Liquid Recycled Or Reused Patents (Class 95/166)
-
Patent number: 12134070Abstract: Systems and methods for providing regeneration heat to a sorbent material and subsequently recovering a significant portion of the heat are provided. The systems and methods are useful, for example, for energy-efficient direct capture of carbon dioxide (CO2) from the atmosphere or flue gases. The systems and methods include introducing steam generated by an evaporator into a reactor of the system to directly heat sorbent material in the reactor and to purge desorbed CO2 from the reactor using the steam. Water condensing within the reactor is drained and returned to the evaporator. The purged steam and CO2 from the reactor are directed to a vapor re-compressor to lift their temperature and then to a condenser or re-boiler where the water is condensed and separated from the CO2 and latent heat transferred to the cooling water is recovered, optionally via use of a jet ejector.Type: GrantFiled: October 11, 2023Date of Patent: November 5, 2024Assignee: CARBON CAPTURE INC.Inventors: Brian Holman, David Wait, Mazdak Kebria
-
Patent number: 11198091Abstract: The present invention proposes to use a dry stream which is rich in C4 to C10 hydrocarbons as stripping agent for improving the regeneration of the liquid desiccant according to the invention. This dry stream rich in C4 to C10 hydrocarbons is extracted from the gas derived from the dehydration, for example during a step of extraction of NGL located downstream of the gas dehydration unit. The stream of stripping agent recovered at the outlet of the liquid desiccant regeneration unit may be recycled into the process of the invention or sent to a unit external to the process according to the invention. For example, this stream of stripping agent recovered at the outlet of the regeneration unit is sent to a unit which can receive wet condensates, such as a three-phase separation unit at the inlet of a crude gas processing plant, a condensate stabilization unit, etc.Type: GrantFiled: May 21, 2019Date of Patent: December 14, 2021Assignee: AXENSInventors: Pierre-Yves Lanfrey, Guillaume Parer, Bernard Chambon
-
Patent number: 11179671Abstract: A system for carbon dioxide capture from a gas mixture comprises an absorber that receives a lean solvent system stream (containing a chemical solvent, physical-solvent, and water) from the stripper, a stripper that receives the rich solvent stream from the absorber and produces the product carbon dioxide and the lean solvent through the use of a reboiler in fluid communication with a lower portion of the stripper, a condenser in fluid communication with a vapor outlet of the stripper, a cross-exchanger in fluid communication with a rich solvent system outlet from the absorber and a rich solvent system inlet on the stripper, and a splitter. The splitter is configured to separate the rich solvent system stream into a first portion and second portion, where the first portion directly passes to the stripper and the second portion passes through the cross-exchanger prior to passing to the stripper.Type: GrantFiled: May 22, 2018Date of Patent: November 23, 2021Assignee: Fluor Technologies CorporationInventors: Paul M. Mathias, Satish Reddy
-
Patent number: 10590358Abstract: A system for processing a gas stream can include an acid gas removal unit comprising a first absorber unit, a compressor, and a second absorber unit. The first absorber unit is configured to receive a feed gas stream containing organic sulfur species and acid gas components, remove at least a portion of the organic sulfur species and acid gas components using a semi-rich solvent at a first pressure, produce a semi-treated gas stream, and produce a rich solvent stream. The compressor unit is configured to compress the semi-treated gas stream from the first pressure to a higher second pressure. The second absorber unit is configured to receive the compressed semi-treated gas stream, remove at least a portion of any organic sulfur species and acid gas components present in the compressed semi-treated gas stream using a lean solvent, produce the semi-rich solvent stream, and produce a treated gas stream.Type: GrantFiled: June 11, 2019Date of Patent: March 17, 2020Assignee: Fluor Technologies CorporationInventors: Steven van Wagensveld, Curt Graham, Dave Schulte, Bryant Lynch
-
Patent number: 10537823Abstract: A method for removing carbon dioxide from a carrier liquid using a heat exchanger. A carrier liquid, containing carbon dioxide, is heated through the heat exchanger, causing the carbon dioxide to vaporize. The carrier liquid and the carbon dioxide gas pass to a liquid removal vessel. The carrier liquid is removed and the carbon dioxide gas is compressed. The compressed carbon dioxide gas is provided to the heat exchanger, cooling the carbon dioxide gas opposite the carrier liquid, producing a carbon dioxide liquid.Type: GrantFiled: February 15, 2017Date of Patent: January 21, 2020Assignee: Hall Labs LLCInventors: Larry Baxter, Christopher Hoeger, Eric Mansfield, Kyler Stitt, Stephanie Burt, Nathan Davis
-
