Liquid Recycled Or Reused Patents (Class 95/163)
  • Patent number: 11945716
    Abstract: A method for sulfur recovery includes, in a hydrogenation reactor, converting sulfur-containing compounds in a Claus tail gas stream to hydrogen sulfide to produce a hydrogenated gas stream; feeding the hydrogenated gas stream to a quench tower to produce a quenched gas stream by condensing liquid water; feeding the quenched gas stream to a first stage adsorption vessel of a first stage adsorption unit to produce a first outlet gas stream by adsorbing water from the quenched gas stream; feeding the first outlet gas stream to a second stage adsorption vessel of a second stage adsorption unit to produce a second byproduct gas stream by adsorbing hydrogen sulfide from the first outlet gas stream; separating the second byproduct gas stream into a carbon dioxide stream and an enriched nitrogen stream; and regenerating the second stage adsorption vessel using the enriched nitrogen stream.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: April 2, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Georgios Lithoxoos, Sebastien A. Duval, Rashid M. Othman
  • Patent number: 11452969
    Abstract: Methods of reducing acid gas from a stream, comprising contacting the stream with a solvent system comprising a glycerol derivative are described herein. Disclosed herein is a composition comprising a glycerol derivative and an acid gas. A method for sweetening a natural gas stream comprising contacting a solvent system comprising a glycerol derivative with a natural gas stream is described herein.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 27, 2022
    Assignee: The Board of Trustees of the University of Alabama
    Inventors: Jason E. Bara, Brian Flowers, Max Mittenthal
  • Patent number: 10449482
    Abstract: A method for operating a gas scrubber is disclosed in which components are removed from a crude gas by scrubbing with a chemical or physical scrubbing medium to obtain a pure gas present at elevated pressure which, after heating, is introduced into an expansion machine which after work-performing decompression the pure gas leaves at an exit temperature. The amount of heat supplied to the pure gas during heating thereof is deliberately altered to approximate the exit temperature thereof to a predetermined target value at all times.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: October 22, 2019
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Ulvi Kerestecioglu, Alexander Prelipceanu, Anna-Maria Fischer, Stephan Zehrer, Jan-Peter Bohn, Katrin Giese, Thomas Hummel
  • Patent number: 10041014
    Abstract: A process for removal of mercury in a gas dehydration system comprising (a) adding a complexing agent to a recirculated glycol solvent as part of the glycol solution feed prior to or at the dehydration liquid contactor and recirculating continuously with the glycol solvent, (b) selectively reacting the complexing agent with mercury in the wet natural gas to remove the mercury from the dry natural gas product, (c) and feeding the rich glycol with the complexing agent to a regenerator and continuously regenerating.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: August 7, 2018
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joshua Allen Thompson, Daniel Chinn, Evan Shigeto Hatakeyama, Ryan Oliver Owen
  • Patent number: 10005019
    Abstract: A carbon dioxide concentration-controlling device (1 or 100) of the present invention controls the carbon dioxide absorption rate of a carbon dioxide-absorbing material (30) in accordance with a carbon dioxide concentration detected by a detector (20). A state determining unit (11) determines a state of the carbon dioxide-absorbing material (30), and a state controlling unit (12) controls the state of the carbon dioxide-absorbing material (30) to the state determined by the state determining unit (11).
