Carbon Dioxide Removed Patents (Class 95/183)
-
Patent number: 12076690Abstract: The invention relates to a process for removal of unwanted, in particular acidic gas constituents, for example carbon dioxide and hydrogen sulfide, from a crude synthesis gas by gas scrubbing with a scrubbing medium. According to the invention the flash gases obtained during the decompression of the laden scrubbing medium are supplied to a recompressor in order to recycle these to the crude synthesis gas and thus utilize them materially after the recompression. Alternatively or in addition the flash gases may also be supplied to a decompression turbine to recover refrigeration and mechanical work. If the recompressor and/or the decompression turbine are/is designed to have multiple stages, the flash gases obtained at different pressure levels are preferably supplied to a corresponding pressure level of the recompressor and/or of the decompression turbine.Type: GrantFiled: May 29, 2019Date of Patent: September 3, 2024Assignee: L'Air Liquide, Societe Anonyme Pour l'Etude et l'Exploitation des Procedes Georges ClaudeInventors: Alfred Gubrinski, Sharon Corbet, Dorit Rappold, Pankaj Puri
-
Patent number: 11273407Abstract: An acid gas regenerator includes a regenerator condenser that condenses moisture from entraining gas entraining a corrosive substance and acid gas discharged from a column top portion of a regenerator that regenerates acid gas absorbent. The regenerator condenser includes: a gas discharge line that discharges the entraining gas from the column top portion of the regenerator, a cooler installed on the discharge line; a gas-liquid separator that separates CO2 gas from regenerator condensed water obtained by condensing vapor using the cooler, a reflux line that refluxes the regenerator condensed water closer to the column top portion than the rich solution introducing unit; a condensed water receiver storing the condensed water introduced by the reflux line; and a first condensed water extraction line that extracts the condensed water from a condensed water extractor of the condensed water receiver and is connected to a lean solution supply line.Type: GrantFiled: October 24, 2018Date of Patent: March 15, 2022Assignee: Mitsubishi Heavy Industries Engineering, Ltd.Inventors: Takuya Hirata, Hiroshi Tanaka, Kaori Yoshida, Takahiko Endo
-
Patent number: 10378763Abstract: A power generation system includes a power generation plant portion including a feedwater heating system configured to channel a feedwater stream and a carbon dioxide capture portion coupled in flow communication with the power generation plant portion. The carbon dioxide capture portion includes a solvent circuit configured to channel a solvent stream through at least a portion of the carbon dioxide capture portion. The carbon dioxide capture portion also includes a heat recovery system coupled in flow communication with the solvent circuit and the feedwater heating system. The heat recovery system is configured to transfer heat energy from the solvent stream to the feedwater stream and to channel the heated feedwater from the heat recovery system to the feedwater heating system.Type: GrantFiled: December 3, 2015Date of Patent: August 13, 2019Assignee: General Electric CompanyInventors: Surinder Prabhjot Singh, Dan Hancu, Benjamin Rue Wood, Wei Chen, Dwayne David McDuffie, Mark David Kehmna, Irina Pavlovna Spiry
-
Patent number: 9545601Abstract: The carbon dioxide recovery method and apparatus are capable of reducing energy for regenerating the absorbing liquid and operating cost. An absorption column has first and second absorbing sections that a gas is supplied through the first absorbing section to the second absorbing section and the absorbing liquid absorbs carbon dioxide. A regeneration column regenerating the absorbing liquid has first and second regenerating sections. The first regenerating section has an external heating implement and the second regenerating section is heated by the gas discharged from the first regeneration section. Circulation mechanism has a circulation system circulating the absorbing liquid between the second absorbing section and the first regenerating section, and a branch path branched from the circulation system.Type: GrantFiled: August 29, 2014Date of Patent: January 17, 2017Assignee: IHI CorporationInventors: Shiko Nakamura, Yasuro Yamanaka, Kenji Takano, Shinya Okuno
-
Patent number: 9339757Abstract: The technical field of the invention is CO2 capture and sequestration, as well as gas separation and purification technologies. In an aspect is a process for capturing purified CO2 from a CO2-containing gas, comprising steps: (a) contacting in an absorber column the CO2-containing gas with an absorption solution comprising water, ammonia, and potassium carbonate, to enable adsorption of CO2, thereby producing a CO2-depleted gas and a CO2-rich solution; and (b) subjecting the CO2-rich solution to desorption conditions in a regeneration column producing a purified CO2 gas stream and a CO2-depleted solution.Type: GrantFiled: May 14, 2015Date of Patent: May 17, 2016Assignee: SRI INTERNATIONALInventors: Indira S Jayaweera, Palitha Jayaweera, Gopala N. Krishnan, Angel Sanjurjo
-