Patent number: 10538708Abstract: A recycling method for plastic waste includes the steps of: (a) placing the plastic waste into a reactor; (b) heating the plastic waste in the reactor through a pyrolysis recovery process to generate flammable gas; (c) transferring flammable gas through a condensing unit to convert the flammable gas into liquid phase products; and (d) filtering the remaining out clean gas from the flammable gas by a filtration unit. A recycling system for plastic waste includes a reactor to decompose the plastic waste to create usable fuel products; a condensing unit operatively connected with the reactor; and a filtration unit operatively connected with said condensing unit to filter the usable fuel products.Type: GrantFiled: November 20, 2016Date of Patent: January 21, 2020Inventor: Songpol Boonsawat
-
Patent number: 10143969Abstract: The present invention relates to novel molecules suitable to the use in the separation/removal of carbon dioxide from gaseous mixtures as liquid-phase carbon dioxide absorbers and suitable to allow the subsequent release of the absorbed carbon dioxide in form of different ionic liquids, preferentially a glycine salt with choline hexanoate, ester between glycine and hexanoic alcohol (hexyl glycinate) and glycerol ester with glycine and hexanoic acid. The present invention also relates to a method and a plant for the capture of carbon dioxide from gaseous mixtures by using an absorber for carbon dioxide in liquid phase with a heating jacket.Type: GrantFiled: January 16, 2015Date of Patent: December 4, 2018Assignee: UNIVERSITA DEGLI STUDI DI MILANO-BICOCCAInventors: Maurizio Filippo Acciarri, Simona Olga Binetti, Bruno Vodopivec, Maurilio Giuseppe Meschia
-
Patent number: 9731243Abstract: A low pressure re-absorber is integrated with a sulfur-rich solvent flash drum or a sulfur-rich solvent stripping column in a solvent acid gas removal process that provides for sufficient sulfur concentration for the downstream sulfur recovery unit. In another aspect of the invention, carbon dioxide containing or carbon dioxide rich gas streams that are at a lower temperature relative to a lean solvent stream are used to cool those lean solvent streams and then optionally to cool other process streams, to save energy consumption.Type: GrantFiled: June 17, 2015Date of Patent: August 15, 2017Assignee: UOP LLCInventors: Xiaoming Wen, Edward P. Zbacnik, Saadet Ulas Acikgoz, Lubo Zhou
-
Publication number: 20150078973Abstract: A method for removing components to be separated from industrial gases using an absorption and desorption processes having liquid absorbents. At least one absorption device and one desorption device are provided, at least a part of the laden solution leaving the absorption device is diverted before being heated and delivered to the head of the heat transfer section. The laden partial stream is heated by the steam rising from the lower part of the desorption device through heat exchange in the heat transfer section. The remaining stream of cold, laden solution leaving the absorption device is expanded by so the relief valve and the heat exchanger into a pressure relief vessel, such that the stream leaving the heat exchanger separates into a liquid and a gaseous state. The pressure in the pressure relief vessel pressure is lowered so that the total energy demand in absorption and desorption processes is reduced.Type: ApplicationFiled: June 27, 2012Publication date: March 19, 2015Applicant: THYSSENKRUPP INDUSTRIAL SOLUTIONS GMBHInventor: Johannes Menzel
-
Publication number: 20150027310Abstract: A carbon capture system, such as a chilled ammonia process, is provided that includes with a cooling system, a carbon dioxide absorption system and an ammonia absorption system. The ammonia absorption system includes an absorber column to receive carbon dioxide lean gas stream having ammonia and to receive an absorbent, wherein the absorbent absorbs ammonia from the carbon dioxide lean gas stream to provide an ammonia reduced gas stream and an ammonia rich absorbent. Further, an ammonia stripper is provided to receive the ammonia rich absorbent and to receive a portion of the gas stream, wherein the gas stream flows through the ammonia stripper to heat the ammonia rich absorbent to release the ammonia therefrom and provide an ammonia rich gas stream and an ammonia reduced absorbent.Type: ApplicationFiled: July 25, 2013Publication date: January 29, 2015Applicant: ALSTOM Technology LtdInventors: Ola Augustsson, Raul Tahoces
-
Publication number: 20140366727Abstract: The present invention relates to a vent gas adsorption system and a method of recovering volatile organic compounds (VOCs), more particularly to a vent gas adsorption system devised to effectively adsorb VOCs included in the vent gas and reduce VOC content of the vent gas, and a method of recovering VOCs.Type: ApplicationFiled: August 25, 2014Publication date: December 18, 2014Inventors: Kyeong-Soo MOK, Haeng-Seok LEE, Seon-Bok WI, Duk-Kyun CHUNG, Jong-Ha KIM, Tae-Jung KIM
-
