Steam Is Stripping Gas Patents (Class 95/162)
  • Patent number: 10610826
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is disclosed, in which the gas stream is reacted with a lean aminosilicone solvent in an absorber, resulting in a rich aminosilicone solvent that is then treated in a desorber to release the CO2 and regenerate lean aminosilicone solvent in a desorption reaction. The regenerated solvent is directed into a steam-producing, indirect heat exchanger that is configured to supply steam to the desorber at a temperature high enough to augment the desorption reaction. Also, selected amounts of make-up water are added to the rich aminosilicone solvent at one or more process locations between the absorber and the desorber, to lower the viscosity of the solvent and to lower the temperature required for the desorption reaction.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 7, 2020
    Assignee: Baker Hughes, A GE Company, LLC
    Inventors: Surinder Prabhjot Singh, Dan Hancu, Benjamin Rue Wood, Wei Chen, Irina Pavlovna Spiry, Joseph Philip DiPietro
  • Patent number: 10538466
    Abstract: A process is presented for the production of butadienes. The process includes the separation of oxygenates from the product stream from an oxidative dehydrogenation reactor. The process includes quenching the product stream and solvent and oxygenates from the product stream. The oxygenates are stripped from the solvent with an inert gas to reduce the energy consumption of the process, and the solvent is recycled and reused in the process.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: January 21, 2020
    Assignees: UOP LLC, TPC Group, LLC
    Inventors: John J. Senetar, Jeannie M. Blommel, Charles P. Luebke, Dana K. Sullivan, Joseph G. Duff, Jillian M. Horn, Clifford A. Maat, Michael O. Nutt
  • Patent number: 10501329
    Abstract: A manufacturing system of an electronic-grade ammonia solution comprises: a mixing tank to mix an unsaturated ammonia aqueous solution and alkali to obtain a mixing solution; a stripping unit, disposes downstream the mixing tank and comprises a heat exchanger to heat the mixing solution, and a stripping column to mix a nitrogen gas and the heated mixing solution to obtain a mixing gas; a first absorption unit, disposes downstream the stripping unit and comprises a first condensation unit to cool down the mixing gas, and a first absorption column to mix a saturated ammonia aqueous solution and the cooled mixing gas to obtain a purge gas; and a second absorption unit, disposes downstream the first absorption unit and comprises a second condensation unit to cool down a DI water, and a second absorption column to mix the cooled DI water and the purge gas to obtain electronic-grade ammonia solution.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: December 10, 2019
    Assignee: MEGA UNION TECHNOLOGY INC.
    Inventors: Kuo-Yi Chen, Shr-Han Shiu, Yi-Syuan Huang
  • Patent number: 9956505
    Abstract: An apparatus for and method of removing acidic gas from a gaseous stream and regenerating an aqueous solution allows for the recovery of waste heat of stripping steam and more economical regeneration of the aqueous solution. In at least one embodiment, one or more rich solvent bypasses combine with a rich solvent heat exchanger to recover waste heat. In another embodiment, the apparatus and method include one or more rich solvent bypasses and a heater positioned upstream of the stripper to more economically regenerate an aqueous solution.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: May 1, 2018
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Gary Rochelle, Tarun Madan, Yu-Jeng Lin
  • Patent number: 9901862
    Abstract: A carbon dioxide recovery system includes an absorption tower in which carbon dioxide is absorbed into an absorbing solution then the absorbing solution is output to a regeneration tower in which carbon dioxide is released from the absorbing solution. The regeneration tower outputs the absorbing solution from which carbon dioxide has been released and an exhaust gas included released carbon dioxide and water vapor. In a condensing section the exhaust gas is separated into dioxide gas stream and a condensed water stream. In a mixing section the condensed water is mixed with an amine to a replenishment amine aqueous solution in which the amine is dissolved in the condensed water. In a replenishment section the absorbing solution is mixed with the replenishment amine aqueous solution.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: February 27, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Kato, Shinji Murai, Takehiko Muramatsu, Satoshi Saito
  • Patent number: 9757680
    Abstract: Disclosed is a system and method of separating and collecting acid gas such as carbon dioxide in which the energy consumption in a stripping column for regenerating an absorbent may be reduced. In the system and method, the energy consumption may be reduced using heat generated during the acidic gas separation and collection processes. In the system and method, a low-temperature condensate from a condenser may be preheated by heat exchange with a high-temperature processed gas, and then supplied into the stripping column, thereby to reduce the heat duty of a reboiler and the energy consumption in the condenser for cooling. A partial flow of a carbon diode-absorbed absorbent from an absorber column may be preheated by heat exchange with high-temperature processed gas from an upper portion of the stripping column, and then supplied into the stripping column, thereby to further reduce the heat duty of the reboiler.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: September 12, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Il Hyun Baek, Jong Kyun You, Ki-Tae Park
