilized therein, such as according to a predetermined, non-constant profile. In some embodiments, the flow of purge gas is regulated to maintain the flow rate and/or fuel value of the byproduct stream at or within a determined range of a threshold value, and/or to regulate the flow of purge gas to limit the concentration of carbon monoxide in a heated exhaust stream produced from the byproduct stream.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: October 18, 2011
    Assignee: Idatech, LLC
    Inventor: Travis A. Bizjak
  • Patent number: 8021468
    Abstract: A room temperature trap for the purification and concentration of gaseous methane. The trap utilizes the adsorption and desorption properties of microporous spherical carbon molecular sieves to purify and concentrate radiolabelled methane for application in an automated synthesis module without the need for cryogenic cooling.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 20, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nicie C. Murphy, Todd L. Graves
  • Patent number: 8016918
    Abstract: Pressure swing adsorption process for producing oxygen comprising (a) providing at least one adsorber vessel having a first layer of adsorbent adjacent the feed end of the vessel and a second layer of adsorbent adjacent the first layer, wherein the surface area to volume ratio of the first layer is in the range of about 0.75 to about 1.8 cm?1; (b) introducing a pressurized feed gas comprising at least oxygen, nitrogen, and water into the feed end, adsorbing at least a portion of the water in the adsorbent in the first layer, and adsorbing at least a portion of the nitrogen in the adsorbent in the second layer, wherein the superficial contact time of the pressurized feed gas in the first layer is between about 0.08 and about 0.50 sec; and (c) withdrawing a product gas enriched in oxygen from the product end of the adsorber vessel.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: September 13, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Matthew James LaBuda, Timothy Christopher Golden, Roger Dean Whitley, Craig E. Steigerwalt
  • Patent number: 8012446
    Abstract: NO2 may be removed from a carbon dioxide feed gas comprising NOx and at least one “non-condensable” gas as contaminants by passing the feed gas at a first elevated pressure through a first adsorption system that selectively adsorbs at least NO2 to produce at least substantially NO2-free carbon dioxide gas. The adsorption system is at least partially regenerated using a carbon dioxide-rich gas recovered from the substantially NO2-free carbon dioxide gas after purification. The invention has particular application in removing NOx and water from flue gas generated by oxyfuel combustion.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 6, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Kevin Boyle Fogash, Vincent White, Jeffrey William Kloosterman, Timothy Christopher Golden, Paul Higginbotham
  • Patent number: 8011224
    Abstract: A feeding device for enriching and feeding a fluid sample into a chemical detector, the feeding device comprises (a) a sorbent element having a sorbent material for sorbing at least one target chemical present in the fluid sample; (b) a desorbing mechanism for generating conditions for the sorbent material to desorb the at least one target chemical out of the sorbent material, thereby to provide an enriched fluid sample; and (c) a loose connector, for providing a loose connection between the feeding device and the chemical detector, such that when the sorbent material desorbs the at least one target chemical, the chemical detector is fed by the enriched fluid sample, and when the sorbent material sorbs the at least one target chemical, the chemical detector is fed by environmental fluids.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: September 6, 2011
    Assignee: Israel Institute for Biological Research
    Inventors: Shai Kendler, Adi Zifman, Netzah Gratziany, Amnon Sharon, Gad Frishman
  • Publication number: 20110209613
    Abstract: A method and apparatus for regenerating the media of a rotary sorption concentrator system includes passing a 600° F. to 1000° F. regeneration fluid stream through a rotating media in a first isolated zone to regenerate the media and remove contaminants from the media that are not removed during a typical desorption cycle of a rotary sorption concentrator system.
    Type: Application
    Filed: September 12, 2008
    Publication date: September 1, 2011
    Inventors: Christopher P. Jensen, Kevin Orff, Frank Giles
  • Patent number: 7988766
    Abstract: Provided herein are adsorbents and methods of using the adsorbents to at least partially remove one or more adsorbates. In an aspect, an adsorbate within a phase is at least partially removed by providing an adsorbent material and contacting the adsorbent material with the phase having an adsorbate, to at least partially remove the adsorbate. Various adsorbents are disclosed having the chemical formula RE1-x-y-zBxB?yB?zOw, where RE is RE is a rare earth metal, B is a trivalent metal ion, B? is a transition metal ion or an alkaline earth element, B? is a transition metal ion, 0?x?0.25, 0?y?0.95, 0?z?0.75, w is a number which results in charge balance, and x+y+z<1.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: August 2, 2011
    Assignee: Eltron Research & Development Inc.