Patent number: 8864879Abstract: Disclosed herein is a method comprising contacting a residual flue gas stream with a lean solution stream in an appendix stripper; where the residual flue gas stream comprises nitrogen, oxygen and moisture; and where the lean solution stream comprises ammonium, ammonium carbonate, ammonium bicarbonate and ammonium sulfate; forming a vapor phase that comprises ammonia vapor, water vapor, carbon dioxide and nitrogen; forming a liquid phase that comprises water, ammonium sulfate and ammonia; discharging the vapor phase to a capture system; and discharging the liquid phase to a direct contact cooler.Type: GrantFiled: March 30, 2012Date of Patent: October 21, 2014Inventors: Jalal Askander, Fred Kozak
-
Patent number: 8834609Abstract: A method for separating carbon dioxide from a flue gas of a fossil fuel-operated power plant is provided. In the method, a fossil fuel is initially burned in a combustion process, wherein a hot waste gas containing carbon dioxide is produced. In a next process step, waste gas containing carbon dioxide is brought into contact with an absorption medium in an absorption process, wherein carbon dioxide is absorbed by the absorption medium, thus forming a charged absorption medium. Next, gaseous carbon dioxide is thermally expelled from the charged absorption medium in a desorption process. For this purpose, a vapor is supplied to the desorption process, the vapor is injected into the charged absorption medium, wherein the condensation heat released by the condensation of the vapor is transferred to the charged absorption medium, and the partial pressure of the carbon dioxide is simultaneously reduced in the desorption unit.Type: GrantFiled: May 14, 2009Date of Patent: September 16, 2014Assignee: Siemens AktiengesellschaftInventors: Ralph Joh, Rüdiger Schneider, Henning Schramm
-
Patent number: 8690992Abstract: Processes for operating an ammonia stripper at a low pressure in a gas purification system include providing a first side-draw stream from the ammonia stripper; heating the first side-draw stream with a second side-draw stream from a regenerator; providing a stripper offgas stream from the ammonia stripper to a stripper overhead condenser; and utilizing the stripper offgas stream as a heat source for a regenerating system fluidly coupled to the stripper overhead condenser. Also disclosed are systems for implementing the processes.Type: GrantFiled: March 19, 2013Date of Patent: April 8, 2014Assignee: ALSTOM Technology LtdInventors: Sanjay Kumar Dube, Daniel Nicolaus Secundus Mattstedt, Joseph P. Naumovitz
-
Publication number: 20140090558Abstract: An absorption medium which comprises water, an amine (A) of formula (I) in which R is an n-alkyl radical having 1 to 4 carbon atoms, and an alkanolamine (B) which is a tertiary amine or a sterically hindered primary or secondary amine has a high absorption capacity for CO2 with a high absorption rate. In the absorption of acid gases from a gas mixture a separation of the absorption medium into two liquid phases or the precipitation of a solid upon absorption of CO2 and regeneration of the absorption medium can be avoided with the absorption medium, even without addition of a solvent.Type: ApplicationFiled: May 25, 2012Publication date: April 3, 2014Applicant: Evonik Degussa GmbHInventors: Jörn Rolker, Matthias Seiler, Rolf Schneider, Thibaut Lenormant
-
Patent number: 8673062Abstract: A method of removing acid gases from raw gas is disclosed in which the raw gas is supplied to an absorption column where it is contacted with a physical absorption agent, having a boiling point lower than 100° C. at atmospheric pressure, under elevated operating pressure to load, the physical absorption agent with acid gases and usable gases and then the physical absorption agent loaded with acid gases and usable gases is driven from the absorption column at its sump while drawing off at the head of the absorption column a purified top gas containing up to a few ppm of acid-gas components. Following the absorption, the physical absorption agent undergoes stripping to remove usable gases, and regeneration to remove the acid gases as well as to provide a regenerated physical absorbent which may be used to treat additional raw gas.Type: GrantFiled: November 4, 2009Date of Patent: March 18, 2014Assignee: UHDE GmbHInventor: Johannes Menzel
-
Publication number: 20130305924Abstract: A recovery apparatus of carbon dioxide comprises: an absorption column which brings a gas containing carbon dioxide into contact with an absorbing liquid and allows the absorbing liquid to absorb carbon dioxide; a regeneration column for regenerating the absorbing liquid, by causing the absorbing liquid having carbon dioxide absorbed in the absorption column to release carbon dioxide; a circulation system which circulates the absorbing liquid so that the absorbing liquid flowing from the absorption column returns to the absorption column through the regeneration column; and a steam supply system which generates steam available for a heat source that regenerates the absorbing liquid, using at least one of the absorbing liquid that returns to the absorption column by the circulation system and the absorbing liquid in the absorption column, and supplies the steam to the regeneration column.Type: ApplicationFiled: January 17, 2012Publication date: November 21, 2013Applicant: IHI CorporationInventors: Shiko Nakamura, Tomoya Muramoto, Yuichi Nishiyama, Shinya Okuno
-