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: June 26, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Yamamoto, Takayuki Naka, Hirohisa Yamada, Hideharu Tajima
  • Patent number: 9895650
    Abstract: The invention relates to a method and to a device for physical gas scrubbing, wherein a feed gas (1) containing hydrogen, carbon monoxide, carbon dioxide and also carbonyl sulphide and/or hydrogen sulphide is conducted through a first scrubbing section (W1) in countercurrent to a scrubbing medium preloaded with carbon dioxide, in order to separate sulphur components substantially selectively off from the feed gas and to generate a desulphurized gas mixture (3). In a second scrubbing section, carbon dioxide is separated off from only a subquantity of the desulphurized gas mixture by scrubbing with an unloaded scrubbing medium (4) and the resultant carbon dioxide-preloaded scrubbing medium is used completely in the first scrubbing section (W1) as scrubbing medium.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 20, 2018
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Horst Weiss, Alexander Brandl
  • Patent number: 9291409
    Abstract: A method, system, and apparatus for controlling the gas temperature of gas flowing between compression stages so that the temperature of the gas always remains above the dew-point and hydrate temperature of the gas. The invention also allows for controlling inner stage compression temperatures that can be part of a new compressor assembly or retrofitted to compressors already installed and operating.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 22, 2016
    Inventors: Rodney T. Heath, Forrest D. Heath, Gary Heath
  • Publication number: 20140329299
    Abstract: A method for removing carbon dioxide from methane-containing crude gases, especially biogas, by pressure scrubbing, using a physical solvent, includes circulating the contaminated scrubbing solution after regeneration. A plant suitable for carrying out the method considerably reduces the methane loss which arises through methane slippage and improves the overall energy balance of the method. Laden scrubbing solution obtained from the pressure scrubbing is treated at least in one flash stage before the first stripping stage. In addition, a nitrogen, oxygen, carbon dioxide and methane-containing gas mixture drawn off from the flash stage is cleaned in a scrubbing stage by purified scrubbing solution drawn off from the second stripping stage and supplied in countercurrent, forming a high-purity methane gas.
    Type: Application
    Filed: December 16, 2011
    Publication date: November 6, 2014
    Inventor: Lothar Guenther
  • Patent number: 8790496
    Abstract: A compact and portable liquid concentrator includes a gas inlet, a gas exit and a flow corridor connecting the gas inlet and the gas exit, wherein the flow corridor includes a narrowed portion that accelerates the gas through the flow corridor. A liquid inlet injects liquid into the gas stream at a point prior to the narrowed portion so that the gas-liquid mixture is thoroughly mixed within the flow corridor, causing a portion of the liquid to be evaporated. A demister or fluid scrubber downstream of the narrowed portion removes entrained liquid droplets from the gas stream and re-circulates the removed liquid to the liquid inlet through a re-circulating circuit. Fresh liquid to be concentrated is also introduced into the re-circulating circuit at a rate sufficient to offset the amount of liquid evaporated in the flow corridor.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 29, 2014
    Assignee: Heartland Technology Partners LLC
    Inventors: Bernard F. Duesel, Jr., Michael J. Rutsch, Craig Clerkin
  • Publication number: 20140090558
    Abstract: An absorption medium which comprises water, an amine (A) of formula (I) in which R is an n-alkyl radical having 1 to 4 carbon atoms, and an alkanolamine (B) which is a tertiary amine or a sterically hindered primary or secondary amine has a high absorption capacity for CO2 with a high absorption rate. In the absorption of acid gases from a gas mixture a separation of the absorption medium into two liquid phases or the precipitation of a solid upon absorption of CO2 and regeneration of the absorption medium can be avoided with the absorption medium, even without addition of a solvent.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 3, 2014
    Applicant: Evonik Degussa GmbH
    Inventors: Jörn Rolker, Matthias Seiler, Rolf Schneider, Thibaut Lenormant
  • Patent number: 8652236
    Abstract: The present invention describes a method for recovery of high purity carbon dioxide, which is substantially free of nitrogen oxides. This high purity carbon dioxide is obtained by introducing into the method a step in which carbon dioxide absorbed in an absorbing agent is flashed. The present invention also discloses a plant for recovery of said high purity carbon dioxide comprising an absorption column, a flash column, a stripper column, and a down stream purification unit comprising a washing column, a dehydrator, a condenser and a distillation unit.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: February 18, 2014
    Assignee: Union Engineering A/S
    Inventors: Rasmus Find, Svend Geleff, Maj Toft Andersen
  • Patent number: 8641802
    Abstract: From the CO2-containing stream of process gas obtained in a process for the treatment of a CO2-containing stream of process gas, which is obtained in the production of pure synthesis gas from raw gas in the partial oxidation of heavy oils, petroleum coke or wastes, or in the gasification of coal, or when processing natural gas or accompanying natural gas, CO2 is removed physisorptively or chemisorptively, and the solvent loaded with CO2 is expanded to a lower pressure for the desorption of CO2. In order to generate CO2 as pure as possible, the contaminated CO2 is condensed to at least 60 bar[a] or below its critical temperature to at least 70 bar[a], and the impurities contained in the liquid CO2 are removed by stripping with gaseous CO2 guided in counterflow.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: February 4, 2014
    Assignee: LURGI GmbH
    Inventors: Ulrich Koss, Manfred Meyer, Alexander Schriefl
  • Publication number: 20140017622
    Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.