    Inventors: James H. White, Jesse W. Taylor
  • Publication number: 20110172412
    Abstract: The present invention relates to reducible porous crystalline solids, constituted of a metal-organic framework (MOF), for the separation of mixtures of molecules having different unsaturation degrees and/or a different number of unsaturations with a selectivity that can be adjusted by controlling the reduction of the MOF. The MOF solids of the present invention, after reduction, have a strong affinity for molecules containing at least one unsaturation. They can be used in various separation processes, especially those relating to hydrocarbons.
    Type: Application
    Filed: June 11, 2009
    Publication date: July 14, 2011
    Applicants: Universite De Caen-Basse Normandie, Centre National De La Recherche Scientifique- CNRS-
    Inventors: Christian Serre, Alexandre Vimont, Philip Llewellyn, Jong-San Chang, Patricia Horcajada-Cortes, Gérard Ferey, Marco Daturi, Young-Kyu Hwang
  • Publication number: 20110154986
    Abstract: A high efficiency gas concentrating apparatus includes an air compressor for supplying high pressure air, first and second adsorption towers that are disposed above the air compressor and communicating with the air compressor to adsorb nitrogen and concentrate oxygen as the high pressure air is alternately supplied thereto, first and second concentrating passages that are disposed above the respective first and second adsorption towers to discharge the concentrated oxygen, and a cleaning tank that is disposed between the first and second concentrating passages to receive a portion of the concentrated oxygen from one of the first and second adsorption towers, temporarily store the received concentrated oxygen therein, and alternately remove adsorbed nitrogen by supplying the temporarily concentrated oxygen to the other of the first and second adsorption towers.
    Type: Application
    Filed: February 8, 2010
    Publication date: June 30, 2011
    Applicants: OXUS CO., LTD, Sogang University Industry-University Cooperation Foundation
    Inventors: Tae Soo Lee, Yoon Sun Choi, Seung Kwon Oh, Shin Kyu Han
  • Publication number: 20110158872
    Abstract: The present invention relates to a method and a multi-component system for adsorbing contaminants and/or pollutants from a contaminated hot fluid by using a turbulent air stream, to adiabatically cool the temperature of the fluid, in association with one or more adsorbents. The system of the present invention can also be coupled to a recovery and recycling unit to recover and recycle the contaminant and/or pollutant and the adsorbent material.
    Type: Application
    Filed: November 3, 2010
    Publication date: June 30, 2011
    Inventor: Parisa A. Ariya
  • Patent number: 7955419
    Abstract: Embodiments of the present invention are directed to systems and methods for treating landfill gas using landfill leachate. In one embodiment of the present invention, a method includes receiving landfill leachate from at least one of a plurality of sources, and pretreating the landfill leachate to adjust at least one chemical property of at least one component of the landfill leachate. The leachate contacts landfill gas, so that at least one component of the landfill gas chemically reacts with at least one component of the landfill leachate to form a spent landfill leachate and a treated landfill gas. The method also includes recycling a first portion of the spent landfill leachate, recirculating a second portion of the spent landfill leachate to at least one of the plurality of sources, and subjecting the treated landfill gas to flare.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: June 7, 2011
    Assignee: Casella Waste Systems, Inc.