  • Patent number: 9579599
    Abstract: Provided is a system and method in which a heat amount to be supplied to a regeneration tower for regenerating an absorbent may be lowered in an acidic gas capturing system for capturing acidic gas such as carbon dioxide. According to the system and method of capturing acidic gas, heat generated in the system itself is used to reduce energy consumption. According to the system and method of the inventive concept, heat exchange is conducted between low-temperature separated water generated in a capturing process and high-temperature processing gas to thereby reduce a cooling capacity of a condenser when condensing the processing gas, and also, a reboiler heat duty may be lowered by introducing the low-temperature separated water in a preheated state into the regeneration tower.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: February 28, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Il Hyun Baek, Jong Kyun You, Ki-Tae Park
  • Patent number: 9464842
    Abstract: In one embodiment, a carbon dioxide separating and capturing system includes an absorption tower to allow a gas containing carbon dioxide to contact with an absorption liquid and discharge a first rich liquid which is the absorption liquid having absorbed the carbon dioxide, and a regeneration tower to cause the absorption liquid to release a gas containing the carbon dioxide and discharge a lean liquid whose carbon dioxide concentration is lower than that of the rich liquid. The system further includes a reboiler to heat the absorption liquid in the regeneration tower by using steam, and a flow divider to divide the first rich liquid into second and third rich liquids. The system further includes a first heat exchanger to heat the second rich liquid by using the lean liquid, and a second heat exchanger to heat the third rich liquid by using water discharged from the reboiler.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: October 11, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takashi Ogawa, Hideo Kitamura
  • Patent number: 9028593
    Abstract: A method and apparatus for recovering a gaseous component from an incoming gas stream is described. The incoming gas stream is contacted with a lean aqueous absorbing medium to absorb at least a portion of the gaseous component from the incoming gas stream to form a lean treated gas stream and a rich aqueous absorbing medium. At least a portion of the gaseous component is desorbed from the rich aqueous absorbing medium at a temperature to form an overhead gas stream and a regenerated aqueous absorbing medium. At least a portion of the overhead gas stream is treated to recover a condensate stream. At least a portion of the condensate stream is used to form a heated stream. At least a portion of the heated stream is recycled back to the desorbing step. Novel absorbing medium compositions to recover carbon dioxide and/or hydrogen sulfide are also described.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: May 12, 2015
    Assignee: University of Regina
    Inventors: Don Gelowitz, Paitoon Tontiwachwuthikul, Raphael Idem
  • Patent number: 8613794
    Abstract: A process for producing a pressurized CO2 stream in a power plant integrated with a CO2 capture unit, wherein the power plant comprises at least one gas turbine (1) coupled to a heat recovery steam generator unit (2) and the CO2 capture unit comprises an absorber (18) and a regenerator (21), the process comprising the steps of: (a) introducing hot exhaust gas exiting a gas turbine into a heat recovery steam generator unit to produce a first amount of steam and a flue gas stream (17) comprising CO2; (b) removing CO2 from the flue gas stream comprising CO2 by contacting the flue gas stream with absorbing liquid in an absorber (18) to obtain absorbing liquid enriched in CO2 (20) and a purified flue gas stream; (c) contacting the absorbing liquid enriched in CO2 with a stripping gas at elevated temperature in a regenerator (21) to obtain regenerated absorbing liquid and a gas stream enriched in CO2 (23); (d) pressurizing the gas stream enriched in CO2 using a CO2 compressor (24) to obtain the pressurized CO2 stre
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: December 24, 2013
    Assignee: Shell Oil Company
    Inventors: Kuei-Jung Li, Georgios Protopapas
  • Publication number: 20130305924
    Abstract: A recovery apparatus of carbon dioxide comprises: an absorption column which brings a gas containing carbon dioxide into contact with an absorbing liquid and allows the absorbing liquid to absorb carbon dioxide; a regeneration column for regenerating the absorbing liquid, by causing the absorbing liquid having carbon dioxide absorbed in the absorption column to release carbon dioxide; a circulation system which circulates the absorbing liquid so that the absorbing liquid flowing from the absorption column returns to the absorption column through the regeneration column; and a steam supply system which generates steam available for a heat source that regenerates the absorbing liquid, using at least one of the absorbing liquid that returns to the absorption column by the circulation system and the absorbing liquid in the absorption column, and supplies the steam to the regeneration column.