    Type: Application
    Filed: January 7, 2013
    Publication date: January 16, 2014
    Applicant: Carbon Capture Scientific, LLC.
    Inventors: Shiaoguo Chen, Zijiang Pan
  • Patent number: 8518156
    Abstract: A process and system (100) for removing contaminants from a solution to regenerate the solution within the system. The process includes providing a solution (165) from a wash vessel (160) to a stripping column (181), the solution (165) including contaminants removed from a flue gas stream (150) present in the wash vessel (160) and contacting the solution with steam (185) inside the stripping column (181) thereby removing the contaminants from the solution and regenerating the solution. The stripping column (181) is operated at a pressure less than about 700 kilopascal.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 27, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Frederic Z. Kozak, Arlyn V. Petig, Ritesh Agarwal, Rameshwar S. Hiwale
  • Patent number: 8518155
    Abstract: A method and apparatus for removing carbon dioxide from a synthesis gas stream containing hydrogen is disclosed. The method includes absorbing the carbon dioxide using a physical solvent under high pressure and then liberating the carbon dioxide in a series of expansion stages where the pressure on the solvent is reduced. The expansion ratio increases with each expansion stage. The apparatus includes expansion stages having throttling devices and expansion tanks operated at increasing expansion ratios. Carbon dioxide is liberated in this manner so as to minimize the energy required compress for transport via a pipe line for sequestration of the gas. Sequestration of the carbon dioxide is preferred to atmospheric venting to curb the release of greenhouse gases.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 27, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Eugene Palamara, Kevin Boyle Fogash
  • Patent number: 8491712
    Abstract: A dehydration system is provided. The dehydration system includes an absorber configured to produce a dry gas and a rich solvent from a wet gas and from a pure solvent and a flash drum coupled in flow communication with the absorber for receiving the rich solvent discharged from the absorber. The flash drum is configured to produce flash gas from the rich solvent. The dehydration further includes a reboiler configured to produce a semi-lean solvent from the rich solvent and an inert gas system configured to strip the semi-lean solvent using at least the flash gas to produce the pure solvent.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 23, 2013
    Assignee: General Electric Company
    Inventors: Ganesh Prasadh Kidambi, Sachin Naphad, Rajesh Vaddi
  • Patent number: 8475571
    Abstract: In one embodiment, a gas purification system is provided. The system includes a first solvent section having a first carbon dioxide (CO2) absorber, a hydrogen sulfide (H2S) absorber, and a first solvent path that routes a first solvent through the first CO2 absorber and the H2S absorber. The gas purification system also includes a second solvent section having a second carbon dioxide (CO2) absorber and a second solvent path that flows a second solvent through the second CO2 absorber. The gas purification system has a gas path though the first and second solvent sections, wherein the first and second solvent paths are separate from one another, and the first and second solvents are different from one another.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Judith Pauline Oppenheim, Anindra Mazumdar
  • Patent number: 8475570
    Abstract: The invention provides a process for producing purified gas from feed gas comprising H2S, CO2 and HCN and/or COS, the process comprising the steps of: (a) contacting feed gas comprising H2S, CO2 and HCN and/or COS with a HCN/COS hydrolysis sorbent in the presence of water in a HCN/COS hydrolysis unit, thereby obtaining gas depleted in HCN and/or COS; (b) contacting the gas depleted in HCN and/or COS with absorbing liquid in an H2S/CO2 absorber to remove H2S and CO2, thereby obtaining the purified gas and absorbing liquid rich in H2S and CO2; (c) heating and de-pressurizing at least part of the absorbing liquid rich in H2S and CO2 to obtain hot flash gas enriched in CO2 and absorbing liquid enriched in H2S; (d) contacting the absorbing liquid enriched in H2S at elevated temperature with a stripping gas, thereby transferring H2S to the stripping gas to obtain regenerated absorbing liquid and stripping gas rich in H2S; and (e) leading at least part of the flash gas enriched in CO2 to the HCN/COS hydrolysis unit