    Inventor: Douglas R. Casella
  • Publication number: 20110079738
    Abstract: The invention relates to an activated charcoal filter for storing and releasing gaseous hydrocarbons which originate from a fuel supply means of a motor vehicle. The activated charcoal can be supplied with gaseous hydrocarbons via an inlet. A heating means for heating of the activated charcoal is made available by a tank shutoff valve by means of which the inlet can be shut off. Since the tank shutoff valve is being operated as a heating means, an additional heating means for regenerating the activated charcoal can be omitted. Furthermore, the invention relates to a motor vehicle with such an activated charcoal filter and a method for operating an activated charcoal filter.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Applicant: Audi AG
    Inventor: Harald Hagen
  • Publication number: 20110079143
    Abstract: Certain aspects and examples are directed to sorbent devices and methods of using them. In certain embodiments, a sorbent device comprising a body comprising a sampling inlet, a sampling outlet and a cavity between the inlet and the outlet, the cavity comprising a serial arrangement of at least four different sorbent materials is described. In some embodiments, the sorbent materials are arranged from a material with a weakest sorbent strength to a material with a strongest sorbent strength with the weakest sorbent strength material adjacent to the sampling inlet.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Inventors: Lee Marotta, Miles Snow
  • Patent number: 7896950
    Abstract: Provided are plasma-aided gas storage methods and apparatus. In one embodiment, a porous powder bed assembly equipped with corona discharge electrodes is used to generate a non-equilibrium plasma of negatively ionized gas molecules which absorb onto porous particles, e.g., activated charcoal, to form a gas storage entity. Gas adsorbed onto the particles is desorbed at moderate temperatures by aid of ultraviolet light illumination.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: March 1, 2011
    Inventor: Yashen Xia
  • Patent number: 7896953
    Abstract: A process and device to capture of CO2 at its originating source, such as a power plant, is disclosed. Absorbent material is recharged by desorbing CO2, so that it may be sequestered or used in another application. Continual recharging results in loss of absorbent surface area, due to pore plugging and sintering of particles. Calcium oxide or calcium hydroxide was immobilized to a fibrous ceramic-based fabric substrate as a thin film and sintered, creating an absorbent material. The samples were characterized, showing continuous cyclic carbonation conversions between about 62% and 75% under mild calcination conditions at 750° C. and no CO2 in N2. Under the more severe calcination condition at 850° C. and 20 wt % CO2 in N2, yttria fabric was superior to alumina as a substrate for carbon dioxide capture and the reactivity of the calcium oxide absorbent immobilized to yttria was maintained at the same level in the 12 cycles.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 1, 2011
    Assignee: University of South Florida
    Inventors: D. Yogi Goswami, Man Su Lee, Nikhil K. Kothurkar, Elias K. Stefanakos
  • Publication number: 20110041690
    Abstract: A method and apparatus for simultaneously removing alkali chlorides from an industrial process and purifying vaporizable contaminants such as mercury from a particulate material. Gases containing alkali chlorides are cooled to a temperature above the boiling point of the contaminants and below the boiling point of the alkali chlorides. Particulates rich in alkali chlorides are removed from the gas stream with a first dust collector. The gas stream cleaned of alkali chlorides is directed to a reaction area where particulate material containing mercury contaminants is inserted into the gas stream to vaporize the contaminants from the material and entrain the cleaned material in the gases. The gases are directed to a second dust collector to remove the entrained particulate material, after which a sorbent or chemical reagent is injected in the gases to interact with the contaminants and form a contaminant containing product that is entrained in the gases and thereafter separated from the gases.
    Type: Application
    Filed: August 18, 2009
    Publication date: February 24, 2011
    Inventors: Ove Lars Jepsen, Peter T. Paone, III, John S. Salmento
  • Patent number: 7879139
    Abstract: The present invention discloses a method and an apparatus for reactivating lime-based sorbents and increasing the carbon dioxide-capture capacity of the sorbent in the combustion of carbon-containing fuels. The method of the present invention seeks to increase the carbon dioxide capture capacity of lime-based sorbents by applying concentrated or 100% carbon dioxide directly to a lime-based sorbent. Optionally, the lime-based sorbent may be pretreated using a hydration process after each process of carbon dioxide separation. The regenerated sorbent is carbonated in a presence of concentrated carbon dioxide and elevated temperatures. The invention is useful in reducing the need to add additional sorbent to maintain the carbonation/calcination cycle. The regenerative potential of the sorbent as manifested by the present invention leads to increased carbon dioxide-capture capacity of the sorbent.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: February 1, 2011
    Assignee: Her Majesty the Queen in right of Canada as represented by the Minister of Natural Resources
    Inventors: Edward J. Anthony, Dennis Lu, Carlos Salvador
  • Publication number: 20110017061
    Abstract: The invention provides a process for the regeneration of at least one adsorbent bed, comprising at least the steps of: (a) contacting a first adsorbent bed (B1) with a gaseous stream (10) such that at least a portion of adsorbed species in said first adsorbent bed (B1) are released; (b) cooling a second adsorbent bed (B2); wherein a bypass (20) is provided around the second adsorbent bed (B2) and the gaseous stream (10), before contact with the first adsorbent bed (B1), is directed to at least one of (i) the second adsorbent bed (B2), and (ii) the bypass (20) around the second adsorbent bed (B2), wherein the proportion of gaseous stream (10) flowing through the bypass (20) is controlled.