Patent number: 8518156Abstract: A process and system (100) for removing contaminants from a solution to regenerate the solution within the system. The process includes providing a solution (165) from a wash vessel (160) to a stripping column (181), the solution (165) including contaminants removed from a flue gas stream (150) present in the wash vessel (160) and contacting the solution with steam (185) inside the stripping column (181) thereby removing the contaminants from the solution and regenerating the solution. The stripping column (181) is operated at a pressure less than about 700 kilopascal.Type: GrantFiled: August 3, 2010Date of Patent: August 27, 2013Assignee: ALSTOM Technology LtdInventors: Frederic Z. Kozak, Arlyn V. Petig, Ritesh Agarwal, Rameshwar S. Hiwale
-
Patent number: 8512445Abstract: The present invention relates to systems and processes for reducing the amount of carbon dioxide in a carbon dioxide-containing gas. In particular, the carbon dioxide-containing gas is contacted with a carbonate-containing solution. At least a portion of carbon dioxide in the carbon dioxide-containing gas is absorbed in the carbonate-containing solution to produce a carbon dioxide-, carbonate-containing solution. A heat recovery mechanism is employed to recover heat from the carbon dioxide-, bicarbonate-, carbonate-containing solution exiting the chamber to maintain the temperature of the chamber within a range of from about 50° C. to about 90° C.Type: GrantFiled: June 23, 2010Date of Patent: August 20, 2013Inventors: Shiaoguo Chen, Zijiang Pan
-
Patent number: 8470077Abstract: Processes for operating an ammonia stripper at a low pressure in a gas purification system include providing a first side-draw stream from the ammonia stripper; heating the first side-draw stream with a second side-draw stream from a regenerator; providing a stripper offgas stream from the ammonia stripper to a stripper overhead condenser; and utilizing the stripper offgas stream as a heat source for a regenerating system fluidly coupled to the stripper overhead condenser. Also disclosed are systems for implementing the processes.Type: GrantFiled: November 17, 2011Date of Patent: June 25, 2013Assignee: ALSTOM Technology LtdInventors: Sanjay Kumar Dube, Daniel Nicolaus Secundus Mattstedt, Joseph P. Naumovitz
-
Patent number: 8425655Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.Type: GrantFiled: July 9, 2010Date of Patent: April 23, 2013Assignee: Carbon Capture Scientific, LLCInventors: Shiaoguo Chen, Zijiang Pan
-
Patent number: 8414853Abstract: A solvent based flue gas processing system for removing CO2 from a flue gas stream is described. A catalyst is provided to increase the efficiency of the solvent in capturing CO2 from the flue gas stream or in regenerating the solvent.Type: GrantFiled: March 18, 2009Date of Patent: April 9, 2013Assignee: ALSTOM Technology LtdInventors: Zheng Liu, Naresh B. Handagama
-
Patent number: 8398748Abstract: Contemplated configurations and methods include a solvent regenerator (58) that has an upper (93) and a lower stripping section (94). Cooled rich solve is used as reflux while heated rich solvent (11) is used as a source of stripping agent in the upper section (91). A reboiler (62) in the lower section provides further stripping agent, hi especially preferred configurations, a portion of lean solved from the regenerator (58) is further stripped in a separate or integrated regenerator (62) to form an ultra-lean solvent. Both lean and ultra-lean solvents are preferably used in a two-stage absorber (52) to thereby from the rich solvent and an offgas that is very low in acid gas.Type: GrantFiled: April 18, 2006Date of Patent: March 19, 2013Assignee: Fluor Technologies CorporationInventor: John Mak
-
Patent number: 8343445Abstract: A solvent based flue gas processing system for removing CO2 from a flue gas stream is provided in which a catalyst coated on a support structure is provided. The catalyst selected is capable of retaining CO2, at least for a period of time, thereby increasing the residence time of CO2 and solvent.Type: GrantFiled: March 18, 2009Date of Patent: January 1, 2013Assignee: ALSTOM Technology LtdInventors: Zheng Liu, Naresh B. Handagama
-
Publication number: 20120160101Abstract: The invention relates to a method for removing sour gases from raw gases (1). The removed sour gases are intended to accumulate at a high regeneration pressure. This enables the sour gases to be transported to a storage area with a minimum effort for compression. The raw gas (1) is fed into an absorption column (40) and there purified of the sour gas components present in the raw gas (1), under increased operational pressure, by means of a physical absorption agent (16). The absorption agent (5) charged with sour gases and useful gases is then fed into a high-pressure stripping column (43), in which a portion of the absorption agent is vaporized, and a stripping vapor is thereby generated. The coabsorbed useful gases are driven out by the stripping vapor. The useful gases are drawn off at the head of the high-pressure stripping column (43). The absorption agent present in the head vapors of the high-pressure stripping column (43) is liquefied and fed back into the high-pressure stripping column (43).Type: ApplicationFiled: November 4, 2009Publication date: June 28, 2012Inventor: Johannes Menzel