Patent number: 9243517Abstract: A carbon dioxide recovery system includes a high-pressure turbine 11, an intermediate-pressure turbine 12, a low-pressure turbine 13, a main boiler 15 that generates steam 14 for driving these turbines, a carbon dioxide recovery unit 24 including a carbon dioxide absorber 21 that absorbs and reduces carbon dioxide in flue gas (emission gas) G emitted from the main boiler 15 using a carbon dioxide absorbent and an absorbent regenerator 23 that regenerates a carbon dioxide absorbent having absorbed the carbon dioxide using a regenerating superheater 22 to obtain a regenerated carbon dioxide absorbent, an auxiliary boiler 30 that generates saturated water vapor 31 to be supplied to the regenerating superheater 22 in the absorbent regenerator 23, and a steam turbine 32 that is driven by steam from the auxiliary boiler 30.Type: GrantFiled: April 2, 2012Date of Patent: January 26, 2016Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.Inventor: Masaki Iijima
-
Patent number: 9021810Abstract: A power plant includes a boiler, a stream turbine generator, a post combustion processing system, a feed water regeneration processing system and a heat exchanger. Heat from the heat exchanger is used to regenerate (a) a reagent that absorbs carbon dioxide from flue gas and (b) a water-lean desiccant used to increase plant operating efficiency.Type: GrantFiled: January 15, 2013Date of Patent: May 5, 2015Assignee: The University of Kentucky Research FoundationInventors: Kunlei Liu, James K. Neathery
-
Patent number: 9011576Abstract: A method for sorbing a gas using an ionic liquid to sorb a vapor having an electric multi-pole moment. The ionic liquid comprises an anion and a cation. The electric multi-pole moment may be an electric dipole moment and/or an electric quadru-pole moment. The sorption may be an adsorption or an absorption. The ionic liquid may be a liquid that substantially contains only anions and cations, while not containing other components, such as water. Alternatively, a solution containing the ionic liquid and a solvent or further compound, such as water, may be used.Type: GrantFiled: June 22, 2011Date of Patent: April 21, 2015Inventors: Paul Dinnage, Roland Kalb
-
Patent number: 8961665Abstract: There is provided an exhaust gas treatment system including a CO2 recovery unit with further enhanced energy efficiency. The exhaust gas treatment system (1) includes: a CO2 recovery unit (10) including a CO2 absorption column (11), an absorbing solution regeneration column (16), a condensate supply pipeline (15) for supplying condensate, which contains CO2 absorbing solution discharged from the CO2 absorption column (11) to a bottom portion of the absorbing solution regeneration column (16), and a CO2 separation section (22) for performing heat exchange, via a heat exchanger (23), between the CO2 discharged from the absorbing solution regeneration column (16) and the condensate; and an exhaust gas heat exchanger (5) provided on a gas upstream side of the CO2 recovery unit (10) for performing heat exchange between exhaust gas before flowing into the CO2 recovery unit (10) and the condensate.Type: GrantFiled: September 5, 2012Date of Patent: February 24, 2015Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Tatsuya Tsujiuchi, Shintaro Honjo, Takahito Yonekawa, Satoru Sugita, Motofumi Ito, Takashi Kamijo, Tatsuto Nagayasu, Takuya Okamoto
-
Patent number: 8961663Abstract: An apparatus that separates and recovers CO2 from a CO2 absorbent that has absorbed CO2 includes a regeneration tower configured to apply heat to the CO2 absorbent that has absorbed CO2, configured to separate and remove CO2 from the CO2 absorbent, configured to exhaust CO2 gas, and configured to regenerate the CO2 absorbent, a plurality of compressors configured to compress the CO2 gas exhausted from the regeneration tower, a dehydration device provided between the plurality of compressors and configured to remove moisture from the compressed CO2, and a line configured to supply air or N2 gas into the dehydration device to preliminarily operate the dehydration device until a stable state is achieved before starting the compressor.Type: GrantFiled: September 6, 2012Date of Patent: February 24, 2015Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Taku Asano, Tatsuya Tsujiuchi, Richard Reinke
-
Patent number: 8961664Abstract: A carbon dioxide recovery unit is provided with: an absorption tower for bringing an exhaust gas into contact with a CO2 absorbing liquid to thereby absorb and recover CO2 from the exhaust gas; a regeneration tower for taking out the CO2 from the CO2 absorbing liquid; a CO2 delivery line L3 for delivering the taken-out CO2 to a storage process; and a CO2 return line L5 for returning the taken-out CO2 to the absorption tower. When a CO2 recovery unit and a CO2 compressing device are activated, if a storage process side has some kind of trouble and cannot receive the CO2, a destination part to which the CO2 is delivered from the regeneration tower is switched from the CO2 delivery line L3 to the CO2 return line L5, whereby the CO2 gas is mixed with the exhaust gas in the absorption tower.Type: GrantFiled: September 20, 2012Date of Patent: February 24, 2015Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Koji Nakayama, Takahito Yonekawa, Masayuki Inui, Tatsuya Tsujiuchi, Yoshiki Sorimachi
-