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: July 2, 2013
    Assignee: Shell Oil Company
    Inventors: Anthonius Maria Demmers, Sandra Schreuder
  • Patent number: 8435325
    Abstract: Disclosed are methods for recovering CO2 and H2S from a feed gas including at least CO2 and H2S.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: May 7, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Tomoko Akiyama
  • Patent number: 8425655
    Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 23, 2013
    Assignee: Carbon Capture Scientific, LLC
    Inventors: Shiaoguo Chen, Zijiang Pan
  • Patent number: 8419843
    Abstract: In one embodiment, a system includes a hydrogen sulfide (H2S) absorber, a first flash tank, a flash gas treatment column, and a CO2 absorber. The system also includes a first fluid path extending sequentially through the H2S absorber, the first flash tank, the flash gas treatment column, the H2S absorber, and the CO2 absorber.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: April 16, 2013
    Assignee: General Electric Company
    Inventors: Arnaldo Frydman, Pradeep Stanley Thacker, Sachin Suhas Naphad
  • Patent number: 8398748
    Abstract: Contemplated configurations and methods include a solvent regenerator (58) that has an upper (93) and a lower stripping section (94). Cooled rich solve is used as reflux while heated rich solvent (11) is used as a source of stripping agent in the upper section (91). A reboiler (62) in the lower section provides further stripping agent, hi especially preferred configurations, a portion of lean solved from the regenerator (58) is further stripped in a separate or integrated regenerator (62) to form an ultra-lean solvent. Both lean and ultra-lean solvents are preferably used in a two-stage absorber (52) to thereby from the rich solvent and an offgas that is very low in acid gas.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: March 19, 2013
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8303684
    Abstract: A pressurized gaseous mixture acidic gas and a useful gas is directly in a first absorption column with a physically acting absorption agent. Then the absorption agent loaded with the acid gas and useful gas is subdivided into first and second streams. The first stream is fed directly to a recycle flash container and there decompressed to reclaim the useful gas, extract the acidic gas from the absorption agent, and form a recycled gas containing the useful gas and acidic gas. The second stream is through a second absorption column to the recycle flash container. Some of the recycled gas from the recycle flash container is compressed and fed through the second absorption column so as to therein directly contact the second stream, and then the recycle gas that has passed through the second absorption column and contacted the second stream is returned to the gaseous mixture.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 6, 2012
    Assignee: UHDE GmbH
    Inventor: Johannes Menzel
  • Publication number: 20110308388
    Abstract: Solvent absorption processes for separating components of an impure feed gas are disclosed. The processes involve two stages of gas-liquid contacting, namely a first, absorption stage and a second, stripping stage. In the case of a carbon dioxide (CO2)-containing methane gas as an impure feed gas, contacting, in the stripping stage, the solvent effluent from the absorption stage with a recycled vapor fraction of the solvent effluent from the stripping stage can improve the recovery and purity of not only the methane (and/or other light hydrocarbons in the impure feed gas), but also that of the CO2 contaminant gas.