-
Publication number: 20120097027Abstract: A method for extracting methane purifies a biogas and components present in the biogas, such as carbon dioxide, sulfur compounds, and ammoniac are separated in a plurality of different process steps. The method for extracting methane is characterized by low energy consumption and allows an increase in methane content of at least 10%. In a first purifying step, carbon dioxide, hydrogen sulfide, ammoniac, and other water-soluble organic substances present in the raw gas are removed in a washing column at a standard pressure or at overpressure of up to 6 bar by use of fresh water. The methane gas having a methane content of at least 65% is drawn off at the head of the washing column. Methane and carbon dioxide dissolved in the wash water are sequentially separated from the contaminated wash water discharged from the washing stage, in a first stripping column and subsequently in a second stripping column, by adding stripping air under standard pressure.Type: ApplicationFiled: May 22, 2009Publication date: April 26, 2012Applicant: DGE DR.-ING. GUNTHER ENGINEERING GMBHInventor: Lothar Gunther
-
Publication number: 20110308389Abstract: A method for eliminating or substantially reducing emission of amines (amineslip) and alkaline degradation products to the atmosphere from a plant for CO2 capture from a flue gas, where the CO2 is captured by counter-current flow to an absorbent in an absorption zone, the absorbent comprising an aqueous solution of one or more amine(s), to give a CO2 lean flue gas that is released into the surroundings, and a CO2 rich absorbent that is regenerated in a regeneration column to give a CO2 rich gas that is treated further, and regenerated absorbent that is recycled to the absorption zone, wherein the CO2 lean flue gas is washed with an acidic aqueous solution to remove or substantially reduce the amount of amine(s) and alkaline degradation products thereof in the gas, is described.Type: ApplicationFiled: February 12, 2010Publication date: December 22, 2011Applicant: Aker Clean Carbon ASInventors: Oscar Fredrik Graff, Otto Morten Bade, Oddvar Gorset, Simon Woodhouse
-
Patent number: 8080089Abstract: A method of treating gas, such as flue gas, is provided. Flue gas is received into a vessel. The flue gas in the vessel is cooled by at least 17 degrees F. to a temperature of 120 F or lower. Also in the vessel, SOx compounds are removed such that the concentration of SOx remaining in the flue gas is between 0 ppmv and 10 ppmv. After the flue gas is cooler and SOx compounds are removed in the vessel, the flue gas is transmitted to a flue gas carbon dioxide scrubbing unit.Type: GrantFiled: April 14, 2009Date of Patent: December 20, 2011Assignee: Bechtel Power CorporationInventors: Harvey W. Wen, Charles L. Kimtantas
-
Publication number: 20110247494Abstract: A method for sorbing a gas using an ionic liquid to sorb a vapor having an electric multi-pole moment. The ionic liquid comprises an anion and a cation. The electric multi-pole moment may be an electric dipole moment and/or an electric quadru-pole moment. The sorption may be an adsorption or an absorption. The ionic liquid may be a liquid that substantially contains only anions and cations, while not containing other components, such as water. Alternatively, a solution containing the ionic liquid and a solvent or further compound, such as water, may be used.Type: ApplicationFiled: June 22, 2011Publication date: October 13, 2011Applicant: VTU Holding GmbH.Inventors: Paul DINNAGE, Roland KALB
-
Patent number: 7837768Abstract: A system and method are disclosed for purifying a waste fluid stream. The system includes a recirculation pump having an inlet for a recirculation stream and an outlet to expel a pressurized stream. The system includes a compressor having an inlet for an evaporation stream and an outlet for a pressurized evaporation stream. A primary heat exchanger has inlets for the pressurized stream and the pressurized evaporation stream, an internal surface area for heat transfer from the evaporation stream to the pressurized stream, and outlets for a cooled product stream and a heated pressurized stream. The heated pressurized stream is formed by heating the pressurized stream and the cooled product stream is formed by cooling the evaporation stream. The system includes an evaporation unit having an inlet for the heated pressurized stream and outlets for an evaporation stream and the recycled liquid bottoms stream.Type: GrantFiled: August 27, 2008Date of Patent: November 23, 2010Assignee: General Electric Capital Corporation as Administrative AgentInventors: Larry D. Sanderson, James W. Schleiffarth, Leslie D. Merrill, Bradford M. Rohwer
-
