Defoaming Patents (Class 95/157)
  • Patent number: 10024499
    Abstract: A method and system are provided for reducing the volume and/or frequency of slugging in a fluid processing system that includes a pipeline for conveying produced fluids and a vessel for receiving the produced fluids from the pipeline. A control valve is provided in the pipeline upstream of the vessel. A pressure sensor and/or a level sensor is coupled to the vessel. Pressure information from the pressure sensor and/or level information from the level sensor is sent to at least one master control loop in a cascade control scheme. The master control loop output determines a set point of a slave control loop coupled to the control valve to achieve a pressure setpoint or a level setpoint. The slave control loop, also referred to as a pseudo-flow controller, determines whether the control valve opening needs be modulated to achieve the setpoint of the slave control loop. A method is also provided for retrofitting an existing fluid processing system.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: July 17, 2018
    Assignee: CHEVRON U.S.A. INC.
    Inventor: Lisa A. Brenskelle
  • Patent number: 9664548
    Abstract: A well test system for testing fluids produced from one or more petroleum wells has a separator and a plurality of multiphase flow metering systems, each of which has the capability, over at least a portion of its operating envelope, of separately measuring flow rates of oil, water, and gas. The well test system has a fluidic system, including gas leg conduits coupling the separator to the multiphase flow metering systems, liquid leg conduits coupling separator to the multiphase flow metering systems, and bypass conduits for directing multiphase fluid to the multiphase flow metering systems while bypassing the separator. Valves are configured to selectively route fluid flow though the fluidic system to selectively bypass the separator when the multiphase flow metering systems can be used to provide separate flow rates of oil, water, and gas in the unseparated multiphase fluids from the well.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: May 30, 2017
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Patent number: 8741033
    Abstract: An air pollution control apparatus 1 includes: an absorber 2 that serves as a passage for flue gas; an absorbent spraying unit 5 that sprays an absorbent into the absorber 2; and a reservoir tank 3 that reserves therein the absorbent. The air pollution control apparatus 1 brings the flue gas into gas-liquid contact with the absorbent to process the flue gas, while sending the flue gas in the absorber 2. The air pollution control apparatus 1 also collects and reserves therein the absorbent after processing the flue gas in the reservoir tank 3. The air pollution control apparatus 1 also includes a defoaming agent diffusing unit 6 that diffuses a defoaming agent over foams of the absorbent in the reservoir tank 3.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Seiji Kagawa, Yoshito Tanaka, Jun Hashimoto, Hiroshi Kawane
  • Publication number: 20130303821
    Abstract: Systems and methods for inhibiting foam formation in an acid gas removal system are provided. Preconditioning a rich amine or triethylene glycol stream exiting an absorber of an acid gas removal system through a rotary separation turbine can provide pre-separation of gas from rich amine or triethylene glycol, as well as effectively reduces or inhibits foam formation. Systems provided enhance plant reliability and also recovers hydraulic power into electricity.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventor: Feng-Ran Sheu
  • Patent number: 8469238
    Abstract: A resin fluid dispensing apparatus includes a container having a first volume arranged to receive a resin fluid, a first connection unit connected to the container, a pressure chamber having a second volume configured to connect to the first connection unit and to contain the resin fluid transported from the first volume through the first connection unit, a pressure unit including a pressure plate directly pressurizing the resin fluid in the second volume, a dispenser having a syringe arranged to receive the pressurized resin fluid transported from the second volume through a second connection unit connected to the pressure chamber and to dispense the received pressurized resin fluid through the syringe.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: June 25, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jung-Min Lee, Choong-Ho Lee
  • Publication number: 20120152118
    Abstract: In one aspect, a gas release device for removing gas from a bodily liquid in extracorporeal circuitry is described. The device includes an elongate vertical portion and a flared portion that extends outwardly from the elongate vertical portion. The device also includes an inlet port for delivering a bodily liquid into the device, and an outlet port for evacuating the bodily liquid from the device. The inlet port is positioned below the elongate vertical portion and the outlet port is positioned below the flared portion such that bodily liquid traveling from the inlet toward the outlet is forced around the flared portion to cause air bubbles in the bodily liquid to be re-circulated back toward the inlet port.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Inventors: COLIN WEAVER, MARTIN JOSEPH CRNKOVICH
  • Publication number: 20100162889
    Abstract: The present invention relates to a combined machine for pumping and separating into two distinct and purified phases a two-phase liquid/gas mixture or fluid, preferably oil/air, entering the machine, comprising means for the suction, pumping and partial separation of the two-phase fluid, means for drying and extracting the separated gas and means for degassing and forcing back the separated liquid, comprising at least three physically separated stages (A,B,C) intended to be activated by a means that is internal or external to the machine, and built into a single casing: a first stage (A), equipped with an intake for the two-phase fluid, in which the two-phase fluid is sucked, pumped and partially separated into two distinct phases, one phase being mainly liquid and the other being mainly gaseous; a second stage (B), comprising two zones: a first zone in which the mainly liquid phase extracted from the first stage (A) is degassed, and a second zone in which the mainly gaseous phase extracted from the first
    Type: Application
    Filed: December 21, 2009
    Publication date: July 1, 2010
    Applicant: TECHSPACE AERO S.A.