    Type: Application
    Filed: August 31, 2011
    Publication date: December 22, 2011
    Applicant: UOP LLC
    Inventors: David A. Bahr, Lamar A. Davis
  • Patent number: 8062408
    Abstract: Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: November 22, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Shiaguo Chen, Yonggi Lu, Massoud Rostam-Abadi
  • Patent number: 8007569
    Abstract: The invention relates to a method for removing hydrogen sulphide and other acidic gas components from pressurized technical gases by means of a physical detergent and for obtaining sulphur from hydrogen sulphide by using a Claus system. The hydrogen sulphide and the other acidic gas components are removed in an absorbent manner from the physical detergent, the physical detergent undergoes multi-step regeneration, said multi-step regeneration comprising at least one device for CO enrichment, a device for H2S enrichment, a device for CO2 stripping and a device for thermal regeneration. The various regeneration steps consist of various pressure steps and have a lower pressure than that of the absorption. A hydrogen sulphide rich Claus gas is withdrawn from one of the regeneration steps and is guided to a Claus system where sulphur is produced. The residual gas exiting from the Claus system is hydrated and is condensed under pressure, corresponding to one of the regeneration steps.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: August 30, 2011
    Assignee: Uhde GmbH
    Inventors: Georg Saecker, Johannes Menzel
  • Patent number: 7901487
    Abstract: An acid gas such as carbon dioxide, hydrogen sulfide, or a mixture thereof is removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a multipressure stripper (51) that combines acid gas compression with stripping, less energy is consumed. The multipressure stripper is a multistage flash (52, 55, 59) in which the total vapor flow from each stage is compressed and fed to the bottom of the previous flash stage at a higher pressure. In this process, the heat in the water content of the vapor exiting each stage is utilized at a higher pressure in the previous stage. The described stripping process generates the acid gas at a higher pressure without operating the stripper at a higher temperature, thereby reducing the energy consumption of the system.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 8, 2011
    Assignee: Board of Regents, The University of Texas System
    Inventor: Gary T. Rochelle
  • Patent number: 7892324
    Abstract: Methods and systems for handling sour carbon dioxide (CO2) streams are provided. In one aspect, a method for sequestering an emissions-heavy gas includes removing at least a portion of an acid gas from a rich solvent in an acid gas stripper to create the emissions-heavy gas, and channeling the emissions-heavy gas to a storage system.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: Arnaldo Frydman, Pradeep Thacker, Sachin Naphad, Aaron John Avagliano
  • Patent number: 7674325
    Abstract: An absorber (110) in a gas treatment plant (100) produces a rich solvent (116) that is flashed to produce flashed rich solvent (134D) and recycle gas (132D), wherein the recycle gas (132D) is not mixed with the absorber feed gas (112) as commonly practiced, but mixed with the rich solvent (116). Such configurations exhibit superior rich solvent loading, thereby reducing solvent circulation. Further contemplated gas treatment plants (100)may also include a regenerator (150) in which carbon dioxide from atmospheric flashed vapor (142) of the rich solvent (144) is employed as a stripping gas in a regenerator (150) to strip hydrogen sulfide from the rich solvent (144), and wherein sweet gas (114) is employed to strip the carbon dioxide from the rich solvent (144).
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: March 9, 2010
    Assignee: Fluor Technologies Corporation
    Inventor: Ray Won
  • Publication number: 20090199712
    Abstract: A method and a device for the absorption of pressurised natural gas containing at least hydrogen sulphide and carbon dioxide, using a physically active absorption agent. The natural gas containing acid gas is first conveyed to an absorption column, where it is directly contacted with the physical detergent, and the physical detergent absorbs the acid gas, leaving only a residue. The charged detergent is conveyed to a stripping column, the working pressure being further reduced. The residue of the released acid gas from the detergent is desorbed in said stripping column. The detergent thus regenerated is returned, at least in part, to the absorption column. The acid gas leaving the first separator is conveyed to another absorption column, in which the part of the released acid gas containing predominately hydrogen sulphide is reabsorbed with regenerated detergent and mixed with the charged detergent from the first separator.