Patent number: 7811081Abstract: An off-gas flare system for disposing of a waste gas stream containing BTEX and VOC contaminants, and for safely handling slugs of excess liquids entrained in the waste gas stream. The flare system includes a flare stack, an enclosed steam tank disposed within the flare stack for receiving the waste gas stream and vaporizing any liquids in the waste gas stream into vapors, and an enclosed liquid tank disposed below the steam tank and in fluid communication with the steam tank for receiving the heated waste gas and liquid vapors and for temporarily containing any excess non-vaporized liquids. The flare also includes a waste gas burner disposed in the flare stack adjacent the steam tank and in fluid communication with the liquid tank, and a continuous means for igniting the waste gas burner.Type: GrantFiled: April 18, 2008Date of Patent: October 12, 2010Assignee: Moneyhun Equipment Sales & ServiceInventors: Robert C. Nigro, David H. Moneyhun, David W. Nichols
-
Patent number: 7749308Abstract: A system for recovering and recycling otherwise vented or flared volatile and non-volatile reactive organic materials from pipeline and plant operations associated with oil and gas recovery, refining and petrochemical manufacture, processing and transportation includes a means to remove and store volatile hydrocarbons for a portion of a system or pipeline.Type: GrantFiled: January 2, 2007Date of Patent: July 6, 2010Inventor: Tim McCully
-
Publication number: 20100095845Abstract: The present invention relates to a vent gas adsorption system and a method of recovering volatile organic compounds (VOCs), more particularly to a vent gas adsorption system devised to effectively adsorb VOCs included in the vent gas and reduce VOC content of the vent gas, and a method of recovering VOCs.Type: ApplicationFiled: October 22, 2009Publication date: April 22, 2010Applicant: LG CHEM, LTD.Inventors: Kyeong-Soo MOK, Haeng-Seok LEE, Seon-Bok WI, Duk-Kyun CHUNG, Jong-Ha KIM, Tae-Jung KIM
-
Publication number: 20080041228Abstract: An improved method of drying natural or other gases to extremely low water dewpoints via countercurrent contact with very pure hygroscopic liquid desiccant which is regenerated by heating and reboiling in a distillation stripping column. Preferably, the liquid desiccant is further regenerated in an azeotropic distillation stripping column using a condensable hygroscopic vapor as a stripping and azeotroping medium.Type: ApplicationFiled: August 18, 2006Publication date: February 21, 2008Inventor: Brian Howard Seibert
-
Patent number: 6767388Abstract: Process for dehydrating/fractionating a low-pressure wet natural gas containing “heavy” constituents and “light” constituents includes a stage a) in which at least a fraction of the wet gas at temperature T0 is contacted with an aqueous liquid phase L'1 containing methanol, the gas carrying along substantially all of the methanol contained in phase L'1. In a stage b), the gas from stage (a) is cooled to a temperature T1 lower than temperature T0, producing a gas phase G1 at equilibrium with a hydrocarbon-containing liquid phase L1 containing C3+ and an aqueous liquid phase L'1 containing methanol. In stage c), phase L'1 is sent to stage (a), and in stage d), said phase G1 is fractionated by distillation carried out by continuous thermal exchange with a cooling fluid, so as to extract the “light” constituents (gas phase G2) and the “heavy” constituents (condensed phase L2).Type: GrantFiled: March 29, 2002Date of Patent: July 27, 2004Assignee: Institut Francais du PetroleInventors: Fabrice Lecomte, Béatrice Fischer, Jean-Charles Viltard
-
Patent number: 6666908Abstract: Within the scope of a process using two absorption sections for treating a natural gas containing CO2 and/or H2S, as well as mercaptans, COS and/or CS2, the present invention aims to wash the gaseous hydrocarbons desorbed upon expansion of the solvent from the first absorption section with the solvent from the second absorption section.Type: GrantFiled: January 29, 2002Date of Patent: December 23, 2003Assignee: Institut Francais du PetroleInventors: Renaud Cadours, Fabrice Lecomte, Pascal Mougin
-
Patent number: 6607585Abstract: An improved method and structure for purification of an acid gas stream by using raw fuel gas as a stripper to remove the BTEX and VOCs from the liquid amine stream. The improved method is particularly useful for purification of acid gas streams with BTEX contaminant levels in excess of environmentally acceptable levels for standard processing. Raw fuel gas is utilized at moderate temperatures and pressures, the uptake of BTEX and VOCs reduces the level of these compounds in the waste amine stream to environmentally acceptable levels, and the remaining contaminants may then be dealt with by ordinary means. Levels of H2S and CO2. in the liquid amine stream are also reduced.Type: GrantFiled: December 20, 2000Date of Patent: August 19, 2003Inventor: David Morrow
-
Patent number: 6551379Abstract: Apparatus for use with a natural gas dehydrator wherein a portion of the wet glycol in an emissions separator is pumped under pressure as circulating wet glycol which may be used as a coolant for effluent removed from a reboiler and/or a power source for an eductor to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluent, comprising at least liquid water, liquid hydrocarbons and uncondensed vapors, moves into the first chamber wherein the liquid water and/or the liquid hydrocarbons are separated from the uncondensed vapors. At least, the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are compressed and combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. In some instances, the liquid hydrocarbons are transferred to a third chamber and removed therefrom.Type: GrantFiled: February 8, 2002Date of Patent: April 22, 2003Inventor: Rodney T. Heath