Patent number: 8920544Abstract: A method for removing acid gases from a fluid flow using an absorbent including an aqueous solution with at least two different amines. An amine in a proportion of greater than 50 wt. % of the total amine amount in the aqueous solution is the first amine component in the aqueous solution, and a sterically hindered amine in a proportion of less than 50 wt. % is the second amine component in the aqueous solution. The fluid flow is brought into contact with the absorbent at a partial pressure of <200 mbar.Type: GrantFiled: December 21, 2010Date of Patent: December 30, 2014Assignee: ThyssenKrupp Uhde GmbHInventors: Johannes Menzel, Olaf Von Morstein
-
Patent number: 8911538Abstract: A system for treating an effluent stream including a carbon capture system utilizing an amine-containing solution to remove carbon dioxide from a flue gas stream, the carbon capture system generating an effluent stream comprising degradation products generated by the amine-containing solution; storage means for storing at least a portion of the effluent stream, the storage means being fluidly coupled to the carbon capture system. The system also including at least one nozzle connected to a combustion zone of a boiler, the at least one nozzle being fluidly coupled to the storage means for providing at least a portion of the effluent stream present in the storage means to the combustion zone of the boiler through the at least one nozzle, wherein the effluent stream provided to the combustion zone is co-incinerated with a fuel in the combustion zone.Type: GrantFiled: December 22, 2011Date of Patent: December 16, 2014Assignee: ALSTOM Technology LtdInventors: Staffan Joensson, Bjorn Ungerer, Christoph Weingartner, Shin G. Kang, Armand A. Levasseur
-
Patent number: 8906141Abstract: An apparatus for separating and recovering CO2 from a CO2 absorbent, includes: a regeneration tower for regenerating the absorbent that has absorbed CO2 by heating it to separate and remove CO2 therefrom and to exhaust CO2 gas; a compressor for compressing the CO2 gas exhausted from the tower; and a heat exchanger for heating the absorbent in the tower by exchanging heat with a part of the compressed CO2 by the compressor which is introduced into the tower. The apparatus may include a plurality of the compressors and a plurality of the heat exchangers. The plurality of compressors is arranged in series to sequentially compress the CO2 gas exhausted from the tower. The plurality of heat exchangers is configured so that each part of the CO2 compressed by the plurality of compressors is introduced to the tower in parallel to exchange heat with the absorbent in the tower.Type: GrantFiled: August 9, 2012Date of Patent: December 9, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Tatsuya Tsujiuchi, Shintaro Honjo, Takahito Yonekawa, Satoru Sugita
-
Patent number: 8906149Abstract: The present application relates to a system for removal of gaseous contaminants from a gas stream. The system includes an absorber for contacting the gas stream with a wash solution to form a used wash stream, a regenerator for regenerating the used wash solution, a reboiler and at least two heat exchangers in fluid communication with the absorber, regenerator and reboiler.Type: GrantFiled: August 26, 2014Date of Patent: December 9, 2014Assignee: ALSTOM Technology LtdInventors: Barath Baburao, Jonathan W. Leister, Frederic Vitse
-
Patent number: 8904669Abstract: A fuel system comprising a fuel tank, a vent tank having a duct open to the ambient atmosphere, a first vent line fluidically connecting the fuel tank ullage to the vent tank, a gas drying system including a pump and a dehumidifying device disposed within the vent tank, and a second vent line fluidically connecting a dry gas outlet of the dehumidifying device to the ullage, wherein the pump is operable to maintain a higher pressure within the ullage than in the vent tank so as to drive vapor rich gas from the ullage into the vent tank via the first vent line. Also, a method of operating the fuel system and a method of retro-fitting the gas drying system in an existing fuel system. The gas drying system may optionally be a gas drying/inerting system.Type: GrantFiled: March 17, 2011Date of Patent: December 9, 2014Assignee: Airbus Operations LimitedInventors: Franklin Tichborne, Joseph K-W Lam, David Parmenter, Simon Masters
-
Patent number: 8900355Abstract: Impure carbon dioxide (“CO2”) comprising a first contaminant selected from the group consisting of oxygen (“O2”) and carbon monoxide (“CO”) is purified by separating expanded impure carbon dioxide liquid in a mass transfer separation column system. The impure carbon dioxide may be derived from, for example, flue gas from an oxyfuel combustion process or waste gas from a hydrogen (“H2”) PSA system.Type: GrantFiled: November 5, 2010Date of Patent: December 2, 2014Assignee: Air Products and Chemicals, Inc.Inventors: Vincent White, Rodney John Allam
-
Patent number: 8845789Abstract: The present application relates to systems and processes for removal of gaseous contaminants from gas streams. In particular, the application relates to a process for removal of gaseous contaminants from a gas stream comprising contacting the gas stream with a wash solution to remove gaseous contaminants from the gas stream by absorption into the wash solution; and regenerating the used wash solution to remove gaseous contaminants from the used wash solution, to provide a regenerated wash solution and a gas comprising removed contaminants, wherein in a first regeneration stage the gas comprising removed contaminants is cooled to minimize loss of water vapor from the regeneration step.Type: GrantFiled: March 26, 2010Date of Patent: September 30, 2014Assignee: ALSTOM Technology LtdInventors: Barath Baburao, Jonathan W. Leister, Frederic Vitse