    Type: Application
    Filed: May 23, 2006
    Publication date: August 13, 2009
    Inventors: Johannes Menzel, Martin Cosfeld
  • Patent number: 7192468
    Abstract: A plant includes an absorber (103) that operates in a gas phase supercritical region and removes an acid gas from a feed stream (9) at high recovery of the feed stream (10) while producing a high purity acid gas stream (36). Particularly preferred plants include gas purification plants that receive a feed gas with at least 5 mol % carbon dioxide at a pressure of at least 3000 psi.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: March 20, 2007
    Assignee: Fluor Technologies Corporation
    Inventors: John Mak, Curt Graham, Richard Nielsen
  • Patent number: 7065962
    Abstract: An exhaust gas purifying system and a method for purifying exhaust gas of combustion engines. The system includes a hollow casing, a converter chamber disposed within the casing, spray nozzles for spraying a scrubbing liquid into the converter chamber for forming a moisture-saturated exhaust gas in order to remove pollutants dispersed in the exhaust gas and purifying the exhaust gas, a cooling container disposed within the casing and defining a cooling jacket enveloping the converter chamber for cooling thereof, a primary circulating reservoir fluidly connected to the converter chamber for receiving the moisture-saturated exhaust gas and separating the purified exhaust gas from a waste liquid and for cleaning the scrubbing liquid from the pollutants dispersed in the waste liquid for reuse, and a secondary circulating reservoir fluidly connected to the primary circulating reservoir for receiving the cleaned scrubbing liquid and supplying the scrubbing liquid to the liquid spray nozzles.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: June 27, 2006
    Inventor: Franz B. Boncodin
  • Patent number: 6964696
    Abstract: An apparatus and method for recovering a clean liquid condensate from a synthesis gas at elevated temperatures and pressures. The apparatus includes at least one heat exchanger for reducing the temperature of the synthesis gas down to below 200° F. (93° C.) so as to form a syngas condensate at elevated pressure. The syngas condensate is flashed so that it separates into a liquid phase condensate and a gas phase. The liquid phase condensate comprises water, dissolved ammonia and particulates. The gas phase contains carbon monoxide, carbon dioxide, various sulfur containing compounds and trace amounts of other compounds that may have been dissolved in the syngas condensate. The gas phase is removed from the flash tank and sent to a sour gas treatment unit and/or flare. The liquid phase condensate is then filtered so as to remove larger sized particulates. Clean liquid condensate is reused in the gasification process.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: November 15, 2005
    Assignee: Texaco, Inc.
    Inventors: William A. Malatak, Brad X. Pan
  • Patent number: 6767388
    Abstract: Process for dehydrating/fractionating a low-pressure wet natural gas containing “heavy” constituents and “light” constituents includes a stage a) in which at least a fraction of the wet gas at temperature T0 is contacted with an aqueous liquid phase L'1 containing methanol, the gas carrying along substantially all of the methanol contained in phase L'1. In a stage b), the gas from stage (a) is cooled to a temperature T1 lower than temperature T0, producing a gas phase G1 at equilibrium with a hydrocarbon-containing liquid phase L1 containing C3+ and an aqueous liquid phase L'1 containing methanol. In stage c), phase L'1 is sent to stage (a), and in stage d), said phase G1 is fractionated by distillation carried out by continuous thermal exchange with a cooling fluid, so as to extract the “light” constituents (gas phase G2) and the “heavy” constituents (condensed phase L2).