-
Patent number: 6485292Abstract: A system for environmentally acceptably disposing of BTEX and/or VOC containing off gases, including entrained vapors and liquids that originate from gas processing equipment including a flare stack communicating at an upper end with the atmosphere, a steam cup supported within the flare stack, a gas inlet extending into the flare stack and into the steam cup and serving to convey off gasses into the flare stack and collect any entrained liquid carried by the off gasses and a burner positioned within the flare stack below the steam cup and connected to receive and burn a combustion gas/air mixture, heat produced by the burner serving to vaporize any entrained liquid collected in the steam cup and to combust any BTEX and/or VOC components of the off gasses and vaporized liquid into inert oxidized states that pass out the flare stack upper end.Type: GrantFiled: October 25, 2000Date of Patent: November 26, 2002Assignee: Process Equipment & Service Company, Inc.Inventors: James E. Rhodes, Stafford E. Polk, Randy L. McDonald
-
Patent number: 6364933Abstract: Apparatus for use with a natural gas dehydrator wherein a portion of the wet glycol in an emissions separator is pumped under pressure as circulating wet glycol which may be used as a coolant for effluent removed from a reboiler and/or a power source for an eductor to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluent, comprising at least liquid water, liquid hydrocarbons and uncondensed vapors, moves into the first chamber wherein the liquid water and/or the liquid hydrocarbons are separated from the uncondensed vapors. At least, the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are compressed and combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. In some instances, the liquid hydrocarbons are transferred to a third chamber and removed therefrom.Type: GrantFiled: May 5, 2000Date of Patent: April 2, 2002Inventor: Rodney T. Heath
-
Patent number: 6299671Abstract: There is described a method for regeneration of triethylene glycol (TEG) that has been used as a drying medium to remove water from a fluid such as natural gas, where a drier TEG is recovered at the bottom fraction in a regeneration column (7), where water vapor together with other gases is removed at the top fraction and where the partially dried TEG from the regeneration column (7) optionally is also supplied to a stripping column (9) for further dehydration, where in the optional stripping column (9) and in the still column (7) there is supplied a stripping gas in countercurrent to the TEG stream, where as stripping gas there is mainly used gas which is recovered from the top fraction from the regeneration column (7). There is also described an apparatus for carrying out the method.Type: GrantFiled: May 10, 2000Date of Patent: October 9, 2001Assignee: Read Process Engineering A/SInventor: Tor Christensen
-
Patent number: 6251166Abstract: A glycol regenerating system wherein a pressurized reboiler is introduced to a typical prior art system, the pressurized reboiler being in the glycol stream upstream from the conventional atmospheric reboiler. The pressurized reboiler heats the rich glycol coming from the glycol contactor from about 300° F. to 400° F. and keeps the glycol under pressure from about 10-25 psig. in order to first distill and condense VOCs (volatile organic compounds) which constitute non-condensable hydrocarbons and condensable hydrocarbons such as BTEX (Benzene, Toluene, Ethylbenzene, Xylene) compounds, the components being conveniently under pressure for transporting the components to a desired location.Type: GrantFiled: August 18, 1999Date of Patent: June 26, 2001Assignee: Anderson Controls, LCInventor: R. David Anderson
-
Patent number: 6238461Abstract: A natural gas dehydrator wherein a portion of the wet glycol from the absorber is pumped under pressure as circulating wet glycol which is used as a coolant for effluents removed from a reboiler and a power source for an educator to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluents, comprising liquid water, liquid hydrocarbons and uncondensed vapors, move in to the first chamber wherein the liquid water is separated therefrom. The liquid hydrocarbons and the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. Also, gases from gas emitting level control apparatus in the natural gas dehydrator are collected and fed into the first chamber.Type: GrantFiled: June 15, 1999Date of Patent: May 29, 2001Inventor: Rodney T. Heath
-
Patent number: 6183540Abstract: A method is provided for the extraction of aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene, collectively known as “BTEX,” in a continuous process utilizing a glycol contactor to cause absorption of the BTEX upstream of an amine-based gas sweetening process. The preferred glycol for BTEX absorption is triethylene glycol. The glycol used in the glycol contactor for BTEX extraction may either be fully regenerated (dry), or wet glycol from a downstream gas dehydration system. The method may be achieved with the use of a number of separate absorber/contactor vessels, or the method may be achieved within one combination vessel.Type: GrantFiled: August 27, 1999Date of Patent: February 6, 2001Assignee: Kinder Morgan, Inc.Inventor: Jonathan E. Thonsgaard