    Type: Application
    Filed: February 2, 2009
    Publication date: January 27, 2011
    Inventor: Anders Carlsson
  • Publication number: 20110011803
    Abstract: The various embodiments of the present invention relate generally to sorbent fiber compositions. More particularly, various embodiments of the present invention are directed towards sorbent fibers for pressure swing and temperature swing adsorption processes. Various embodiments of the present invention comprise a sorbent composition, comprising a fiber comprising a plurality of tortuous pathways; and a sorbent material, wherein the sorbent material is in fluid communication with at least a portion of the plurality of tortuous pathways. Aspects of the present invention comprise compositions, devices and methods of using sorbent fiber compositions.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 20, 2011
    Applicant: Georgia Tech Research Corporation
    Inventor: William J. Koros
  • Patent number: 7871458
    Abstract: There is provided a heating system for a building comprising; i) a heater; ii) a media flow passage through which a medium heated by the heater passes in order to distribute heat through the building; and iii) a heat recovery apparatus for recovering latent heat of adsorption from a humid gas. The heat recovery apparatus comprises a) a gas flow passage connected at one end to a source of humid gas; b) a desiccant material provided within the gas flow passage such that the humid gas contacts the desiccant material and water vapor is adsorbed releasing latent heat of adsorption; wherein the media flow passage and gas flow passage are in heat exchanging relationship, such that when the desiccant material adsorbs water vapor from the exhaust gas the latent of the adsorption is at least partially transmitted to the medium.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 18, 2011
    Assignee: Xsorb Eco Technology B.V.
    Inventor: Ari Antero Minkkinen
  • Patent number: 7871459
    Abstract: Disclosed is a doped cerium oxide sorbent that can effectively and regenerably remove H2S in the temperature range of about 500° C. to about 1000° C. Regenerable sorbents (e.g., ZnO, La2O3, CeO2) and methods of using them are disclosed that allow cyclic desulfurization from about 300-500° C., 350-450° C., and at about 400° C. In one embodiment, the present invention relates to a method of desulfurizing fuel gas comprising passing the fuel gas through the sorbent at a space velocity wherein the sulfur compounds are adsorbed substantially on the surface of the sorbent; and regenerating the sorbent by passing a regenerating gas through the sorbent, wherein substantially all of the sulfur compounds are desorbed from the sorbent surface. In a further embodiment, the method of desulfurizing fuel gas further comprises repeating the aforementioned steps while the fuel processor is in operation.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: January 18, 2011
    Assignee: Trustees of Tufts College
    Inventors: Maria Flytzani Stephanopoulos, Zheng Wang, Mann Sakbodin
  • Patent number: 7867320
    Abstract: The present invention relates to a dual feed and dual vacuum four bed VPSA process for selectively adsorbing a component from a feed stream, e.g., nitrogen from air, to produce an oxygen-enriched gas stream using a multi-port indexing drum valve, a system comprising a multi-port indexing drum valve and method for operating such a system.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: January 11, 2011
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Michael S. Manning, Ashwin Desai, Preeti Chandra, Paul William Belanger
  • Patent number: 7862645
    Abstract: Method for argon recovery that comprises (a) providing a feed gas mixture comprising argon and nitrogen; (b) contacting at least a portion of the feed gas mixture with a nitrogen-selective adsorbent in a cyclic pressure swing adsorption process and adsorbing at least a portion of the nitrogen on the adsorbent in a first pressure range above 100 psia to provide a purified argon product and an adsorbent comprising adsorbed nitrogen; and (c) desorbing the adsorbed nitrogen in one or more regeneration steps effected in a second pressure range between atmospheric pressure and a super-atmospheric pressure below any pressure in the first pressure range, inclusive; wherein the cyclic pressure swing adsorption process is effected at an average operating temperature of at least about 0° C.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 4, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Roger Dean Whitley, Edward Landis Weist, Jr., Annemarie Ott Weist, Steven Ray Auvil
  • Patent number: 7862647
    Abstract: A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: January 4, 2011
    Assignee: Northwestern University
    Inventors: Joseph T. Hupp, Karen L. Mulfort, Randall Q. Snurr, Youn-Sang Bae
  • Patent number: 7854788
    Abstract: A filter membrane includes a substrate, a polymer layer provided on the substrate and a plurality of filter openings each having a width of from about 2 nanometers to about 5 nanometers provided in the polymer layer. A method of controlling pore size of a filter membrane and a method of decontaminating a filter membrane are also disclosed.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 21, 2010
    Assignee: The Boeing Company
    Inventors: Norman R. Byrd, James P. Huang, Gwen Gross
  • Publication number: 20100313755
    Abstract: The present invention relates to new fibers, new processes of using said fibers, and new sheath dope compositions for multi-layer spinning processes. The fibers comprise a porous core and a sheath surrounding said porous core. The fibers may be useful in, for example, processes for removing low level contaminants like sulfur compounds from a gas stream like natural gas.