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: July 27, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Fabrice Lecomte, Béatrice Fischer, Jean-Charles Viltard
  • Patent number: 6607585
    Abstract: An improved method and structure for purification of an acid gas stream by using raw fuel gas as a stripper to remove the BTEX and VOCs from the liquid amine stream. The improved method is particularly useful for purification of acid gas streams with BTEX contaminant levels in excess of environmentally acceptable levels for standard processing. Raw fuel gas is utilized at moderate temperatures and pressures, the uptake of BTEX and VOCs reduces the level of these compounds in the waste amine stream to environmentally acceptable levels, and the remaining contaminants may then be dealt with by ordinary means. Levels of H2S and CO2. in the liquid amine stream are also reduced.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: August 19, 2003
    Inventor: David Morrow
  • Patent number: 6551379
    Abstract: Apparatus for use with a natural gas dehydrator wherein a portion of the wet glycol in an emissions separator is pumped under pressure as circulating wet glycol which may be used as a coolant for effluent removed from a reboiler and/or a power source for an eductor to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluent, comprising at least liquid water, liquid hydrocarbons and uncondensed vapors, moves into the first chamber wherein the liquid water and/or the liquid hydrocarbons are separated from the uncondensed vapors. At least, the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are compressed and combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. In some instances, the liquid hydrocarbons are transferred to a third chamber and removed therefrom.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: April 22, 2003
    Inventor: Rodney T. Heath
  • Patent number: 6364933
    Abstract: Apparatus for use with a natural gas dehydrator wherein a portion of the wet glycol in an emissions separator is pumped under pressure as circulating wet glycol which may be used as a coolant for effluent removed from a reboiler and/or a power source for an eductor to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluent, comprising at least liquid water, liquid hydrocarbons and uncondensed vapors, moves into the first chamber wherein the liquid water and/or the liquid hydrocarbons are separated from the uncondensed vapors. At least, the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are compressed and combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. In some instances, the liquid hydrocarbons are transferred to a third chamber and removed therefrom.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: April 2, 2002
    Inventor: Rodney T. Heath
  • Patent number: 6238461
    Abstract: A natural gas dehydrator wherein a portion of the wet glycol from the absorber is pumped under pressure as circulating wet glycol which is used as a coolant for effluents removed from a reboiler and a power source for an educator to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluents, comprising liquid water, liquid hydrocarbons and uncondensed vapors, move in to the first chamber wherein the liquid water is separated therefrom. The liquid hydrocarbons and the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. Also, gases from gas emitting level control apparatus in the natural gas dehydrator are collected and fed into the first chamber.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: May 29, 2001
    Inventor: Rodney T. Heath
  • Patent number: 6218174
    Abstract: Degassing is accomplished by driving a gas-containing solution to a subatmospheric pressure approximately equal to the solution vapor pressure, and maintaining the subatmospheric pressure notwithstanding evolution of gas from the solution. This may be accomplished using a vacuum tower arrangment whereby a column of the gas-containing liquid is drawn to the maximum physically attainable height. So long as the vacuum is coupled to the liquid column above this height (generally on the order of 34 feet, depending on the ambient temperature and the composition of the liquid), the liquid will not be drawn into the vacuum, which creates a non-equilibrium region of extremely low pressure above the liquid that liberates dissolved gases. Moreover, liquid introduced into the low-pressure region above the column will fall onto the column without entering the vacuum system.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: April 17, 2001
    Inventor: Gene E. Keyser
  • Patent number: 6174348
    Abstract: A system for regenerating chemical solvent loaded with acid gas with improved energy efficiency wherein the chemical solvent is partially flash vaporized, heated, and passed in countercurrent mass transfer contact with nitrogen gas.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: January 16, 2001
    Assignee: Praxair Technology, Inc.
    Inventors: M. Mushtaq Ahmed, Minish Mahendra Shah, Raymond Francis Drnevich
  • Patent number: 5766313
    Abstract: Apparatus for treating emissions from a reboiler used to remove glycol from water laden glycol wherein the emissions are condensed; pressurized and separated so that hydrocarbon vapors may be directed to a burner used to supply heat to a reboiler. Control apparatus is provided to combine fuel gas and the pressurized hydrocarbon vapors as needed to supply all of the fuel required by the burner. Also, separate apparatus is provided to control the movement of dry glycol in the apparatus and to pressurize the condensed emissions.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: June 16, 1998
    Inventor: Rodney T. Heath
  • Patent number: 5520723
    Abstract: A method and system for reducing emissions from glycol dehydrators which employ a vapor-liquid contactor operated under ambient conditions to treat the organic vapors and liquids exiting from a condenser attached to the vapor vent of the glycol reboiler. A stream of the organic liquids is passed to the top of the contactor and allowed to descend in counter-current relation to the upward moving gas introduced at the bottom portion of the contactor. Liquids containing a relatively high content of hydrocarbons may be recovered from the bottom of the contactor, and vapors having a reduced content of organic emissions can be emitted directly to the atmosphere from the top the contactor.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: May 28, 1996
    Inventor: Robert A. Jones, Jr.