-
Patent number: 6015450Abstract: Methanol emissions in the CO.sub.2 vent from a synthesis gas unit in an ammonia or hydrogen plant are reduced by contacting raw synthesis gas from a low temperature shift converter with recycled stripped condensate to absorb methanol. The synthesis gas is treated in a purification unit to form the CO.sub.2 vent of reduced methanol content. The condensate from the contacting step is steam stripped to form a process steam stream suitable for feed to the reformer and a stripped process condensate stream suitable for offsites polishing, a portion of which is recycled for contacting the raw synthesis gas.Type: GrantFiled: August 13, 1998Date of Patent: January 18, 2000Assignee: The M. W. Kellogg CompanyInventors: Girish Chimanlal Joshi, Stephen Allen Noe
-
Patent number: 5958110Abstract: A low temperature process for the dehydration of aqueous glycol solutions using an induced airflow (3) and low temperature thermal sources (4, 21) to reduce the water concentration in aqueous glycol solutions (22). The invention utilizes the ability for air to evaporate water at low vapor pressures and corresponding low vapor temperatures in a direct contacting device (5). The relative vapor pressures of glycol to water at low temperatures assures the preferential vaporization rate of water over that of glycol thereby providing dehydration and effective regeneration of aqueous glycol solutions.Type: GrantFiled: December 29, 1997Date of Patent: September 28, 1999Inventors: James Jeffrey Harris, James William Harris
-
Patent number: 5954861Abstract: A process for separating a gaseous mixture comprising C.sub.1 chlocarbons and noncondensible gases into a liquid component comprising the C.sub.1 chlorocarbons and a component comprising the noncondensible gases. The method employs a liquid hydrocarbon having an average molecular weight within a range of about 142 to 422 to adsorb the C.sub.1 chlorocarbons from the gaseous mixture. The present process is especially useful for separating methyl chloride from a gaseous mixture resulting from an oxychlorination process where the gaseous mixture further comprises, methane, water vapor, and hydrogen chloride.Type: GrantFiled: August 19, 1994Date of Patent: September 21, 1999Assignee: Dow Corning CorporationInventors: Bruce Robert Crum, Corey Grant Knutson, Brian Michael Naasz, Jeffrey Scott Smith
-
Patent number: 5766313Abstract: Apparatus for treating emissions from a reboiler used to remove glycol from water laden glycol wherein the emissions are condensed; pressurized and separated so that hydrocarbon vapors may be directed to a burner used to supply heat to a reboiler. Control apparatus is provided to combine fuel gas and the pressurized hydrocarbon vapors as needed to supply all of the fuel required by the burner. Also, separate apparatus is provided to control the movement of dry glycol in the apparatus and to pressurize the condensed emissions.Type: GrantFiled: December 18, 1996Date of Patent: June 16, 1998Inventor: Rodney T. Heath
-
Patent number: 5536303Abstract: A method of low temperature regeneration of glycol used for dehydrating natural gas in a glycol dehydration system including the steps of passing natural gas against flowing glycol in an absorber vessel so that the glycol absorbs water from the gas, providing spent glycol and dehydrated gas, conducting the spent glycol into a reboiler vessel, feeding a portion of the dehydrated gas into a burner positioned within the reboiler vessel where the dehydrated gas is combusted to heat the spent glycol, conducting a first portion of dehydrated gas into a gas distributor located within a lower portion of the reboiler vessel, the gas distributor causing small bubbles of gas to move upwardly through the spent glycol within the reboiler to augment separation of water from the heated glycol, conducting a second portion of the dehydrated gas into an upper gas stripper vessel mounted within an upper portion of the reboiler vessel to contact the dehydrated gas with the spent glycol to further augment the separation of waterType: GrantFiled: June 8, 1995Date of Patent: July 16, 1996Inventor: Harold O. Ebeling
-
Patent number: RE39944Abstract: A natural gas dehydrator wherein a portion of the wet glycol from the absorber is pumped under pressure as circulating wet glycol which is used as a coolant for effluents removed from a reboiler and a power source for an educator to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluents, comprising liquid water, liquid hydrocarbons and uncondensed vapors, move in to the first chamber wherein the liquid water is separated therefrom. The liquid hydrocarbons and the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. Also, gases from gas emitting level control apparatus in the natural gas dehydrator are collected and fed into the first chamber.Type: GrantFiled: May 29, 2003Date of Patent: December 25, 2007Inventor: Rodney T. Heath