    Type: Application
    Filed: October 13, 2009
    Publication date: December 16, 2010
    Applicant: Georgia Tech Research Corporation
    Inventors: William John Koros, Dhaval A. Bhandari
  • Patent number: 7850766
    Abstract: Systems and methods are provided for substantially reducing undesired cumulative effects by preferentially heating the active particles. By preferentially heating the active particles, the active particles are “cleaned” of substances that may reduce or negate particle activity. In addition, preferential heating may reduce active particle adsorption of binder.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 14, 2010
    Assignee: Cocona, Inc.
    Inventor: Gregory W. Haggquist
  • Publication number: 20100307335
    Abstract: Gas fired internal combustion engines which are run on contaminated fuel suffer from the buildup of internal deposits and corrosion. This is a particular problem with engines fuelled by biogas, e.g. from waste decomposition. By filtering the fuel via a filter containing an ion-exchange resin substantial improvements can be obtained.
    Type: Application
    Filed: January 21, 2008
    Publication date: December 9, 2010
    Inventor: John Hayward
  • Patent number: 7846237
    Abstract: The concentration of adsorbate in the feed gas to an on-stream bed of a cyclical swing adsorption process is monitored and the data processed to predict the time required to complete the on-stream mode of that bed and the purge flow rate and/or other regeneration mode operating condition of the concurrently off-stream bed is modified in response to changes in said predicted time whereby the regeneration mode of the off-steam bed is completed at the same time as the on-stream mode of the concurrent on-stream bed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: December 7, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Mohammad Ali Kalbassi, Timothy Christopher Golden, Christopher James Raiswell
  • Publication number: 20100300145
    Abstract: A method is disclosed for distributing a plurality of fluid which flows through a plurality of chambers and an apparatus for performing this method, which comprises a first fluid flow distribution device (2), with no mixing feature, having a first plurality P of inlet/outlet lines (31, 32, 33, 34) opposite a second plurality N of inlet/outlet lines (41, 42, 43, 44, 45, 46, 47, 48), where N?P, said first distribution device (2) selectively connecting each of said lines of said second plurality N of lines (41, 42, 43, 44, 45, 46, 47, 48) with one of said lines of said first plurality P of lines (31, 32, 33, 34), said first distribution device (2) being adapted for simultaneous intermittent and sequential switching of the connection between all of said N lines of said second plurality of lines with all of said P lines of said first plurality of lines, to sequentially provide N different possible inlet/outlet patterns; a second fluid flow distribution device (6), said second distribution devices (6) have a synchr
    Type: Application
    Filed: January 23, 2009
    Publication date: December 2, 2010
    Applicant: POLARIS S.R.L.
    Inventors: Gianclaudio Masetto, Francesco Masetto, Claudia Masetto
  • Patent number: 7837767
    Abstract: Processes comprising: providing a crude gas stream having a temperature not exceeding 40° C., the crude gas stream comprising hydrogen chloride and at least one organic impurity; condensing at least a portion of the at least one organic impurity from the crude gas stream at a temperature not exceeding 0° C. to form a prepurified gas stream and a condensate comprising condensed organic impurity; subjecting at least a portion of the prepurified gas stream to adsorption on an adsorption medium to provide a purified gas stream; and separating the condensate into at least a head gas stream comprising residual hydrogen chloride and a sump stream comprising at least a portion of the condensed organic impurity.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: November 23, 2010
    Assignee: Bayer MaterialScience AG
    Inventors: Ole Brettschneider, Knud Werner
  • Publication number: 20100292524
    Abstract: A process is provided for recovering methane from landfill feed gas and other anaerobic digestors. The process comprising the following steps: firstly treating the feed gas to remove H2S; subsequently compressing the gas; and then treating the gas to remove further impurities. Additionally, there is provided a chiller for reducing the temperature of a gas flow. The chiller comprising: a shell arranged to be chilled, a plurality of bores through the shell and through which the gas flows, in use, and forming, together with the shell, a heat exchanger, a tangential inlet to each bore for creating a spiral flow of the gas through the bore, in use. Furthermore, a process is provided for purifying a gas feed using a reversible gas absorber unit comprising two hollow fibre gas/liquid contactors, each of which is arranged to provide a counter-current flow.
    Type: Application
    Filed: January 9, 2007
    Publication date: November 18, 2010
    Applicant: GASREC LIMITED
    Inventors: Andrew Derek Turner, Richard John Lileystone, George Cutts