    Inventors: Albert Cornet, Nicolas Raimarckers
  • Patent number: 5922112
    Abstract: A system for automatically delivering an anti-foaming agent to a biological aste treatment system includes a sensor for monitoring the amount of foam present in the system, a pump for pumping a predetermined quantity of anti-foaming agent into the system, and a controller for initiating the pumping sequence when the quantity of foam in the system reaches a preselected level. The controller includes two relays. The first relay controls the length of time the pump is on, thereby controlling the amount of anti-foam injected into the system, and the second relay establishes a period of time following the pumping period when the pump cannot be activated, thereby providing a period of time for the anti-foam to break down the foam before additional anti-foam can be added.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: July 13, 1999
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Mark E. Zappi, Brad E. Rogers
  • Patent number: 5868859
    Abstract: The creation of a substantial volume of foam on the surface of an aqueous medium can reduce the apparent thermal IR emission substantially when compared to that of the aqueous medium free of foam. This difference in temperature (infrared emission) can be used to control a defoaming process or the addition of a defoaming agent to control foam in the aqueous medium. The apparent thermal infrared emission of foam is less than that of the aqueous medium. As the thermal IR emissions drop as foam develops, the difference between the apparent temperature of the foam and the temperature of aqueous medium increases. Such a difference in temperature can be used to control use of a defoaming process or agent. As the foam volume is reduced, the addition of a defoaming composition is substantially reduced or stopped. During the control method, a predetermined limit is established at which the defoaming process or composition is introduced into the aqueous medium.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: February 9, 1999
    Assignee: Ecolab Inc.
    Inventors: Robert D. Hei, Keith D. Lokkesmoe, Jay T. Kummet, Scott P. Bennett
  • Patent number: 5587004
    Abstract: A defoaming device and method for aeration, for use in a processor equipped with an aeration apparatus for sending air into a processing solution. The defoaming device includes a pipe for guiding foam produced in the aeration apparatus to outside the aeration apparatus; and at least one of a throttle portion, which is disposed midway in the pipe and formed by reducing a cross-sectional area of the pipe, and an air-stream guiding device for guiding an air stream into a portion of the pipe in a downstream direction corresponding to the direction of the flow of the foam. The flow rate of foam in the pipe is accelerated by the throttle portion and/or the air-stream guiding device, thereby positively removing the foam produced in the aeration apparatus.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 24, 1996
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Fumio Mogi
  • Patent number: 5518701
    Abstract: The invention relates to a process and a corresponding plant for the purification of gases, in particular flue gases, using a foam-forming reaction medium with which dirty gas is contacted in a reaction chamber, in which the foam is broken after the reaction between dirty gas and the reaction medium, the reaction medium recovered by the breaking and the settling sludge are separately collected and the purified gas is withdrawn. This invention is intended to enable the substances removed from the gases to be purified to be separated, when dirty gas having a temperature of <60.degree. C.
    Type: Grant
    Filed: July 7, 1993
    Date of Patent: May 21, 1996
    Inventor: Herman Berthold
  • Patent number: 5423901
    Abstract: A method for conditioning a gas containing entrained asphaltene-containing hydrocarbons for pipeline transportation, having the steps of providing a stream of gas containing entrained asphaltene-containing hydrocarbons; and applying a surface active compound to the stream of gas, the surface active compound being a mixture of demulsifying agent, antifoaming agent, dispersant, aromatic solvent and alcohol solvent, whereby formation of emulsion from asphaltene containing hydrocarbons is prevented. The surface active compound has the following composition by volume: 5-15% demulsifying agent; 1-3% antifoaming agent; 10-40% dispersant; 10-60% aromatic solvent; and 20-60% alcohol solvent.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: June 13, 1995
    Assignee: Corpoven, S.A.
    Inventor: Alberto L. Mendoza
  • Patent number: 5269834
    Abstract: A method and system for treating liquid chlorine to remove inert gases therefrom. Liquid chlorine is treated by passing it through a molecular sieve having a molecular pore diameter greater than the molecular diameter of the inert gases and smaller than the molecular diameter of chlorine so that the inert gases are adsorbed by the sieve while the liquid chlorine passes therethrough. The sieve may be regenerated by heating the sieve and evacuating by vacuum, followed by a purging with a gas and then a further vacuum evacuation.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: December 14, 1993
    Assignee: Olin Corporation
    Inventors: Ronald L. Dotson, Harry J. Loftis, Robert K. Steely