    Type: Application
    Filed: January 17, 2012
    Publication date: November 21, 2013
    Applicant: IHI Corporation
    Inventors: Shiko Nakamura, Tomoya Muramoto, Yuichi Nishiyama, Shinya Okuno
  • Patent number: 8518156
    Abstract: A process and system (100) for removing contaminants from a solution to regenerate the solution within the system. The process includes providing a solution (165) from a wash vessel (160) to a stripping column (181), the solution (165) including contaminants removed from a flue gas stream (150) present in the wash vessel (160) and contacting the solution with steam (185) inside the stripping column (181) thereby removing the contaminants from the solution and regenerating the solution. The stripping column (181) is operated at a pressure less than about 700 kilopascal.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 27, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Frederic Z. Kozak, Arlyn V. Petig, Ritesh Agarwal, Rameshwar S. Hiwale
  • Patent number: 8425655
    Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 23, 2013
    Assignee: Carbon Capture Scientific, LLC
    Inventors: Shiaoguo Chen, Zijiang Pan
  • Patent number: 8398748
    Abstract: Contemplated configurations and methods include a solvent regenerator (58) that has an upper (93) and a lower stripping section (94). Cooled rich solve is used as reflux while heated rich solvent (11) is used as a source of stripping agent in the upper section (91). A reboiler (62) in the lower section provides further stripping agent, hi especially preferred configurations, a portion of lean solved from the regenerator (58) is further stripped in a separate or integrated regenerator (62) to form an ultra-lean solvent. Both lean and ultra-lean solvents are preferably used in a two-stage absorber (52) to thereby from the rich solvent and an offgas that is very low in acid gas.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: March 19, 2013
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8049044
    Abstract: The invention relates to a process for remediation of a fluid contaminated with alkylene oxide, involving contacting the contaminated fluid with an aqueous absorbent to yield a fat absorbent having absorbed fluid, conferring intimate contact of fat absorbent and alkylene oxide and conversion of alkylene oxide; and, an apparatus for remediation of the fluid which has a converter having inlet means connected to the outlet of a fluid absorber for contacting fluid and aqueous absorbent, a holding unit having a volume V for the fat absorbent, and outlet means connected to the inlet of a fluid desorber.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: November 1, 2011
    Assignee: Shell Oil Company
    Inventors: Alouisius Nicolaas Rene Bos, Dominicus Maria Rekers, Arthur Willibrordus Titus Rots
  • Patent number: 7985280
    Abstract: Methods and apparatus for generating a vapor to be injected into a flue gas stream are described. Apparatus comprises a fluid vaporization and injection assembly further comprising: a stripper for producing first ammonia vapor and a first aqueous ammonia solution from a second aqueous ammonia solution; a reflux tank for producing a second ammonia vapor and the second aqueous ammonia solution from the first ammonia vapor and the first aqueous ammonia solution; and a first outlet for outputting the second ammonia vapor for introduction into the flue gas.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Hitachi Power Systems America, Ltd.