-
Patent number: 8845787Abstract: Acid compounds are removed from a gaseous effluent in an absorption method using an aqueous solution of N,N,N?,N?-tetramethylhexane-1,6-diamine formulated with a particular primary or secondary amine, allowing to obtain a single-phase absorbent solution under the absorption conditions of acid gases such as CO2. The method is advantageously applied to the treatment of natural gas and of gas of industrial origin.Type: GrantFiled: July 21, 2009Date of Patent: September 30, 2014Assignee: IFP Energies NouvellesInventors: Marc Jacquin, Julien Grandjean, Thierry Huard
-
Patent number: 8834605Abstract: Method and apparatus for separating a target substance from a fluid or mixture. Capsules having a coating and stripping solvents encapsulated in the capsules are provided. The coating is permeable to the target substance. The capsules having a coating and stripping solvents encapsulated in the capsules are exposed to the fluid or mixture. The target substance migrates through the coating and is taken up by the stripping solvents. The target substance is separated from the fluid or mixture by driving off the target substance from the capsules.Type: GrantFiled: December 6, 2011Date of Patent: September 16, 2014Assignees: Lawrence Livermore National Security, LLC., The Board of Trustees of the University of IllinoisInventors: Roger D. Aines, Christopher M. Spadaccini, Joshuah K. Stolaroff, William L. Bourcier, Jennifer A. Lewis, Eric B. Duoss, John J. Vericella
-
Patent number: 8834609Abstract: A method for separating carbon dioxide from a flue gas of a fossil fuel-operated power plant is provided. In the method, a fossil fuel is initially burned in a combustion process, wherein a hot waste gas containing carbon dioxide is produced. In a next process step, waste gas containing carbon dioxide is brought into contact with an absorption medium in an absorption process, wherein carbon dioxide is absorbed by the absorption medium, thus forming a charged absorption medium. Next, gaseous carbon dioxide is thermally expelled from the charged absorption medium in a desorption process. For this purpose, a vapor is supplied to the desorption process, the vapor is injected into the charged absorption medium, wherein the condensation heat released by the condensation of the vapor is transferred to the charged absorption medium, and the partial pressure of the carbon dioxide is simultaneously reduced in the desorption unit.Type: GrantFiled: May 14, 2009Date of Patent: September 16, 2014Assignee: Siemens AktiengesellschaftInventors: Ralph Joh, Rüdiger Schneider, Henning Schramm
-
Patent number: 8821615Abstract: The disclosure relates to a process for treating a gas mixture containing carbon dioxide and hydrogen sulphide, including the following steps: deacidificating the gas mixture by bringing the gas mixture into contact with a first lean absorbent solution stream, delivering a deacidified gas mixture, and a first rich absorbent solution stream; regenerating the first rich absorbent solution stream, delivering the first lean absorbent solution stream and a sour gas stream; distillating the sour gas stream, delivering a first carbon-dioxide-rich stream and a hydrogen-sulphide-rich stream; purifying the first carbon-dioxide-rich stream by bringing the first carbon-dioxide-rich stream into contact with a second lean absorbent solution stream, delivering a second carbon-dioxide-rich stream and a second rich absorbent solution stream, the molar concentration of carbon dioxide in the second carbon-dioxide-rich stream being greater than the molar concentration of carbon dioxide in the first carbon-dioxide-rich stream.Type: GrantFiled: June 25, 2010Date of Patent: September 2, 2014Assignee: Total S.A.Inventors: Claire Weiss, Renaud Cadours, Kamal Bouzalmata
-
Patent number: 8808429Abstract: A method for reclaiming CO2 absorbing chemical(s) from a lean aqueous CO2 absorbent leaving a regeneration column (8), where lean absorbent (30) is withdrawn and flashed (31) to generate a vapor that is compressed (34) and returned into the regeneration column as stripper gas (37), where a part of the lean absorbent (20) is withdrawn and introduced into a reclaimer (21) in which the lean absorbent is boiled to generate a gas phase (23) that is withdrawn and returned into the regeneration column as reclaimed absorbent, and a liquid phase containing impurities (24), wherein the gaseous phase that is withdrawn from the reclaimer is compressed (34) together with the vapor part (33) from the flashing of the lean absorbent, to generate a pressure in the reclaimer that is lower than the pressure in the regeneration column, and a reboiler (11) for carrying out the method, are described.Type: GrantFiled: June 9, 2010Date of Patent: August 19, 2014Assignee: Aker Clean Carbon ASInventors: Simon Woodhouse, Otto Morten Bade, Anne-Helene Haaland, Oddvar Gorset, Bjorn Magnus Berg
-
Patent number: 8801836Abstract: The present invention relates to a method for recovery of carbon dioxide from a gas (G3), in particular the present invention relates to a method for recovery of carbon dioxide using a process gas (G1) heated reboiler (A1) for carbon dioxide removal in a stripper (A3).Type: GrantFiled: February 1, 2010Date of Patent: August 12, 2014Assignee: Union Engineering A/SInventor: Rasmus Find