  • Patent number: 5490873
    Abstract: An improved process for the glycol dehydration of water-containing natural gas comprises contacting the natural gas and glycol in a contacting zone to produce a dried natural gas and a water-rich glycol, and heating the water-rich glycol in a regeneration zone to produce a water-lean glycol for reintroduction into the contacting zone and a water-containing gaseous overhead. The gaseous overhead is partially condensed and the resulting gaseous components are returned to the contacting zone. In a preferred embodiment, the glycol is further purified by contact in a separate stripping column with dry stripping gas under a pressure lower than that of the regeneration zone.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: February 13, 1996
    Assignee: Bryan Research & Engineering, Inc.
    Inventors: Steven D. Behrens, Jerry A. Bullin
  • Patent number: 5346537
    Abstract: Method and apparatus are disclosed which are improvements in the conventional method and apparatus for extracting water from a gas stream such as a natural gas stream by contacting the stream with a glycol to absorb the water, and then regenerating the glycol for further use in extraction by heating the moist glycol in a glycol regenerator to vaporize the water contained in same as steam. The improvement enables control of emissions of volatile organic compounds which have been absorbed by the glycol during contact with the gas stream, while minimizing the contaminants in the water streams produced. The vented steam and gaseous volatile organics are flowed from the glycol regenerator as input to a cooling condenser having successive air and water-cooled condensers, to produce a condenser water stream having a relatively high content of the organic compounds.
    Type: Grant
    Filed: May 10, 1993
    Date of Patent: September 13, 1994
    Assignee: Gas Research Institute
    Inventor: Philip S. Lowell
  • Patent number: 5330563
    Abstract: A process is disclosed for recovering a volatile organic compound at a recovery of 90 to 96% by volume from a gas generated from gasoline, kerosine, benzene, and alcohol discharged from storage tanks, tank trucks, and tank lorries. In the process comprising absorption stages followed by desorption stages for the volatile organic compound, the pressure at the desorption stages is controlled within the area below, for instance, curves C' and B in FIG. 1 of the drawings according to the concentration of the volatile organic compound in the gas to be fed to a first absorption stage.
    Type: Grant
    Filed: March 19, 1993
    Date of Patent: July 19, 1994
    Assignee: Showa Shell Sekiyu Kabushiki Kaisha
    Inventors: Osamu Yamase, Yasuyuki Makita, Kazuyoshi Jajima
  • Patent number: 5298156
    Abstract: Process for the simultaneous decarbonation and gasoline stripping of a gaseous mixture at an absolute pressure higher than 0.5 MPa containing methane, C.sub.2 and higher hydrocarbons and CO.sub.2 in which a demethanized rich solvent is regenerated so the process can be carried out more easily and at lower costs than previously known systems.
    Type: Grant
    Filed: July 14, 1990
    Date of Patent: March 29, 1994
    Assignee: Societe Nationale Elf Aquitaine (Production)
    Inventors: Claude Blanc, Henri Paradowski
  • Patent number: RE39944
    Abstract: A natural gas dehydrator wherein a portion of the wet glycol from the absorber is pumped under pressure as circulating wet glycol which is used as a coolant for effluents removed from a reboiler and a power source for an educator to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluents, comprising liquid water, liquid hydrocarbons and uncondensed vapors, move in to the first chamber wherein the liquid water is separated therefrom. The liquid hydrocarbons and the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. Also, gases from gas emitting level control apparatus in the natural gas dehydrator are collected and fed into the first chamber.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: December 25, 2007
    Inventor: Rodney T. Heath