    Inventors: William Gretta, Eric Pear, Dileep Karmarkar
  • Patent number: 7967895
    Abstract: For regenerating the loaded washing (scrubbing) agent (6, 7) from a physical gas wash (T1), in which one or more gas components are removed, to a large extent selectively, from a gas mixture (1) to be purified at least in a first of at least two successive washing steps, the loaded washing agent (7) withdrawn from the first washing step is, independently of the remaining quantity of loaded washing agent (6), subjected to a regeneration step (T2a) for separating the gas components (11) which have been selectively removed from the raw gas in the first washing step.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Linde AG
    Inventors: Ulrich Prüssner, Horst Weiss
  • Publication number: 20110088553
    Abstract: A method for regeneration of a rich absorbent having absorbed CO2, to give a regenerated, or lean absorbent, and CO2, is described. The rich absorbent is brought in countercurrent flow with steam at least partly generated by heating lean absorbent in a reboiler at the base of the regeneration column, where released CO2 and steam are withdrawn from the top of the column. Lean, or re-generated absorbent is withdrawn from the base of the column, and is flashed over a flash valve and separated in a flash tank into a gas phase, that is compressed and returned into the regenerator column, and a liquid phase mainly comprising lean absorbent that is cooled by heat exchanging against incoming rich absorbent, wherein the gas phase and/or the lean absorbent is/are heat exchanged against a low temperature heat medium after leaving the flash valve.
    Type: Application
    Filed: September 15, 2008
    Publication date: April 21, 2011
    Inventors: Simon Woodhouse, Pai Rushfeldt, Knut Sanden, Anne-Helene Haaland
  • Patent number: 7799286
    Abstract: In an FCC apparatus in which swirl arms are used to discharge gas and catalyst from a riser, a baffle is used to direct descending catalyst away from a wall of a disengaging vessel proximate a stripping section comprising elongated strips of metal.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventor: Robert L. Mehlberg
  • Publication number: 20100229723
    Abstract: A method and apparatus for recovering a gaseous component from an incoming gas stream is described. The incoming gas stream is contacted with a lean aqueous absorbing medium to absorb at least a portion of the gaseous component from the incoming gas stream to form a lean treated gas stream and a rich aqueous absorbing medium. At least a portion of the gaseous component is desorbed from the rich aqueous absorbing medium at a temperature to form an overhead gas stream and a regenerated aqueous absorbing medium. At least a portion of the overhead gas stream is treated to recover a condensate stream. At least a portion of the condensate stream is used to form a heated stream. At least a portion of the heated stream is recycled back to the desorbing step. Novel absorbing medium compositions to recover carbon dioxide and/or hydrogen sulfide are also described.
    Type: Application
    Filed: May 29, 2008
    Publication date: September 16, 2010
    Applicant: UNIVERSITY OF REGINA
    Inventors: Don GELOWITZ, Paitoon TONTIWACHWUTHIKUL, Raphael IDEM
  • Patent number: 7364668
    Abstract: The present invention provides a process for producing an amino composition by addition reaction between a polyamine and an unsaturated hydrocarbon compound in the presence of a strongly basic alkali metal catalyst to obtain an amino composition containing not more than 2% by weight of unreacted polyamine and preferably not more than 10 ppm of alkali metal.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: April 29, 2008
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hisayuki Kuwahara, Tsutomu Numoto, Masatoshi Echigo, Shun Ogawa
  • Patent number: 6680030
    Abstract: A baffle-style stripping arrangement for an FCC process having substantially horizontal stripping baffles is disclosed. The stripping baffles comprise a perforated section and a downcomer section which generates transverse movement of catalyst across the baffle to ensure adequate vertical movement of stripping media. The perforated section is covered with stripping openings to provide improved stripping efficiency and catalyst flux through the stripping vessel. The perforated section may comprise a grate. Baffles may also include an imperforate section which is vertically aligned with a downcomer section of a superjacent baffle.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: January 20, 2004
    Assignee: UOP LLC
    Inventors: Jeffrey P. Koebel, Brian W. Hedrick, Kalidas Puppala
  • Patent number: 5240476
    Abstract: A process for recovery of hydrogen sulfide-free fuel, while maintaining desirable carbon dioxide for combustion in a gas turbine to recover power in an integrated gasification combined cycle power plant and obtaining a rich hydrogen sulfide Claus plant feed gas is described.
    Type: Grant
    Filed: September 7, 1990
    Date of Patent: August 31, 1993
    Assignee: Air Products and Chemicals, Inc.
    Inventor: William P. Hegarty