-
Patent number: 8795415Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.Type: GrantFiled: May 25, 2010Date of Patent: August 5, 2014Assignees: BASF SE, JGC CorporationInventors: Torsten Katz, Georg Sieder, Koji Tanaka
-
Patent number: 8790453Abstract: The present invention relates to a gas purification system for removal of acidic gases from a gas stream. The system comprises an absorption unit arranged for receiving a gas stream and contacting it with a wash solution stream and a cooling unit in fluid communication with the absorption unit. The cooling unit receives wash solution enriched with acidic gases from a first withdrawal level of said absorption unit, cools the enriched wash solution, and provides cooled, enriched wash solution to a first reintroduction level of the absorption unit upstream of the withdrawal level. The ratio of withdrawn wash solution is 10-90% of the total wash solution stream.Type: GrantFiled: May 13, 2013Date of Patent: July 29, 2014Assignees: Alstom Technology Ltd, Dow Global Technologies LLCInventors: Barath Baburao, Craig Norman Schubert
-
Patent number: 8784537Abstract: CO2 is absorbed from a gas mixture by contacting the gas mixture with an absorption medium which comprises at least water as solvent and at least one amine of formula (I) where R1 is an aliphatic radical, having 2 to 6 carbon atoms and at least one amino group, and R2 is hydrogen, a C1-4 alkyl radical or a radical R1.Type: GrantFiled: November 10, 2011Date of Patent: July 22, 2014Assignee: Evonik Degussa GmbHInventors: Matthias Seiler, Rolf Schneider, Jörn Rolker, Daniel Dembkowski, Manfred Neumann, Daniel Witthaut, Michael Keup, Volker Brehme, Muhammad Irfan
-
Patent number: 8784532Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. The carbon dioxide then desorbs from the liquid sorbent using hollow-fiber contactors as a source of heat to liberate the carbon dioxide further separated by the hollow-fiber contactors from the liquid sorbent.Type: GrantFiled: March 1, 2012Date of Patent: July 22, 2014Assignee: Phillips 66 CompanyInventors: Imona C. Omole, George F. Schuette
-
Patent number: 8771403Abstract: The present invention provides a system for capturing CO2 and/or SO2, comprising: (a) a CO2 and/or SO2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO2 and/or SO2 to produce a CO2- and/or SO2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO2 gas. The present invention also provides for a system for capturing SO2, comprising: (a) a SO2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO2 to produce an alkali metal sulfite/sulfate precipitate and CO2.Type: GrantFiled: February 1, 2013Date of Patent: July 8, 2014Assignee: The Regents of the University of CaliforniaInventors: Shih-Ger Chang, Yang Li, Xinglei Zhao
-
Patent number: 8764892Abstract: A method for removal of CO2 from a flue gas stream, comprising the steps of: a) contacting a flue gas stream comprising CO2 with a first absorption liquid comprising NH3 such that the flue gas stream is depleted in CO2; b) contacting the flue gas stream depleted in CO2 of step a) with a second absorption liquid such that NH3 from the flue gas stream is absorbed in said second absorption liquid to form a flue gas stream depleted in CO2 and NH3; c) separating NH3 from the second absorption liquid such that a gas stream comprising NH3 is obtained; d) contacting said gas stream comprising NH3 separated in step c) with a third absorption liquid such that NH3 is absorbed in said third absorption liquid. A system for removal of CO2 from a flue gas stream, the system comprising: a CO2 absorption stage; an NH3 absorption stage; and a reabsorption stage.Type: GrantFiled: February 25, 2013Date of Patent: July 1, 2014Assignee: ALSTOM Technology LtdInventors: Peter Ulrich Koss, Frederic Zenon Kozak
-
Patent number: 8764884Abstract: A CO2 recovery system includes an absorption tower and a regeneration tower. CO2 rich solution is produced in the absorption tower by absorbing CO2 from CO2-containing gas. The CO2 rich solution is conveyed to the regeneration tower where lean solution is produced from the rich solution by removing CO2. A regeneration heater heats lean solution that accumulates near a bottom portion of the regeneration tower with saturated steam thereby producing steam condensate from the saturated steam. A steam-condensate heat exchanger heats the rich solution conveyed from the absorption tower to the regeneration tower with the steam condensate.Type: GrantFiled: August 8, 2013Date of Patent: July 1, 2014Assignees: Mitsubishi Heavy Industries, Ltd., Kansai Electric Power Co., Inc.Inventors: Masaki Iijima, Takashi Kamijo, Takahito Yonekawa, Tomio Mimura, Yasuyuki Yagi
-
Patent number: 8758484Abstract: A process of removal of CO2 from a flue gas (2). The process comprises the steps of: a) providing a flue gas comprising CO2 (2), b) contacting the flue gas of step (a) with an ammonia-comprising medium (9), to absorb CO2 from said flue gas; and c) condensing ammonia (4) present in the flue gas leaving step (b), to remove ammonia from said flue gas. A system for removal of CO2 from a flue gas. A system for removal of CO2 from a flue gas. The system comprises a CO2 absorber (1) receiving the flue gas (2) and comprising an ammonia-comprising medium (9). The system further comprises an ammonia condenser (4) receiving flue gas (3) leaving the CO2 absorber.Type: GrantFiled: June 25, 2008Date of Patent: June 24, 2014Assignee: ALSTOM Technology LtdInventor: Nader Padban
-
Patent number: 8758483Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.Type: GrantFiled: May 25, 2010Date of Patent: June 24, 2014Assignees: BASF SE, JGC CorporationInventors: Torsten Katz, Georg Sieder, Koji Tanaka
-
Patent number: 8741034Abstract: An object of the present invention is to provide an exhaust gas treatment system that effectively use heat recovered from an exhaust gas without any limitation in a CO2 chemical absorption equipment that requires enormous heat energy, and thus enabling reduction in running cost of the CO2 chemical absorption equipment.Type: GrantFiled: April 19, 2011Date of Patent: June 3, 2014Assignee: Babcock-Hitachi Kabushiki KaishaInventors: Tomoyuki Konishi, Takanori Nakamoto, Naoki Oda, Nobuo Morimoto
-
Patent number: 8734744Abstract: Aspects of the disclosure relate to the separation of gases and to a process for the removal of carbon dioxide gas using liquid absorbents. A process is disclosed for removing carbon dioxide from a gaseous stream comprising contacting the gaseous stream with a carbon dioxide absorbent comprising a mixture of an ionic liquid and water in a molar ratio of from 10:1 to 1:10, wherein the ionic liquid has the formula: [Cat+][X?].Type: GrantFiled: September 14, 2012Date of Patent: May 27, 2014Assignee: Petroliam Nasional BerhadInventors: David F. Wassell, Kenneth R. Seddon, Martin P. Atkins
-
Patent number: 8728209Abstract: A method for reducing energy requirements of a CO2 capture system comprises: contacting a flue gas stream with a CO2 lean absorbent stream in an absorber, thereby removing CO2 from the flue gas and providing a CO2 rich absorbent stream; heating a first portion of the CO2 rich absorbent stream using heat from the CO2 lean absorbent stream, and providing the heated first portion of the CO2 rich absorbent stream to a regenerator; providing a second portion of the CO2 rich absorbent stream to the regenerator, wherein the heated first portion is hotter than the second portion and the heated first portion is provided to the regenerator at a lower elevation in the regenerator relative to that of the second portion.Type: GrantFiled: August 2, 2011Date of Patent: May 20, 2014Assignee: ALSTOM Technology LtdInventors: Joseph P. Naumovitz, Michael Koch
-
Patent number: 8728220Abstract: A CO2 recovery system according to the present invention includes: a cooling tower that uses cooling water to cool a CO2-containing exhaust gas discharged from industrial equipment such as a boiler or a gas turbine; a CO2 absorber that brings the cooled CO2-containing exhaust gas into contact with a CO2-absorbent that absorbs CO2, thereby removing the CO2 from the exhaust gas; and a first absorbent regenerator and a second absorbent regenerator that release CO2 from a CO2-absorbent that has absorbed CO2 (rich solution), thereby regenerating the CO2-absorbent. A second lean solution at the outlet of the second absorbent regenerator is subjected to vacuum flash vaporization, and the resulting vapor is inputted to the first absorbent regenerator.Type: GrantFiled: July 27, 2011Date of Patent: May 20, 2014Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.Inventors: Masaki Iijima, Masahiko Tatsumi, Yasuyuki Yagi
-
Patent number: 8702839Abstract: Provided are a CO2 absorber that reduces CO2 contained in flue gas; a regenerator that reduces CO2 contained in rich solvent absorbing CO2 to regenerate the rich solvent, so that lean solvent having the CO2 reduced in the regenerator is reused in the CO2 absorber; a heat exchanger that allows the rich solvent to exchange heat with the lean solvent; and a controller that controls to extract rich solvent portion that is part of the rich solvent, to allow the rich solvent portion to bypass the heat exchanger, and to be supplied into the top of the regenerator without exchanging heat so as to minimize a sum of an enthalpy that is taken out of the regenerator as CO2 gas accompanying steam and an enthalpy of the lean solvent after heat exchange with the rich solvent in the heat exchanger.Type: GrantFiled: March 11, 2013Date of Patent: April 22, 2014Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.Inventors: Masaki Iijima, Kouki Ogura, Masahiko Tatsumi, Yasuyuki Yagi
-
Patent number: 8696804Abstract: A carbon dioxide storage means stores the carbon dioxide released in a heat exchanger. The heat exchanger cools the exhaust gas emitted by the internal combustion engine, and includes a thermal electric generator (TEG) configured to couple thermally the exhaust gas chamber to the absorber fluid chamber in a manner effective to heat the CO2 absorbent fluid by heat from the engine exhaust to release CO2 gas from the CO2 absorbent fluid and generate electricity in response to a temperature difference therebetween. The CO2 absorbent fluid is one of: a) an aliphatic di-functional nitrile (e.g. pimelonitrile); and b) an oligomeric poly-acrylonitrile (PAN).Type: GrantFiled: April 12, 2013Date of Patent: April 15, 2014Assignee: Delphi Technologies, Inc.Inventors: David W. Ihms, Bruce A. Myers
-
Patent number: 8673062Abstract: A method of removing acid gases from raw gas is disclosed in which the raw gas is supplied to an absorption column where it is contacted with a physical absorption agent, having a boiling point lower than 100° C. at atmospheric pressure, under elevated operating pressure to load, the physical absorption agent with acid gases and usable gases and then the physical absorption agent loaded with acid gases and usable gases is driven from the absorption column at its sump while drawing off at the head of the absorption column a purified top gas containing up to a few ppm of acid-gas components. Following the absorption, the physical absorption agent undergoes stripping to remove usable gases, and regeneration to remove the acid gases as well as to provide a regenerated physical absorbent which may be used to treat additional raw gas.Type: GrantFiled: November 4, 2009Date of Patent: March 18, 2014Assignee: UHDE GmbHInventor: Johannes Menzel
-
Patent number: 8652236Abstract: The present invention describes a method for recovery of high purity carbon dioxide, which is substantially free of nitrogen oxides. This high purity carbon dioxide is obtained by introducing into the method a step in which carbon dioxide absorbed in an absorbing agent is flashed. The present invention also discloses a plant for recovery of said high purity carbon dioxide comprising an absorption column, a flash column, a stripper column, and a down stream purification unit comprising a washing column, a dehydrator, a condenser and a distillation unit.Type: GrantFiled: January 16, 2008Date of Patent: February 18, 2014Assignee: Union Engineering A/SInventors: Rasmus Find, Svend Geleff, Maj Toft Andersen
-
Patent number: 8647420Abstract: [Problem] To provide a system for recovering carbon dioxide from flue gas, in which a reboiler in a regenerator can be compactly installed, and a method therefor, in facilities where CO2 or the like contained in flue gas is recovered. [Solving Means] To include an absorber 1006 that absorbs CO2 contained in flue gas 1002, a regenerator 1008 that strips CO2 from CO2 absorbent (rich solution) 1007 to regenerate absorbent, internal shells 101 provided at a bottom of the regenerator 1008 with a predetermined interval therebetween, into which regenerated CO2 absorbent is introduced by a feeding unit 102 from a bottom side thereof so that the CO2 absorbent overflows from an upper end of the internal shell thereof toward the bottom of the regenerator, and a reboiler that is inserted into the internal shells 101 in a direction orthogonal to a vertical axis and includes a heat-transfer tube 103 that reboils absorbent.Type: GrantFiled: April 7, 2011Date of Patent: February 11, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Hiroshi Tsubone, Toyoshi Nakagawa, Takashi Kamijo, Tsuyoshi Oishi, Katsufumi Inoue, Osamu Miyamoto
-
Patent number: 8647421Abstract: [Problem to be solved] A CO2 recovery apparatus which can significantly reduce the amount of steam and provide further improved energy efficiency is provided. [Solution] The apparatus includes: a flue gas cooling apparatus 14 for allowing cooling water 13 to cool a CO2 and O2 containing flue gas 12 that is emitted from an industrial combustion facility 11 such as a boiler or gas turbine; a CO2 absorber 16 having a CO2 recovery section 16A for bringing the cooled CO2 containing flue gas 12 and a CO2 absorbing CO2 absorbent 15 into contact with each other to remove CO2 from the flue gas 12; and an absorbent regenerator 18 for releasing CO2 from a CO2 absorbed CO2 absorbent 17 to regenerate the CO2 absorbent.Type: GrantFiled: April 28, 2011Date of Patent: February 11, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventor: Takahito Yonekawa
-
Patent number: 8628643Abstract: A fermentation liquid feed including water and a product alcohol and optionally CO2 is at least partially vaporized such that a vapor stream is produced. The vapor stream is contacted with an absorption liquid under suitable conditions wherein an amount of the product alcohol is absorbed. The portion of the vapor stream that is absorbed can include an amount of each of the water, the product alcohol and optionally the CO2. The temperature at the onset of the absorption of the vapor stream into the absorption liquid can be greater than the temperature at the onset of condensation of the vapor stream in the absence of the absorption liquid. The product alcohol can be separated from the absorption liquid whereby the absorption liquid is regenerated. The absorption liquid can include a water soluble organic molecule such as an amine.Type: GrantFiled: August 10, 2011Date of Patent: January 14, 2014Assignee: Butamax Advanced Biofuels LLCInventors: Michael Charles Grady, William D. Parten, Robert W. Sylvester, Joseph J. Zaher
-
Patent number: 8623286Abstract: A system for collecting carbon dioxide in flue gas includes a stack that discharges flue gas discharged from an industrial facility to outside, a blower that is installed at the downstream side of the stack and draws the flue gas therein, a carbon-dioxide collecting device that collects carbon dioxide in the flue gas drawn in by the blower, and a gas flow sensor arranged near an exit side within the stack. A drawing amount of the flue gas by the blower to the carbon-dioxide collecting device is increased until an flow rate of the flue gas from the stack becomes zero in the gas flow sensor, and when the discharged amount of flue gas from the stack becomes zero, drawing in any more than that amount is stopped, and the carbon dioxide in the flue gas is collected while the flue gas is drawn in by a substantially constant amount.Type: GrantFiled: February 10, 2009Date of Patent: January 7, 2014Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.Inventors: Masaki Iijima, Takashi Kamijo, Yasuyuki Yagi, Kouki Ogura
-
Patent number: 8597412Abstract: A CO2 recovery apparatus according to the present invention includes: an absorber (1003) that brings CO2-containing flue gas (1001A) into counter-current contact with CO2 absorbent (1002) to reduce CO2, and a regenerator (1005) that regenerates rich solution (1004) that has absorbed CO2, in which lean solution (1006) having CO2 reduced in the regenerator (1005) is reused in the absorber (1003). The absorber (1003) further includes a CO2 absorbing unit (1010) that recovers CO2 contained in the flue gas (1001A), and the CO2 absorbent (1002) that has absorbed CO2 is extracted from a rich side of the CO2 absorbing unit (1010) to exterior, cooled, and then supplied to a position nearer to a lean side of the absorber (1003) with respect to the position at which the CO2 absorbent (1002) is extracted.Type: GrantFiled: February 20, 2009Date of Patent: December 3, 2013Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Ltd.Inventors: Hiroshi Tanaka, Toru Takashina, Tsuyoshi Oishi, Masaki Iijima, Tomio Mimura, Kouki Ogura, Yasuyuki Yagi
-
Patent number: 8585810Abstract: Provided is an apparatus for regenerating a carbon dioxide absorption solution that regenerates an absorption solution for absorbing carbon dioxide contained in a combustion exhaust gas emitted during a combustion process of a vehicle, thereby reducing energy costs while simplifying its configuration.Type: GrantFiled: February 18, 2011Date of Patent: November 19, 2013Assignees: Hyundai Motor Company, Kia Motors CorporationInventor: Yoon Ji Lee
-
Patent number: 8574406Abstract: A fermentation liquid feed including water and a product alcohol and optionally CO2 is at least partially vaporized such that a vapor stream is produced. The vapor stream is contacted with an absorption liquid under suitable conditions wherein an amount of the product alcohol is absorbed. The portion of the vapor stream that is absorbed can include an amount of each of the water, the product alcohol and optionally the CO2. The temperature at the onset of the absorption of the vapor stream into the absorption liquid can be greater than the temperature at the onset of condensation of the vapor stream in the absence of the absorption liquid. The product alcohol can be separated from the absorption liquid whereby the absorption liquid is regenerated. The absorption liquid can include a water soluble organic molecule such as an amine.Type: GrantFiled: February 8, 2011Date of Patent: November 5, 2013Assignee: Butamax Advanced Biofuels LLCInventors: Michael Charles Grady, William D. Parten, Robert W. Sylvester, Joseph J. Zaher
-
Publication number: 20130284020Abstract: The invention provides a process for removing carbon dioxide from a gas stream comprising the steps of: (a) contacting the gas stream with an absorption solvent to obtain a gas stream with a reduced carbon dioxide content and a carbon dioxide-containing absorption solvent; (b) withdrawing at least part of the gas stream with the reduced carbon dioxide content; (c) withdrawing at least part of the carbon dioxide-containing absorption solvent obtained in step (a) and heat it to obtain a mixture comprising a gas phase, an aqueous liquid phase and a non-aqueous liquid phase, wherein carbon dioxide is predominantly present in the gas phase; (d) introducing at least part of the mixture obtained in step (c) into a gas lift reactor to further release carbon dioxide absorbed in the aqueous liquid phase and the non aqueous liquid phase, whereby the gas phase establishes circulation and mixing of the aqueous liquid phase and the non-aqueous liquid phase between a lower section of the gas lift reactor and an upper sectioType: ApplicationFiled: December 7, 2011Publication date: October 31, 2013Inventors: Frank Haiko Geuzebroek, Gerrit Konijn, Xiaohui Zhang
-
Publication number: 20130284021Abstract: An object of the present invention is to provide a CO2 removal apparatus that prevents release of an amine compound of an absorbing solution from a CO2 absorption device. The CO2 removal apparatus includes a desorption column 13 that heats and regenerates an amine compound aqueous solution discharged from a decarbonator 1 making counterflow contact of a combustion exhaust gas and an amine compound aqueous solution; and reflux means that refluxes an amine compound aqueous solution regenerated in the desorption column 13 to the decarbonator 1 via a cooler 19. A contact section that makes counterflow contact of reflux water of the desorption column 13 and a CO2-removed combustion exhaust gas is formed in two stages, and the cooler 19 on the downstream side of the desorption column is also formed in two stages. Reflux water from the first stage cooler is supplied to the first stage contact section, and reflux water from the second stage cooler is supplied to the second stage contact section.Type: ApplicationFiled: November 21, 2011Publication date: October 31, 2013Applicant: BABCOCK-HITACHI KABUSHIKI KAISHAInventors: Eiji Miyamoto, Koichi Yokoyama, Shigehito Takamoto, Naoki Oda